
Joint Tracking of Features and Edges

Stanley T. Birchfield Shrinivas J. Pundlik
Electrical and Computer Engineering Department

Clemson University, Clemson, SC 29634
{stb, spundli}@clemson.edu

Abstract

Sparse features have traditionally been tracked from
frame to frame independently of one another. We propose a
framework in which features are tracked jointly. Combining
ideas from Lucas-Kanade and Horn-Schunck, the estimated
motion of a feature is influenced by the estimated motion of
neighboring features. The approach also handles the prob-
lem of tracking edges in a unified way by estimating motion
perpendicular to the edge, using the motion of neighboring
features to resolve the aperture problem. Results are shown
on several image sequences to demonstrate the improved
results obtained by the approach.

1. Introduction

Tracking features between consecutive image frames is
a fundamental problem in computer vision. By establish-
ing correspondence between sparse points, feature tracking
captures the essence of the motion of a scene in a compact
description, making it useful for a wide variety of applica-
tions, such as structure from motion [19, 21, 5, 9], motion
segmentation [5, 13, 16], object tracking [11], image mo-
saicking [23], and face tracking [6].

The classic approach to feature tracking is the differen-
tial technique of Lucas and Kanade [14], which estimates
the motion of a small patch of image intensities (features).
The basic idea is simple: A linear system is repeatedly
solved to find the best alignment for the image patch in the
other image. Over the years, researchers have proposed a
number of improvements to the basic algorithm. Shi and
Tomasi [17] determine when a feature has been lost by com-
puting the best affine warp between the first frame and the
current frame. They noted that, although the translation
model is acceptable between consecutive image frames, a
richer model such as affine is necessary when considering
frames separated widely in time. Their work was later ex-
tended by Tommassini et al. [20] to automatically reject
spurious features. More recently, Šegvić et al. [22] model
the feature support adaptively to improve long-range per-

formance of a feature in the presence of dominant forward
motion. When non-causal processing is appropriate, Sivic
et al. [18] describe a technique for repairing the trajecto-
ries of features using the start and end locations in a set of
frames. To handle lighting and exposure changes, various
methods have been proposed [12, 10]. Other researchers
have focused their efforts upon improving the performance
of Lucas-Kanade when applied to a single large image patch
to be tracked [7, 15, 1].

One problem that remains largely unaddressed in the lit-
erature, however, is that of tracking features together. Most
previous approaches to feature tracking consider each fea-
ture independently of the other features, thus neglecting im-
portant information that is available in determining the mo-
tion of a feature. This bottom-up approach is at odds with
the Gestalt emphasis upon the importance of motion coher-
ence, namely that nearby pixels will often have similar mo-
tions. Even though independent tracking oftentimes suc-
ceeds, errors persist because the neighboring information is
ignored.

In this paper we propose a framework in which features
are tracked jointly. Inspired by the work of Bruhn et al.
[4], we use global optic flow methods (Horn-Schunck) to
improve the results obtained by local optic flow (Lucas-
Kanade). A smoothness term is added to the formulation
to penalize the deviation of the displacement of a feature
from its expected value, which is computed by fitting a
motion model to the displacements of the neighbors. The
approach bears a resemblance to that of Kim et al. [12]
in which features are also tracked jointly, but in our work
the features influence one another geometrically rather than
photometrically. One advantage of the proposed framework
is that it facilitates the uniform treatment of features and
edges for tracking. Edges have often been avoided in track-
ing due to their underconstrained nature (the aperture prob-
lem). Here, however, the gradient information that enables
an edge to be tracked in the direction perpendicular to the
edge is combined naturally with the motion of neighboring
features. The motion of the edge is determined by mini-
mizing a 2D energy functional that takes into account both
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the image data and the smoothness of the nearby estimated
motions.

