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Abstract

In this paper, we present a new approach for image la-
beling based on the recently introduced graph-shifts algo-
rithm. Graph-shifts is an energy minimization algorithm
that does labeling by dynamically manipulating, or shifting,
the parent-child relationships in a hierarchical decomposi-
tion of the image. Each shift optimally reduces the energy
by indirectly causing a change to the labeling; graph-shifts
is able to rapidly compute and select this optimal shift at
every iteration. There are no constraints on the terms of
the (pairwise) energy function. The algorithm was orig-
inally presented in the context of medical image labeling
using conditional random field models. In this paper, we
consider the algorithm in the context of both low- and high-
level natural image labeling. We show that for examples
in both classes of problems, graph-shifts does labeling both
accurately and rapidly. For low-level vision, we explore im-
age restoration, and for high-level vision, we make use of a
hybrid discriminative-generative model to segment and la-
bel images into semantically meaningful regions (e.g., trees,
buildings, etc.). For both problems, we obtain comparable
or superior results to the state-of-the-art computed in just a
few seconds per image.

1. Introduction
Image labeling remains a core task in both low- and high-

level vision problems. The energy minimization formula-
tion is a standard image labeling methodology, typically as-
suming only non-zero unary and binary potentials. Even
under these assumptions, the configuration space is com-
binatorial in the labels and the energy landscape has many
local minima. The recent comparative survey [18] (of low-
level problems) demonstrates the progress the community
has made on these problems but also the need for more pow-
erful and rapid methods.

To that end, we investigate the recently proposed graph-
shifts [5] energy minimization algorithm in the context of
both low- and high-level labeling problems. The algorithm

does energy minimization by iteratively manipulating a hi-
erarchical decomposition of the image defined as a multi-
level graph. The hierarchy is adaptive in the sense that the
graph and neighborhood structure is data-dependent in con-
trast to conventional pyramidal schemes [1] in which the hi-
erarchical neighborhood structure is fixed. A big advantage
of graph-shifts is that each iteration can exploit this adaptive
hierarchical structure and cause a large change in the label-
ing, thereby giving fast convergence while avoiding local
minima in the energy function.

We originally proposed graph-shifts in the medical imag-
ing literature to segment and label 8 sub-cortical brain struc-
tures [5]. By comparison, the number of labels in natural
image problems can be much higher (e.g., 256), and the
variance of the region classes is, by nature, much greater.
In this paper, we explore the capability of graph-shifts to
handle such higher-dimensional, more complicated energy
spaces for labeling problems in low- and high-level vision
problems. In the remainder of the introduction, we give mo-
tivation and context for the two labeling problems. Then, in
section 2, we describe the graph-shifts algorithm. In sec-
tions 3 and 4 we present low- and high-level labeling prob-
lems and give experimental results and comparisons. We
conclude in section 5.

1.1. Low-Level Labeling

In low-level labeling problems, the typical energy to use
is that of a pairwise Markov random field (MRF). Many
new algorithms have been proposed for solving the asso-
ciated energy minimization problems. For example, graph
cuts [3] is one such algorithm that guarantees achieving a
strong local minimum for some two-class energy functions.
However, the restrictions on the energy function and the ex-
tension to m-class problems limit the theoretical guarantees.
Max product belief propagation [9] computes local maxima
of the posterior, but it is not guaranteed to converge for the
loopy graphs present in low-level vision. Efficient belief
propagation [7] can lead to running times in the order of
seconds. However, despite its high-regard and widespread
use, it performed poorly in the recent benchmark study [18].
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Catch-All Sky Water Road Grass Tree/Forest Mountain Animal Building Bridge Vehicle

Figure 1. Some example images and manual labels in each category from the Lotushill dataset [23]. A label legend is provided underneath.

1.2. High-Level Labeling

Natural scene understanding, segmenting and labeling
image regions with semantically meaningful labels (e.g.,
trees, cars, etc.), has increasingly attracted attention since
it is a key aspect in image understanding and image search.
In general, region labeling is a very hard problem due to
the large variation of natural images ranging from indoor to
outdoor, small to large scale, and rural to city scenes. More-
over, some type of objects, e.g. buildings, may have very
different designs and appear very differently under differ-
ent viewing directions and scales.

