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Abstract

This paper presents a new approach to discriminative
modeling for classification and labeling. Our method,
called Boosting on Multilevel Aggregates (BMA), adds a
new class of hierarchical, adaptive features into boosting-
based discriminative models. Each pixel is linked with a set
of aggregate regions in a multilevel coarsening of the im-
age. The coarsening is adaptive, rapid and stable. The mul-
tilevel aggregates present additional information rich fea-
tures on which to boost, such as shape properties, neigh-
borhood context, hierarchical characteristics, and photo-
metric statistics. We implement and test our approach on
three two-class problems: classifying documents in office
scenes, buildings and horses in natural images. In all three
cases, the majority, about 75%, of features selected during
boosting are our proposed BMA features rather than patch-
based features. This large percentage demonstrates the dis-
criminative power of the multilevel aggregate features over
conventional patch-based features. Our quantitative perfor-
mance measures show the proposed approach gives supe-
rior results to the state-of-the-art in all three applications.

1. Introduction
We are interested in the question Is this pixel a building-

pixel? or a horse-pixel? or etc. This core question has puz-
zled the vision community for decades; the difficulty stems
from the great variability present in natural images. Objects
in the natural world can exhibit complex appearance and
shape, occur at varying scales, be partially occluded, and
have broad intra-class variance. Yet, despite the challenge,
good progress has been demonstrated on particular classes
of objects, such as detecting faces with Adaboost [16].

Recall that Adaboost [4] defines a systematic supervised
learning approach for selecting and combining a set of weak
classifiers into a single so-called “strong” classifier. A weak
classifier is any classifier doing better than random. Ad-
aboost has been shown to converge to the target posterior
distribution [5], i.e., giving an answer to our original ques-
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Figure 1. Illustrative overview of the proposed boosting on mul-
tilevel aggregates (BMA) approach and comparison to conven-
tional patch-driven approaches. BMA learns discriminative mod-
els based on patches and multilevel aggregates, which capture rich
hierarchical, contextual, shape, and adaptive region statistical in-
formation. Aggregate features are selected about 75% of the time.

tion, is this pixel a... However, conventional Adaboost
in vision relies on features extracted from fixed rectilinear
patches at one or more scales. Typical features are Harr-like
filters, patch-histograms of Gabor responses and intensities,
and position. Features grounded in such patches can vio-
late object boundaries giving polluted responses and have
difficulty adapting to broad intra-class object variation.

In this paper, we propose Boosting on Multilevel Ag-
gregates (BMA), which incorporates features from an adap-
tively coarsened image into the boosting framework. Fig-
ure 1 gives an illustrative overview of BMA. The aggre-
gates are regions that occur at various scales and adapt to
the local intensity structure of an image, i.e., they tend to
obey object boundaries. For example, in the building case,
we expect to find an aggregate for an entire window at one
level, and at the next level, we expect to find it joined with
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the wall. By linking a pixel with an aggregate at every level
in the hierarchy, we are able to incorporate rich statistical,
shape, contextual and hierarchical features into the boost-
ing framework without adding a big computational burden
or requiring a complex top-down model.

Our work is similar in the adaptive multilevel spirit to
Borenstein et al. [2]. In their work, a soft multilevel coars-
ening procedure, based on the segmentation by weighted
aggregation [11], is used to build the hierarchy. The re-
gions in the hierarchy are then used help constrain a model-
based top-down segmentation process [3] to give a final
class-specific segmentation. However, our goals are differ-
ent, they rely on a top-down model to jointly constrain a
global segmentation energy, which is a recent trend, espe-
cially in two-class problems, e.g., [8]. In contrast, we are
interested in learning a probabilistic discriminative model
from bottom-up cues alone; our BMA model could then be
incorporated with top-down information as is similarly done
by Zheng et al. [19] or in an energy minimization frame-
work as Shotton et al. [12] do with their TextonBoost model
in a conditional random field [9].