2. Lucas-Kanade and Horn-Schunck

As explained by Bruhn et al. [4], differential methods for
both dense optical flow as well as sparse feature tracking
are based on the assumption that the intensity values of the
projection of scene points do not change over time:

I(x + u, y + v, t + 1) = I(x, y, t), (1)

where I(x, y, t) is the intensity of pixel x = (x, y)T in
frame t, and u = (u, v)T is the displacement of the pixel
between consecutive frames t and t+1. For small displace-
ments, a linearized Taylor series expansion yields the well-
known optic flow constraint equation:

f(u, v; I) = Ixu + Iyv + It = 0, (2)

where the subscripts denote partial derivatives. The well-
known aperture problem arises because this single equation
is insufficient to recover the two unknowns u and v.

The Lucas-Kanade [14] approach to overcoming the
aperture problem assumes that the unknown displacement
u of a pixel is constant within some neighborhood. As a
result, the displacement can be computed by minimizing

ELK(u, v) = Kρ ∗
(
(f(u, v; I))2

)
, (3)

where Kρ ∗(·) denotes convolution with an integration win-
dow of size ρ. Differentiating with respect to u and v, and
setting the partial derivatives to zero, yields the linear sys-
tem[

Kρ ∗ (I2
x) Kρ ∗ (IxIy)

Kρ ∗ (IxIy) Kρ ∗ (I2
y )

] [
u
v

]
= −

[
Kρ ∗ (IxIt)
Kρ ∗ (IyIt)

]

(4)
which is solved iteratively to minimize ELK .

Alternatively, the Horn-Schunck [8] approach regular-
izes the underconstrained optic flow constraint equation by
imposing a global smoothness term. While Lucas-Kanade
finds the displacement of a small window around a sin-
gle pixel, Horn-Schunck computes the global displacement
functions u(x, y) and v(x, y) by minimizing

EHS(u, v) =
∫

Ω

(f(u, v; I))2 + λ
(|∇u|2 + |∇v|2) dx dy,

(5)
where λ is the regularization parameter and Ω is the domain
of the image. The minimum of this functional is found by
solving the corresponding Euler-Lagrange equations, lead-
ing to

[
I2
x IxIy

IxIy I2
y

] [
u
v

]
=

[
λ∇2u− IxIt

λ∇2v − IyIt

]
, (6)

where ∇2u = ∂2u
∂x2 + ∂2u

∂y2 and ∇2v = ∂2v
∂x2 + ∂2v

∂y2 are the
Laplacian of u and v, respectively. Solving this equation
for u and v and using the approximation that∇2u ≈ h(ū−
u), where ū is the average of the values of u among the
neighbors of the pixel, and h is a constant scale factor, we
get [

u
v

]
=

[
ū
v̄

]
− Ixū + Iy v̄ + It

hλ + I2
x + I2

y

[
Ix

Iy

]
. (7)

Thus, the sparse linear system can be solved using the Ja-
cobi method with iterations for pixel (i, j)T of the form:

u
(k+1)
ij = ū

(k)
ij − γIx (8)

v
(k+1)
ij = v̄

(k)
ij − γIy,

where

γ =
Ixū

(k)
ij + Iy v̄

(k)
ij + It

hλ + I2
x + I2

y

. (9)

Faster convergence is obtained by performing computations
in place (Gauss-Seidel) and using successive overrelaxation
(SOR).

3. Joint Feature Tracking

It is important to note that, although the derivation of
Eq. (6) assumes a continuous formulation, the final result
in Eqs. (8)–(9) corresponds to a discrete energy functional,
due to the discrete approximation of the Laplacian. This
observation motivates us to combine the Lucas-Kanade and
Horn-Schunck approaches in Eqs. (3) and (5) into the fol-
lowing functional to be minimized:

EJLK =
N∑

i=1

(ED(i) + λiES(i)), (10)

where N is the number of feature points, and the data and
smoothness terms are given by

ED(i) = Kρ ∗
(
(f(ui, vi; I))2

)
(11)

ES(i) =
(
(ui − ûi)2 + (vi − v̂i)2

)
. (12)

In these equations, the energy of feature i is determined by
how well its displacement (ui, vi)T matches the local im-
age data, as well as how far the displacement deviates from
the expected displacement (ûi, v̂i)T . Note that the expected
displacement can be computed in any desired manner and is
not necessarily required to be the average of the neighboring
displacements.