Existing approaches [4, 11, 14] in scene understanding
often rely on texture clustering in which content (object)
segmentation is not explicitly tackled. Recent examples
that use rectilinear patches include Lu et al. [15], who use
a mixture texture model, and Fei-fei et al. [6] who adopt an
unsupervised hierarchical model from category to patches.
Some common drawbacks of these approaches: (1) spatial
relationships of image patches and regions are not charac-
terized, which is one of the key aspects in scene under-
standing; (2) texture properties of image patches are not
fully explored; (3) no image segmentation is performed and
their approaches only target scene categorization. Barnard
et al. [2] did indeed attempt a segmentation before classi-
fication. But, segmentation and labeling are chicken-and-
egg; they use a generic low-level segmentation algorithm,
which is unlikely to give good segments without incorpo-
rating high-level knowledge like shape and context. Shot-
ton et al. [17] noticed similar drawbacks of these methods
and propose a boosted model of joint appearance, shape and
context on a conditional random field [13].

We propose a supervised approach for combined im-
age segmentation and region labeling. We use a hybrid
discriminative-generative modeling scheme. The discrim-
inative term is modeled by an extension of the probabilistic
boosting tree algorithm [20] that does multi-class represen-
tation in a tree structure. It can better handle the variabil-
ity in natural image patches. The generative terms captures
the local context of the image regions. We consider a sub-
set of the recently published Lotushill dataset [23] that has
10 generic objects types (regions) targeted in the scene and
400 images. Examples from the dataset are given in figure
1. We also include results on the MSRC 21-class dataset
from Shotton et al. [17] and demonstrate superior labeling
accuracy.

2. Hierarchical Computing with Graph-Shifts
In this section, we discuss the graph-shifts algorithm in

the context of labeling natural images in both low- and high-
level vision problems. We first present the class of energy
functions to be considered, and define those energies in the
hierarchy. Second, we discuss the mechanics of the shifting
procedure that reduces the energy defined on the hierarchy.
Third, we present the complete algorithm.

2.1. The Energy Model

For an input image I defined on the pixel lattice D, the
task is to assign each pixel µ ∈ D to one of a fixed set of K
models mµ ∈ {1, ...,K}. We want the labeling to minimize
an energy function criterion:

E[{mω : ω ∈ D}] =
∑
ν∈D

E1(I(S[ν]),mν) + (1)

1
2

∑
ν∈D,µ∈D:
N(ν,µ)=1

E2(I(ν), I(µ),mν ,mµ) .

The notation S[ν] means the local subimage centered at
pixel ν, and N(ν, µ) = 1 indicates ν and µ are neigh-
bors on the lattice. This energy falls in the broad class of
Markov random fields and, depending on the assumptions
could be considered a conditional random field [13] or a
hybrid discriminative-generative model as described in sec-
tion 4. In low-level vision problems, these labels are physi-
cally meaningful, e.g., they could be direct pixel intensities
in image restoration. But, in high-level problems, these la-
bels are semantically meaningful, e.g., label 1 means sky,
2 water, etc. The actual definition of the unary and binary
terms, E1(·) and E2(·) resp., are specific to the problems
and defined when necessary in sections 3 and 4.

2.2. Initializing The Hierarchical Graph

We define a graph G to be a set of nodes µ ∈ U and a set
of edges (the overloaded notation µ is meaningful—pixels
are nodes). The graph is hierarchical and composed of mul-
tiple layers. The nodes at the lowest layer are the elements
of the pixel lattice D and the edges are defined to link neigh-
bors on the lattice. The higher layers are computed recur-
sively by adaptively coarsening the image. Our implemen-
tation uses the coarsening method defined in [5]. The basic
idea is that edges in the graph are randomly turned on or off
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Figure 2. Example of graph structure with the spawn node.

based on the local affinity. The on edges induce a connected
components clustering, and each component defines a new
node in the next coarse layer in the hierarchy. Thus, nodes
at coarser layers in the hierarchy represent (roughly) homo-
geneous regions in the images. The procedure is adaptive
and the resulting hierarchy is data-dependent.