A number of papers in the literature deal with boost-
ing in a hierarchical manner. However, these related works
mainly hierarchically decompose the classification space
rather than the feature space. For example, the probabilistic
boosting tree (PBT) method [14] constructs a decision tree
by using an Adaboost classifier at each node (we in fact use
the PBT as our underlying discriminative model, see sec-
tion 2.5). The AdaTree method [6], conversely builds a
decision tree on the selected weak classifiers rather than a
fixed linear combination of them. Torralba et al. [13] use
a hierarchical representation to share weak-learners across
multiple classes reducing the total computational load; al-
though not our foremost goal, we achieve similar computa-
tion sharing in our multilevel aggregates (section 3.5).

Wu et al. [17] propose compositional boosting to learn
low-to-mid level structures, like lines and junctions lead-
ing to a primal sketch-like interpretation [7]. Their method
recursively learns an and-or graph; boosting makes bottom-
up proposals, which are validated in a top-down DDMCMC
process [15]. SpatialBoost [1] is a related method that ex-
tends Adaboost by incorporating weak classifiers based on
the neighboring labels into an iterative boosting procedure,
during which spatial information can be slow to circulate.
In contrast, BMA requires no iterative boosting rounds and
it directly incorporates spatial information in the aggregates
from the coarsening procedure.

Boosting on multilevel aggregates introduces a new class
of information rich features into discriminative modeling.
BMA is straightforward to implement, and it can be di-
rectly incorporated into existing modeling schemes as well
as complete bottom-up-and-top-down methods. We demon-
strate BMA on three two-class classification problems: doc-

uments in office scenes, and buildings [18] and horses [2]
in natural images. BMA is directly extensible to the multi-
class case. Our results indicate that BMA features are cho-
sen over patches a majority of the time (about 75%) during
learning. Our accuracy on all three problems is superior to
the state-of-the-art and validate the modeling power of mul-
tilevel aggregates over conventional patch-based methods.

2. Boosting on Multilevel Aggregates

We restate our problem in mathematical terms. Let i de-
note a pixel on the lattice Λ and I(x) denote the intensity
(gray or color) at that pixel. li denotes a binary random la-
beling variable associated with pixel i taking value +1 if i
is a building-pixel (or horse-pixel, or etc.) and −1 other-
wise. We want to learn a discriminative model P (li|i, I)
from which we can compute l∗i = arg maxli P (li|i, I). To
keep the learning and inference tractable, the conditioning
on the entire image needs to be reduced. In conventional
patch-based modeling, this conditioning is reduced to a lo-
cal sub-image, e.g., 11 × 11. However, in the proposed
BMA approach, we change the conditioning by replacing
the image I with a multilevel coarsened version G, giving
P (li|i, G); G is explained in the next section. Each pixel
is then dependent on a greater portion of the image, often
as much as 25%. In section (2.1), we discuss the adaptive
coarsening procedure. We follow with an example in §2.2,
properties in §2.4, and how we train our model in §2.5.

2.1. Adaptive Multilevel Coarsening

Define a graph on the image pixels, G0 = (V0, E0), such
that V0 = Λ. Edges in the graph are created based on lat-
tice connectivity relations (e.g., 4-neighbors) and denoted
by the predicate N(u, v) = 1. We compute a hierarchy
of such graphs such that G = {Gt : t = 1, . . . , T} by us-
ing a coarsening procedure that groups nodes based on ag-
gregate statistics in the image. Associated with each node,
u ∈ Vt, are properties, or statistics, denoted su ∈ S, where
S is some property space, like R3 for red-green-blue image
data, for example. A node at a coarser layer t > 0 is called
an aggregate W t and describes a set of nodes, its children,
C(W t) ⊂ Vt−1 from the next finer level under the follow-
ing constraints: C(W t

k) ∩ C(W t
l ) = ∅ when k 6= l and⋃

C(Wk) = Vt−1. Thus, each node u ∈ Vt−1 is a child of
only one coarser aggregate W t. One can trace an individual
pixel to its aggregate at each level in the hierarchy G.