Differentiating EJLK with respect to the displacements
(ui, vi)T , i = 1, . . . , N , and setting the derivatives to zero,
yields a large 2N×2N sparse matrix equation, whose (2i−
1)th and (2i)th rows are given by

Ziui = ei, (13)



where

Zi =
[

λi + Kρ ∗ (IxIx) Kρ ∗ (IxIy)
Kρ ∗ (IxIy) λi + Kρ ∗ (IyIy)

]

ei =
[

λiûi −Kρ ∗ (IxIt)
λiv̂i −Kρ ∗ (IyIt)

]
.

This sparse system of equations can be solved using Ja-
cobi iterations of the form

ũ
(k+1)
i = û

(k)
i − Jxxû

(k)
i + Jxy v̂

(k)
i + Jxt

λi + Jxx + Jyy
(14)

ṽ
(k+1)
i = v̂

(k)
i − Jxyû

(k)
i + Jyy v̂

(k)
i + Jyt

λi + Jxx + Jyy
, (15)

where Jxx = Kρ ∗ (I2
x), Jxy = Kρ ∗ (IxIy), Jxt = Kρ ∗

(IxIt), Jyy = Kρ ∗ (I2
y ), and Jyt = Kρ ∗ (IyIt).

As before, convergence is greatly increased by perform-
ing Gauss-Seidel iterations so that û

(k)
i and v̂

(k)
i are actu-

ally computed using a mixture of values from the kth and
(k + 1)th iterations (depending upon the order in which the
values are updated), and by performing a weighted aver-
age of the most recent estimate and the new estimate (suc-
cessive overrelaxation). With this modification, the update
equations are given by u(k+1)

i = (1 − ω)u(k)
i + ωũ(k+1)

i ,

where ũ(k+1)
i is the estimate expressed in Eqs. (14–15), and

ω ∈ (0, 2) is the relaxation parameter. For fast convergence,
ω is usually set to a value between 1.9 and 1.99. Note that
for ω = 1 the approach reduces to Gauss-Seidel.

4. Pyramidal Implementation

Both the standard Lucas-Kanade method and the pro-
posed joint Lucas-Kanade method involve iteratively solv-
ing a sparse 2N×2N linear system to find the minimum of a
quadratic cost functional. In the former, the matrix is block-
diagonal, leading to a simple and efficient implementation
via a set of 2× 2 linear systems, while in the latter, the off-
diagonal terms require the approach presented in the pre-
vious section. The difference between the approaches be-
comes apparent when considering a pyramidal implementa-
tion, which is usually necessary to overcome the deficien-
cies in the linearization approximation in the formulation of
the problem in Eq. (2).

The two algorithms are shown. Standard Lucas-Kanade
iterates through each pyramid level for each feature, while
joint Lucas-Kanade iterates through each feature for each
pyramid level. Note that if λi = 0, i = 1, . . . , N , then the
two algorithms are exactly the same (except for minor dif-
ferences in the termination criterion), and that the compu-
tation required is the same. Both algorithms are O(Nnm),
where N is the number of features, n is the number of pyra-
mid levels, and m is the average number of iterations. How-
ever, because it considers all the features at a time, the joint

Algorithm: Standard Lucas-Kanade

For each feature i,

1. Initialize ui ← (0, 0)T

2. Set λi ← 0

3. For pyramid level n− 1 to 0 step −1,

(a) Compute Zi

(b) Repeat until convergence:

i. Compute the difference It between the
first image and the shifted second image:
It(x, y) = I1(x, y)− I2(x + ui, y + vi)