Two nodes at a coarse layer are joined by an edge if
any of their children are joined by an edge. The predicate
N(µ, ν) = 1 indicate that nodes µ, ν on the same layer are
neighbors, with N(µ, ν) = 0 otherwise. The nodes are con-
strained to have a single parent, A(µ), (except for the nodes
at the top layer) and every node has at least one child, C(µ)
(except for nodes at the bottom layer). At the top of the hier-
archy (figure 2), we define a special root layer of nodes that
are each tied to a specific model. We write mk to denote
the model variable associated with a root node. Each node
is assigned a label that is constrained to be the label of its
parent, mµ = mA(µ); call this the parent-label constraint.
Since all non-root nodes can trace their ancestry back to a
single root node, an instance of the graph G is equivalent to
a labeled segmentation {mµ : µ ∈ D} of the image. Fi-
nally, a spawn node is added, which is the neighbor of all
nodes except the root layer nodes (it is further discussed in
section 2.4).

2.3. Recursive Energy Definition

We now recursively assign an energy to all nodes, and
neighboring node pairs in the hierarchy. This enables us to
rapidly compute the energy of a node at any layer in the
hierarchy. The unary term for assigning a model mµ to a
node µ is defined recursively by:

E1(µ,mµ) =


E1 (I(S[µ]),mµ)) if C(µ) = ∅ ,∑
ν∈C(µ)

E1(ν, mµ) otherwise . (2)

The pairwise energy term E2 between nodes µ1 and µ2,
with models mµ1 and mµ2 is defined recursively by:

E2(µ1, µ2,mµ1 ,mµ2) = (3)
E2(I(µ1), I(µ2),mµ1 ,mµ2)

if C(µ1) = ∅
and C(µ2) = ∅ ,∑

E2(ν1, ν2,mµ1 ,mµ2) otherwise .
ν1∈C(µ1),ν2∈C(µ2):N(ν1,ν2)=1
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Figure 3. Intuitive split/merge shift example with two classes, light
and dark gray. The top shows a graph-hierarchy, and bottom shows
a possible corresponding image. White annotations depict the finer
level and black depict the coarser level.

2.4. Graph-Shifts Mechanics

The graph-shifts algorithm minimizes the energy by dy-
namically transforming the graph hierarchy. Two transfor-
mations, or shifts, on the graph are defined: (1) split/merge
and (2) spawn. A shift is represented as a dynamic anno-
tation to the edges in the graph layers, i.e., a shift is a lo-
cal transform between two neighboring nodes. Each shift
locally restructures the graph and causes a relabeling of a
pixel subset and, hence, a change in the total energy.

The split/merge shift corresponds to a node µ changing
its parent to the parent A(ν) of a neighboring node ν. Fig-
ure 3 shows an intuitive example split/merge shift on a toy
graph. The split/merge shift is constrained to change the la-
beling based on the current labels in the local neighborhood
of each node. The second type of shift, however, permits a
node to switch to any other label. During graph creation, a
spawn node is defined to which all nodes in the graph are
connected (see figure 2). This spawn node can take the label
of any model in the set, and when evaluating the shift for a
node, all possible models are evaluated. A node µ taking a
spawn shift causes a new sub-graph to be dynamically cre-
ated. The new sub-graph is a chain of nodes from µ to the
top of the hierarchy (see figure 4).

With these two shifts, the graph-shifts algorithm is com-
plete in the sense that any labeling can be reached from
any initial labeling. The split/merge shift provides both
rapid cluster relabeling and local boundary refinements.
The spawn shift is a birth process giving a jump in energy
space; the corresponding death process is captured by the
split/merge shift (when a node µ shifts to its neighbor and
leaves its current parent childless).