We give pseudo-code for the coarsening algorithm in fig-
ure 2. Nodes on coarser levels (t > 0) group relatively ho-
mogeneous pixels. Define a binary edge activation variable
euv on each edge in the current layer, which takes the value
1 if u and v should be in the same aggregate and 0 other-
wise. Each coarsening iteration first infers the edge acti-
vation variables based on the node statistics (discussed in



detail in section 2.3). Then, a breadth-first connected com-
ponents procedure groups nodes by visiting active edges
until each new aggregate has grown to the maximum size
or all nodes have been reached. The maximum size is set
by a user-defined parameter called the reduction factor, de-
noted τ in figure 2. There is a inverse logarithmic relation-
ship between the reduction factor and the necessary height
(T ) required to capture a full coarsened image hierarchy:
T = blog 1

τ
nc, for an image with n pixels. Since a shorter

hierarchy requires less computation and storage, and, intu-
itively, yields aggregates that more quickly capture an accu-
rate multilevel representation of the image, we set τ ← 0.05
in all our experiments, which gives a maximum of 20 chil-
dren per aggregate and a height T of 4.

Each time an aggregate is created (line 11 in figure 2),
it inherits its statistics as the weighted mean over its chil-
dren. The weight is the fraction of the total mass (number
of pixels) each child is contributing. It also inherits connec-
tivity from its children: an aggregate W1 is connected to an
aggregate W2 if any of their children are connected.

ADAPTIVE MULTILEVEL COARSENING
Input: Image I and reduction factor τ .
Output: Graph hierarchy with layers G0, . . . , GT .
0 Initialize graph G0, T = blog 1

τ
nc, and t← 0.

1 repeat
2 Compute edge activation in Gt; (1) in §2.3.
3 Label every node in Gt as OPEN.
4 while OPEN nodes remain in Gt.
5 Create new, empty aggregate W .
6 Put next OPEN node into queue Q.
7 while Q is not empty and |W | < 1/τ .
8 u← removed head of Q.
9 Add v to Q, s.t. N(u, v) = 1 and euv = 1.

10 Add u as a child of W , label u as CLOSED.
11 Create Gt+1 with a node for each W .
12 Define sW as weighted means of its children.
13 Inherit connectivity in Gt+1 from Gt.
14 t← t + 1.
15 until t = T .

Figure 2. Pseudo-code for the coarsening algorithm.

2.2. Coarsening Example

We now show an example of the coarsening procedure
on a typical natural image scene (from figure 1). The scene
has three major region types: sky, building, and tree. In
figure 3, we render the four coarse layers of the hierarchy
(T = 4) horizontally with coarser layers on the right. The
top row assigns a random gray value to each unique aggre-
gate. The bottom shows reconstructions of the image using
the mean intensity of each aggregate. We note how the per-
ceptual content of the image is preserved even at the coarse
levels of the hierarchy. The three different region types
coarsen distinctly. The sky coarsens roughly isotropically,
due to the pixel homogeneity, but the tree regions coarsen

more randomly. The building has coarse nodes with very
sharp boundaries that can be seen as early as the first level
of coarsening (left column). It is variations like these that
provide rich information for discriminative modeling of the
various region types; such features are discussed in §3.

Figure 3. Example of the adaptive multilevel coarsening on the
image from figure 1. See text for explanation.

2.3. Activating Edges During Coarsening

During coarsening, edge activation variables are inferred
by making a quick Bayesian decision based on the aggre-
gated statistical properties of each node, including, for ex-
ample, mean intensity. We consider a statistical interpre-
tation of the affinity between nodes u and v. Given a set
of labeled training data, which is assumed for each of the
experiments we discuss, we separate the pixels into two
pseudo-classes: (1) off boundary and (2) on boundary (sep-
arating two class regions, e.g., building and not building).
For both pseudo-classes, we compute the distribution on the
L1-norm of the statistics, |su − sv|. Figure 4-(a) plots the
two distributions. The two curves resemble exponential dis-
tributions, validating the conventional affinity definition in
vision exp [−α |su − sv|]. We compute the Bayesian deci-
sion boundary (with equal costs) δ, which is rendered as a
dotted vertical line in the figure. Then, we use the rule

euv =

{
1 if |su − sv| < δ

0 otherwise
(1)

to infer the edge activation variables. The same rule is used
at all levels in the hierarchy during coarsening.