ii. Compute ei

iii. Solve Ziu′
i = ei for incremental motion u′

i

iv. Add incremental motion to overall estimate:
ui ← ui + u′

i

(c) Expand to the next level: ui ← αui, where α is
the pyramid scale factor

Algorithm: Joint Lucas-Kanade

For each feature i,

1. Initialize ui ← (0, 0)T

2. Initialize λi

For pyramid level n− 1 to 0 step −1,

1. For each feature i, compute Zi

2. Repeat until convergence:

(a) For each feature i,

i. Determine ûi

ii. Compute the difference It between the
first image and the shifted second image:
It(x, y) = I1(x, y)− I2(x + ui, y + vi)

iii. Compute ei

iv. Solve Ziu′
i = ei for incremental motion u′

i

v. Add incremental motion to overall estimate:
ui ← ui + u′

i

3. Expand to the next level: ui ← αui, where α is the
pyramid scale factor

algorithm involves different memory requirements: Instead
of precomputing all the pyramidal images, it must precom-
pute the Zi matrices for all the features.



Several implementation issues remain. First, how should
the regularization parameters λi be chosen? Since a large
number of features can often be tracked accurately with-
out any assistance from their neighbors, one could imag-
ine weighting some features more than others, e.g., using
one of the standard measures for detecting features in the
first place [17]. For example, since large eigenvalues of the
gradient covariance matrix indicate sufficient image inten-
sity information for tracking, such features could receive
smaller smoothing weights (regularization parameter val-
ues) than those with insufficient information. However, this
scheme is frustrated by the fact that the eigenvalues do not
take into account important issues such as occlusions, mo-
tion discontinuities, and lighting changes, making it diffi-
cult to determine beforehand which features will actually
be tracked reliably. As a result, we simply set all of the
regularization parameters to a constant value in this work:
λi = 50.

Another issue is how to determine the expected values
(ûi, v̂i)T of the displacements. Because the features are
sparse, a significant difference in motion between neigh-
boring features is not uncommon, even when the features
are on the same rigid surface in the world. As a result,
we cannot simply average the values of the neighbors as
is commonly done [8, 4]. Instead, we predict the motion
displacement of a pixel by fitting an affine motion model
to the displacements of the surrounding features, which are
inversely weighted according to their distance to the pixel.
We use a Gaussian weighting function on the distance, with
σ = 10 pixels.

Finally, because the algorithm enforces smoothness, it is
able to overcome the aperture problem by determining the
motion of underconstrained pixels that lie along intensity
edges. We modify the feature detection algorithm accord-
ingly. To detect features, we use the two eigenvalues emin

and emax, emin ≤ emax of the original Lucas-Kanade gradi-
ent covariance matrix (i.e., Zi with λi = 0). Rather than se-
lecting the minimum eigenvalue emin, as is often done [17],
we select features using max(emin, ηemax), where η < 1
is a scaling factor. The rationale behind this choice is that
along an intensity edge emax will be large while emin will
be arbitrarily small. Instead of treating an edge like an un-
textured region, the proposed measure rewards the feature
for the information that it does have. For pixels having two
comparable eigenvalues, the proposed measure reduces to
the more common minimum eigenvalue. In this work we
set η = 0.1.

5. Experimental Results

The proposed algorithm has been compared against a
state-of-the-art implementation of pyramidal Lucas-Kanade
[3]. We ran both algorithms with identical parameters on
four image sequences (Rubber Whale, Hydrangea, Venus,

and Dimetrodon) recently proposed for comparing optical
flow algorithms [2]. These sequences include static scenes
as well as independently moving rigid and non-rigid ob-
jects. For all images we detected 1000 features and tracked
using a 7 × 7 window, with ten maximum iterations and
three pyramid levels (i.e., the original image plus two im-
ages obtained by downsampling the original by a factor of
two and four, respectively). No color information was used
by either algorithm.