2.5. Graph-Shifts Algorithm

Each change of a node model will result in a change of
energy (because of the parent-label constraint). We need to
efficiently compute the possible shifts (change of energy)
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Figure 4. An example of the spawn shift being selected (middle
panel, double-circle) and the hierarchy updated with the new root-
level node (right panel). The top shows a graph-hierarchy, and
bottom shows a possible corresponding image.

for all nodes. Fortunately, the change, or shift-gradient can
be computed efficiently using the recursive formulae given
above in equations (2) and (3). For node µ shifting from
model mµ to model m̂µ, the shift-gradient is

∆E(mµ → m̂µ) = E1(µ, m̂µ)− E1(µ,mµ) +∑
η:N(µ,η)=1

[E2(µ, η, m̂µ,mη)− E2(µ, η, mµ,mη)] . (4)

We maintain an exhaustive list of both the split/merge and
the spawn shifts; given the additional spawn node, both
types of shifts are simply annotations on edges in the graph.
The cost of computing the shift gradient is equivalent for
both shift types, but performing a spawn shift, while still
logarithmic in order, has a higher computational cost in
creating the new sub-graph. When computing a potential
graph-shift, we first evaluate the shift-gradient for all of the
node’s neighbors. Next, we evaluate the shift-gradient to
the spawn node, only considering those models for which
there was no neighbor. We keep only those shifts that have
negative gradients in the list (the single best potential shift
is stored per node). The size of this list is generally small,
very few neighbors in the graph have different models and a
spawn shift more often increases the energy than decreases
(due to the additional binary energy cost). Empirically, this
is about 2% of all possible shifts in the graph.

Graph-shifts proceeds by selecting the steepest shift-
gradient in the list and makes the corresponding shift in
the hierarchy (pseudo-code is given in figure 5 and some
samples from the process in figure 6). This changes the
labels in the part of the hierarchy where the shift occurs,
but leaves the remainder of the hierarchy unchanged. If the
shift is a spawn, then a new sub-graph is dynamically gen-
erated. The algorithm recomputes the shift-gradients in the
changed part of the hierarchy and updates the weight list.
We repeat the process until convergence, when the shift-
gradient list is empty (i.e. all shift-gradients in the graph

GRAPH-SHIFTS MINIMIZATION
Input: Image I on lattice D.
Output: Label Image L on lattice D.
0 Initialize graph hierarchy.
1 Compute exhaustive set of potential shifts S.
2 while S is not empty
3 s← the shift in S that best reduces the energy.
4 Apply shift s to the graph.
5 if (s is a spawn)
6 Build new subgraph and create model.
7 Recompute affected shifts and update S.
8 Compute label image L from final hierarchy.

Figure 5. Graph-shifts pseudo-code.

Figure 6. An example of the graph-shifts algorithm doing energy
minimization. The row shows initialization, after 5, and 500 shifts.
Images, labels and final result given in figure 10.

are positive or zero). The algorithm tends to initially prefer
shifts at coarse levels of the hierarchy since those typically
alter the labels of many nodes on the lattice and cause large
changes in energy. As the algorithm proceeds, it tends to
select shifts at finer levels, but this trend is not monotonic.

3. Low-Level Vision: Restoration

Image restoration is the problem of re-
moving the noise and other artifacts of an
acquired image to restore it back to its original, or ideal
state. The label set comprises the 256 gray-levels, mµ ∈
{1, 2, . . . , 255}. We work with the well-known penguin im-
age; its ideal image is given on the right. When running
graph-shifts, we only use the split/merge shift; since there
are so many labels, it is assumed there is no need for the
extra ability to spawn for lack of a good neighbor.