2.4. Coarsening Properties

Stability: Repeated applications of the algorithm ADAP-
TIVE MULTILEVEL COARSENING on an image will yield
equivalent coarsened graph hierarchies. Since the algo-
rithm makes a deterministic decision about activating edges
and grouping pixels based on mean aggregate statistics, the
coarsening process is stable on equivalent input.
Complexity: Algorithm ADAPTIVE MULTILEVEL
COARSENING is log-linear in the number of pixels,
O(n log 1

τ
n), in the worst case and linear, O(n), in the

typical case for an image with n pixels. The total number
of nodes n̄ is bounded such that n̄ ≤ nT = n log 1

τ
n.
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Figure 4. (a) Empirical statistics of feature distance between pixels
on and off a boundary, used during edge activation variable infer-
ence. (b) Pixels suitable for training on the building class for the
image from figure 1. White means suitable.

However, this conservative bound is reached only in the
case that all edge activation variables are always turned
off, which never happens in practice. Rather, the expected
total number is n̄ = n + τn + τ2n + · · · + τT n. Since
τ ≤ 0.5 =⇒ n̄ ≤ 2n, the expected complexity is linear.
The number of operations per node is constant.
Memory Cost: Algorithm ADAPTIVE MULTILEVEL
COARSENING requires memory log-linear in the number
of pixels. The discussion has three parts: i) The cost to
store statistics and other properties of a node is constant per
node. ii) The cost to store the hierarchical parent-child in-
formation is log-linear in the number of pixels (due to the
hard-ness of the hierarchy). iii) The cost to store the edges is
log-linear in the number of pixels (the number of total edges
in the graph is never increasing because of the reduction at
each level, and there are log-order levels).

2.5. Training

We use the probabilistic boosting tree (PBT) frame-
work [14], which learns a decision tree using Adaboost
classifiers [4, 5] as its nodes, and the standard stump weak
classifier [16]. The coarsening algorithm is slightly adapted
when we use it for training. Each pixel is given a label li.
During coarsening when we compute the statistics at a new
aggregate W (line 12 in figure 2), we also compute a single
label lW . It is the most common label among W ’s children:

lW = arg max
l

∑
u∈C(W )

δ(l = lu)m(u) (2)

where m(u) denotes the mass of node u (number of pixels).
Then, during training, we flag a pixel i as suitable for

training if it has the same label as the aggregate to which
it is associated at each level in the hierarchy. This suitabil-
ity test is quickly computed by creating a set of label im-
ages with one for each hierarchy level such that each pixel
is given the label of its aggregate at each level. Because ag-
gregate boundaries tend to obey object boundaries, the per-
centage of suitable pixels is typically high, about 95% per

image; an example of building-suitable pixels for the image
from figure 1 is in figure 4-(b).

3. Adaptive Multilevel Aggregate Features
We present a rich set of features that can be measured

on the aggregates. With only a few exceptions, evaluating
these features is nearly as efficient as the conventional fixed-
patch Harr-like filters. These features are measured on the
aggregates and capture rich information including regional
statistics, shape features, adaptive Harr-like filters, and hi-
erarchical properties. We add the following notation to de-
cribe the properties of an aggregate u (for clarity, we use u
instead of W in this section to denote an aggregate):

L(u) set of pixels it represents.
N(u) set of neighbors on same level.

minx(u), miny(u) minimum spatial location.
maxx(u), maxy(u) maximum spatial location.

x(u), y(u) spatial location.
g(u), a(u), b(u) intensity and color (Lab space).

Recall that these properties are computed during coarsen-
ing; no further evaluation is required for them. Where nec-
essary below, we give the mathematical definition of each.