The results of the experiment are shown in Table 1.
For both algorithms, we computed the average angular er-
ror (AE) and the average endpoint error (EP) [2]. In all
cases, the joint tracking algorithm considerably outper-
forms the traditional approach, oftentimes reducing the er-
ror by nearly half. More recent techniques, such as [22, 12],
would perform similarly to the traditional approach on these
images since they also do not enforce spatial continuity.
It is also worth noting that the errors of the joint tracking
algorithm are significantly less than those of the leading
dense optical flow algorithms, which achieve 9.26 (AE) and
0.35 (EP) on Dimetrodon and 7.64 (AE) and 0.51 (EP) on
Venus.1

Figure 1 displays the results of the two algorithms on
three of the image sequences. In general, the joint track-
ing algorithm exhibits smoother flows and is thus better
equipped to handle features without sufficient local infor-
mation. In particular, repetitive textures that cause individ-
ual features to be distracted by similar nearby patterns using
the traditional algorithm do not pose a problem for the pro-
posed algorithm. A close-up showing this behavior is in
Figure 2.

The difference between the two algorithms is even more
pronounced when the scene does not contain much texture,
as is often the case in indoor man-made environments. Fig-
ure 3 shows one such scene, along with the results computed
by the two algorithms. In this sequence the camera is mov-
ing down and to the right with a slight counterclockwise
rotation. The camera gain control causes a severe intensity
change in the window of the door, causing those features
to be lost. The joint algorithm is able to compute accurate
flow vectors for features that do not contain sufficient local
information to be accurately tracked, while the traditional
algorithm fails in these locations.2

6. Conclusion

In this paper we have combined the ideas of Lucas-
Kanade and Horn-Schunck in the opposite manner as that of
Bruhn et al. [4]. Instead of aggregating local information to
improve global flow, we aggregate global information to im-
prove the tracking of sparse feature points. Because of their

1http://vision.middlebury.edu/flow
2For more results and videos of this sequence, see

www.ces.clemson.edu/˜stb/research/jointtracking.



Rubber Whale Hydrangea Venus Dimetrodon
Algorithm AE EP AE EP AE EP AE EP

Standard LK [3] 8.09 0.44 7.65 0.57 8.56 0.63 2.40 0.13
Joint LK (this paper) 4.32 0.13 6.13 0.45 4.66 0.25 1.34 0.08

Table 1. Quantitative comparison of the two algorithms on images with ground truth, showing the average angular error (AE) in degrees
and the average endpoint error (EP) in pixels.

Rubber Whale Hydrangea Venus
Figure 1. Results of standard Lucas-Kanade (top) and joint Lucas-Kanade (bottom) on image pairs from three sequences. Red dots
indicate tracked feature points, and red lines show the displacements (scaled for display). The latter algorithm exhibits fewer erroneous
displacements in regions of repetitive texture.

sparsity, the motion displacements of neighboring features
cannot simply be averaged as is commonly done. Rather,
an affine motion model is fit to the neighboring features,
and the resulting expected flow vector is used in performing
the Newton-Raphson iterations for computing the displace-
ment of a particular feature. By incorporating off-diagonal
elements into the otherwise block-diagonal tracking matrix,
significantly improved results are obtained, particularly in
areas of repetitive texture, one-dimensional texture (edges),
or no texture.

Many improvements are possible with this work. Most
notably, the smoothing of motion displacements across mo-
tion discontinuities will create artifacts in the resulting flow
fields. To solve this problem, robust penalty functions or
segmentation algorithms can be employed. In addition, ex-
plicit modeling of occlusions would reduce the effects of
drastic unpredictable changes within the feature window it-
self due to the appearance and disappearance of surfaces.
Finally, the displacements of sparse feature points can be
used as a starting point for interpolating a dense flow field.
We are exploring these ideas in our current research.

References

[1] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A uni-
fying framework. International Journal of Computer Vision,
56(3):221–255, 2004.

[2] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and
R. Szeliski. A database and evaluation methodology for op-
tical flow. In Proceedings of the International Conference on
Computer Vision, 2007.

[3] J.-Y. Bouguet. Pyramidal implementation of the Lucas
Kanade feature tracker. OpenCV documentation, Intel Cor-
poration, Microprocessor Research Labs, 1999.

[4] A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets
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