In all of the results, we use a truncated quadratic on the
unary energy term, which is conditioned independently at
each pixel in the conventional MAP-MRF sense:

E1(I(µ),mµ) = min(α1||I(µ)−mµ)||2, α2) . (5)

We use a truncated linear binary energy. It is defined on two
labels and is fixed by two parameters, β1, β2:

E2(mµ1 ,mµ2) = min(β1||mµ1 −mµ2 ||, β2) . (6)

where we’ve dropped the image terms from the binary po-
tential I(·) since they play no role. These are among many
plausible energies to use for restoration, but we choose them
because they seem reasonable and facilitate direct com-
parison with existing works via the MRF benchmark [18]



Time (ms) SSD Error (×103)
Variance→ 10 20 10 20

Input Images 1888 7319
EBP [7] 4724 4399 4358 10934
BP [19] 634500 635151 1705 7211

ICM [18] 2380 2380 1674 7154
α-Expansion [3] 11030 11420 1669 7150

TRW-S [12] 466970 467310 1665 7149
Graph-Shifts 7489 6047 1584 5557

Table 1. Quantitative comparison of restoration speed and SSD er-
ror. Graph-shifts (a Java code) scores among the faster algorithms
(all C++), and has the lowest overall SSD error.

and efficient belief propagation (EBP) code [7]1 We use
the following parameters on the potentials α1 = β1 = 1,
α2 = 100 and β2 = 20, and the unary and binary energies
are equally weighted. We set our performance criterion to
be the sum of squared differences error between the orig-
inal (ideal) image and the restored image that is outputted
by each algorithm. Note, however, that the energy mini-
mization algorithms are not directly minimizing the sum-
of-squared differences error function. The MRF benchmark
used [18] the final energy to compare the algorithms, but did
mention that the energy may not be the best metric (i.e., we
may have the wrong model). Since the problem is restora-
tion, we feel the SSD error comparison is a more natural
measure and use it.

EBP TRW-S Graph-Shifts

Figure 7. Visual comparison of restoration results between graph-
shifts, EBP [7] and TRW-S [12]. Top row was perturbed by noise
with a variance of 10 and bottom row was 20.

Figure 7 and table 1 present a comparison of the im-
age restoration graph-shifts with the state-of-the-art meth-
ods. When computing the SSD error, we crop 5 rows and
columns since the EBP implementation does not do labeling
near the image borders. The changes for EBP and TRW-S
are difficult to see visually; they mostly occur around the

1We are grateful to [3, 7, 12, 18, 19] for releasing their software; this
has enabled us to do a direct comparison of the existing methods against
our graph-shifts implementation.
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Figure 8. The graph shows the SSD error during graph-shifts.

body of the penguin. We cannot explain the inability of the
methods, other than graph-shifts, to obtain a visually sat-
isfying restoration (considering all the methods were run
on the same exact MRF energy function). However, the
quantitative results (table 1) make a better comparative ex-
planation. TRW-S is the best among the algorithms from
the MRF benchmark [18], which agrees with one of their
findings. However, the success of the ICM method in both
speed and SSD error is a surprising result since it consis-
tently scored last in [18].

Graph-shifts beats all the others in SSD error. We believe
its success stems from the adaptive hierarchical nature of
the algorithm; immediately after initialization the hierarchy
represents groups of similar pixels that can get relabeled
together. There is no need to wait for long-range interac-
tions such as in message passing approaches (BP, TRW-S),
which may be dominated by the relatively highly weighted
data term in this energy. To further explain what’s happen-
ing during the graph-shifts process, we show a graph of the
SSD error during the minimization procedure in figure 8.
It is clear that the early shifts, which typically although
not monotonically occur at higher levels in the hierarchy,
greatly reduce the SSD error.

In terms of efficiency, the standard message passing al-
gorithms are slowest, and all others run in the order of sec-
onds. Directly comparing speed is not completely fair be-
cause our implementation of graph-shifts is written in Java,
but all other methods are in C++ (one expects at least a fac-
tor of two speedup).

4. High-Level Vision: Region Labeling

The high-level vision problem we consider is region
labeling—coupled segmentation and classification. We
tackle this problem using a hybrid discriminative-generative
model minimized with the graph-shifts algorithm. We be-
gin with a description of the hybrid model, then discuss
the PBT.M2 multiclass discriminative modeling approach,
and next present results on a 10- and a 21-class dataset. In
both cases, graph-shifts is able to improve the pixel accu-
racy over the classifier alone, even by 20%. Our results on
the 21-class dataset are superior to the state of the art on the
same problem by 4.4%.