3.1. Photometric and Spatial Statistical Features

Average statistics are computed based on the adaptively
coarsened aggregate and avoid polluted statistics that would
result if computing them in a patch-based paradigm. During
aggregation, they are computed by

m(u) =
∑

c∈C(u)

m(c) , (3)

x(u) =
1

m(u)

∑
c∈C(u)

m(c)x(c) . (4)

The second equation is computed for features y, g, a, and b
too. The value for each of these functions at the pixel-level
is the obvious one with the initial mass of a pixel being 1.
Aggregate moments take input directly from each pixel in
an aggregate. We take the central moment about the aggre-
gate’s mean statistic:

Mk
x (u) =

1
m(u)

∑
i∈L(u)

(x(i)− x(u))k
. (5)

We again compute this for features y, g, a, and b.
Adaptive histograms of the intensities, colors, and Gabor
responses are computed directly over the aggregate’s pixels
L(u). For example, the intensity histogram Hg bin b is

Hg(u, b) =
1

m(u)

∑
i∈L(u)

δ (g(i)− b) . (6)

Each histogram bin weight is directly considered a feature.



3.2. Shape Features

The spatial moments (5) are simple statistical shape fea-
tures. Here, we discuss additional aggregate shape features.
Elongation measures the shape of the aggregate’s bounding
box by taking the ratio of its height to width. The bound-
ing box properties of each aggregate are computed during
coarsening by the following equation, for x,

minx(u) = min
c∈C(u)

minx(c) (7)

The maxx, miny and maxy are similarly computed. A
pixel’s bounds are its spatial location. Elongation is

e(u) =
h(u)
w(u)

=
maxy(u)−miny(u)
maxx(u)−minx(u)

(8)

Rectangularity measures the degree to which the bounding
box of an aggregate is filled by that aggregate. For exam-
ple, rectangularity is minimum for a single diagonal line and
maximum for an actual rectangle. It is defined as

r(u) = w(u)h(u)−m(u) (9)

where w(u) and h(u) are the width and height from (8).
PCA similarly measures global aggregate shape properties,
and indeed the features PCA gives are related to the elon-
gation and rectangularity. We compute the two eigenvec-
tors λ1(u) and λ2(u) of the 2D spatial covariance matrix
and use four features from it: the off-diagonal covariance,
λ1(u), λ2(u), and the ratio of λ2(u)/λ1(u).

3.3. Adaptive Region and Contextual Features

Adaptive relative Harr-like features capture an aggre-
gate’s gradient structure, and complement the adaptive his-
tograms defined in section 3.1. Our adaptive Harr-like
features are defined in a similar manner to the patch ver-
sion [16], except that the coordinates are relative to the ag-
gregate’s bounding box. Each feature is composed of set of
weighted boxes B .= {B1, . . . , Bk} with each box Bi being
a tuple {xL, yL, xU , yU , z}, with xL, yL, xU , yU ∈ [0, 1]
and z ∈ {−1,+1}. (xU , yU ) is the upper-left corner of the
box and (xL, yL) is the lower-right corner. Let I be the inte-
gral image computed from the input image I. Then, feature
f defined by box-set B is computed by

fB(u) =
∑

Bi∈B
z ∗

[
I(x̂U , ŷU ) + I(x̂L, ŷL)−

I(x̂L, ŷU )− I(x̂U , ŷL)
] (10)

x̂ = minx(u) + w(u)x and ŷ = miny(u) + h(u)y

The original integral image is directly used to compute the
adaptive Harr-like features. These adaptive relative fea-

tures capture more of a global representation of the gradi-
ent structure for a given class type than the standard patch-
based Harr-like filters. For example, consider modeling a
leopard class; patch-based Harr-like features would give
ambiguous responses across most of the image region (be-
cause they are measuring local gradients but the texture pat-
tern has a more global nature). In contrast, the adaptive
relative Harr-like features, taken at the relevant levels in the
hierarchy (we take them at all and let the boosting procedure
choose the best), would measure the response with respect
to each sub-region, in this case a leopard spot, across the
entire region giving a more reliable reponse.

Contextual features capture an aggregate’s joint spatial-
feature context by measuring similarity to its neighbors.
Conceptually, these are neighborhood features that mea-
sure affinity at a region-level rather than a pixel-level. Let
D(u, v) be some distance measure on a statistic, e.g., inten-
sity, of aggregates u and v. A min-context feature is

f(u) = min
v∈N(u)

D(u, v) (11)

and we similarly define max- and mean-context features.
The context features serve two purposes: i) they capture
differences along aggregate boundaries (e.g., high-intensity
sky regions to low-intensity tree regions) and ii) they make
a type of homogeneity measurement inside a large object
when defined at finer levels in the hierarchy.

3.4. Hierarchical Features

The two hierarchical features capture the aggregative
properties of each class. The mass of an aggregate m(u)
measures rough homogeneity of the region. Sky, for exam-
ple, is likely to have very high mass (e.g., figure 3). The
number of neighbors, |N(u)|, captures the local complex-
ity of the image region. Building aggregates, for example,
are likely to have many neighbors.

3.5. Feature Caching

There are broadly two types of features: those that rely
only on aggregate statistics and those that need to perform
an operation over the aggregate’s pixels. For type-one,
the statistics are immediately available from the coarsen-
ing procedure. However, for type-two, the aggregate must
trace down to the leaves to compute the statistic; this can be
burdensome. Fortunately, during inference and training, it
must be computed only once for each aggregate rather than
for each of its pixels. By construction, multiple pixels will
share the same aggregate at various layers in the hierarchy.
So, we cache the result of any type-two feature directly at
the aggregate after the first time it is computed for an image,
achieving some degree of feature sharing.



4. Experimental Results
We implement and test the boosting on multilevel aggre-

gates method on three two-class problems: documents in of-
fice scenes, and buildings and horses in natural scenes. We
note that BMA is directly extended to the multi-class case as
it uses the PBT [14] modeling framework, which is already
multi-class. For each of the three datasets, we construct a
pool of weak classifiers comprised of patch-based features
and the four classes of BMA features (statistical, shape,
region, and hierarchical) totalling about 5000 weak classi-
fiers. Before discussing the details about the three datasets,
in figure 5 we present a set of histograms describing the dif-
ferent types of features that are automatically selected dur-
ing the boosting procedure. We see that the majority of the
selected features, about 75%, are the proposed BMA fea-
tures. The performance results in the following sections will
further validate the discriminative potential of the proposed
BMA features over patch-based and other state-of-the-art
methods. In terms of speed, BMA is fast: the coarsening
executes in just a few hundred milliseconds for typical vi-
sion images (e.g., 400x300). Inference on a such an im-
age takes about a minute for a full BMA-based PBT model
and roughly the same amount of time for a patch-only PBT
model, indicating that BMA is not adding any significant
computational burden into the model.

23.6% 22.1%
18.4%

56.0%54.3%53.8%

4.4% 3.0% 4.6%

17.6%
20.5% 20.2%

0.6% 0.2% 0.7%

Documents Buildings Horses
P S A R H P S A R H P S A R H

Patch Statistical Shape Region Hierarchical

Figure 5. Histograms of the filters automatically selected during
the learning procedure for the three problems. The patch-based
features are selected only 25% of the time.

4.1. Document Detection

We captured and labeled a set of 550 images of an of-
fice scene to support the task of detecting documents for
a smart office project. We randomly selected 200 images
for training and the rest for testing, and used a single Ad-
aboost classifier rather than the full PBT for simplicity on
this problem. While the office environment has less vari-
ability than the other two problems, it presents some diffi-
cult characteristics (e.g., the computer keyboard) that help
elucidate the potential of the BMA method.

In table 1, we show the pixel accuracy scores over the
whole testing set for a patch-only classifier and for a BMA
classifier. BMA consistently outscores the patch-only clas-
sifier by about 6%. This is mostly due to a reduction in false

Patch-based BMA
BG Doc BG Doc

BG 92.8% 7.2% 97.7% 2.3%
Doc 8.8% 91.2% 7.2% 92.8%

Total Accuracy 92.7% 97.3%

Table 1. Confusion matrices for the document classification prob-
lem. Background is abbreviated as “BG” and document as “Doc.”

86.9 98.3

91.9 97.7

Image Labels BMAPatch-based

92.8 96.8

88.7 98.1

90.3 95.6

92.2 96.1

Figure 6. Test image results for the document classification com-
pared with conventional patch-based modeling. The bottom-right
two show more difficult cases for the proposed BMA method. The
score in green shows the pixel accuracy.

positives. Image results in figure 6 explain where this oc-
curs: typically on the keyboard and the clothing. The key
observation is that the patch-based features can only capture
local information while the BMA features incorporate more
long-range information.

4.2. Building Classification

We use a subset of the recently proposed Lotus Hill In-
stitute dataset of natural images [18] and focus on classi-
fying buildings in typical outdoor scenes. Buildings range
from skyscrapers to row-houses to single-standing gazebos
and present great variability. We split the 412 image dataset
into a training set of 200 images and a testing set of 212
images. We learn two full PBT models: i) using patch-only
features and ii) the full BMA features. Figure 7 shows the
precision-recall graph of the two models on the testing set.
The BMA curve is substantially better than the patch-only



curve; again, the patches have difficulty modeling the vari-
ability of building / non-building pixels. Figure 9 shows
the inferred probability maps for some testing images. The
numeric scores in the top-right corner of each map are the
F-measure computed as 2pr

p+r , where p is precision and r
is recall (higher is better). The BMA maps often show a
probability very close to 1 for building pixels; we explain
this as being caused by the aggregates at coarser layers
in the hierarchy representing the majority of the features
in the model. These coarse scale aggregates capture very
strong features such as region context to neighboring sky
and shape moments. In contrast, the patch-only features are
restricted to using only local information, mostly texture in
this case, which results in patches of grass and tree having
high-probability and building-faces with little texture hav-
ing low-probability. The three image sets on the right col-
umn show more difficult cases for both BMA and patches;
these cases demonstrate a need for high-level information
not incorporated into the proposed BMA method.
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Figure 7. Precision-recall graphs for the building problem.

4.3. Horse Classification

We use the horse figure-ground dataset of [2, 3], taking
100 random images of the 328 for training and the rest for
testing. We again learn a BMA-based PBT and a patch-
only PBT. We also compare our results to Ren et al. [10]
because they provide region precision-recall scores for low
and mid-level data (L+M)–which parallels the type of in-
formation modeled by BMA (i.e., no high-level model)–and
the low, mid, and high-level model (L+M+H). Their method
uses gray images only (we test both). We cannot compare
directly to [2, 3, 19] because they only provide scores for
the horse boundaries, which we are not trying to learn. Our
precision-recall graph (figure 8) shows that the BMA fea-
tures outperform the Ren et al. [10] L+M results and per-
form almost as good as the L+M+H model which includes
high-level features. Interestingly, the patch-only classifier
scores roughly the same as L+M; this is reasonable since
L+M mainly models local cues. We show some resulting
probability maps in figure 10 on testing (color) images.
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Figure 8. Precision-recall graphs for the horse problem.

5. Conclusion
In summary, we present a new information rich class of

features for discriminative modeling. Our approach, called
Boosting on Multilevel Aggregates (BMA), links each pixel
with a set of aggregate regions at multiple scales, and com-
putes descriptive features on each aggregate, such as statis-
tical, shape, contextual, and hierarchical properties. The ag-
gregates are computed during an adaptive multilevel coars-
ening procedure, which rapidly decomposes an image into
a multiscale graph hierarchy. A Bayesian view of region
affinity drives the coarsening process to yield a procedure
that is stable, is computationally efficient (log-linear, run-
ning time in just a few hundred milliseconds), and tends to
obey object boundaries.

We have applied BMA on three two-class problems:
documents in office scenes, and buildings and horses in nat-
ural scenes. Our analysis indicates that the BMA features
are selected about 75% of the time over conventional patch-
based features. On all three problems, the BMA model
greatly outperforms the patch-only model in quantitative
precision-recall and accuracy scores. In the horse problem,
we achieve a stronger precision-recall result than the exist-
ing state-of-the-art method. In future, we plan to explore
BMA in the multiclass case. Since we use the PBT mod-
eling framework, this extension is straightforward. We also
plan to incorporate the BMA features as part of the discrim-
inative term in a conditional random field segmentation.
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