4.1. Modeling

The first term E1 is a discriminative appearance model.
It gives local evidence that the pixel µ takes model mµ:

E1(µ,mµ) = − log P
(
mµ|I(S[µ])

)
(7)

where P (mµ|I(S[µ])) is the probability for the label mµ at
pixel µ ∈ D conditioned on a local sub-image of µ. The
discriminative model is learned by a new multiclass boost-
ing algorithm, PBT.M2 (discussed next in 4.2).

The second term E2 is a pairwise term which both en-
forces a context model and encourages smooth boundaries:

E2(I(ν), I(µ),mν ,mµ) =

− κ log P (mν ,mµ) +
(
1− δ(mν ,mµ)

)
. (8)

This joint density on the models is also learned from train-
ing data. We compute a normalized histogram of label-pairs
along region boundaries in all training images. E2 repre-
sents a generative model about the prior knowledge in the
scene structure. Hence, our total energy model is hybrid
incorporating both discriminative and generative terms.

4.2. Multi-Class Discriminative Learning

To compute E1, our task is to learn and compute the dis-
criminative model P (mµ|I(S[µ])). To demonstrate the ver-
satility of graph-shifts, we work with two different mod-
els: i) the PBT.M2 model, discussed below, and ii) the
auto-context model [21], which basically does discrimina-
tive modeling based on both appearance and spatial con-
text. Each input sample is a sub-image and the output is
the probability of the center pixel µ being on a region with
model mµ ∈ {1, . . . ,K}. Complex appearance patterns
of I(S[µ]) make this a difficult task. [20] adopt a proba-
bilistic boosting tree (PBT) approach to learn and compute
a multi-class classifier. However, the PBT performs 2-way
splits only. This restriction can be inefficient when, e.g.,
with only 4 classes one still needs to compute 3 strong clas-
sifiers; a direct multiclass split is better.

Let the training set be T = {(Ia,ma), a = 1 . . . n}
where Ia is a 11×11 image sample (patch), ma ∈ {0 . . .K}
denotes its class label, and n is the total sample number.
Let p(T, j) be the proportion of samples in T that belong
to the jth class. The entropy of set T can be defined as
info(T ) = −

∑T
j=0 p(T, j) log2(p(T, j)). Lower entropy

indicates a set with sparse classes.
We recursively construct a decision tree in which each

tree node is either an AdaBoost [8] (2-class) strong classi-
fier or AdaBoost.MH [10] (m-class) strong classifier. For a
strong classifier H ∈ {H2,Hm} (either 2-class or m-class),
it splits T into t sub-groups (T1, ..., Tt). We choose the H
which obtains the biggest information gain

G(T,H) = −
t∑

i=1

|Ti|
|T |

info(Ti)− cost(H), (9)

PBT.M2 ALGORITHM
Input: Labeled training examples T = {(Ia, ma),

a = 1..n} with each ma ∈ {0..K}.
Output: Discriminative Model P (m|I).
0 H2 ← trained 2-class AdaBoost [8] classifier.
1 Hm ← trained m-class AdaBoost.MH [10] classifier.
2 Choose strong classifier, H ∈ {H2, Hm}, that

maximizes information gain G(T, H).
3 Stop if error is smaller than a threshold.
4 Split the training set T using H and recurse.

Figure 9. PBT.M2 algorithm.

where the first term is similar to that in the well-known C4.5
algorithm [16] and cost(H) computes the total computa-
tional cost for strong classifier H . Therefore, the choice of
H balances between how well to separate the current set
and the computational cost. Fig. (9) outlines PBT.M2.

PBT.M2 learns and computes an overall multi-class dis-
criminative probability by

P (m|I) =
∑

l1,..,ln

P̃ (y|ln, ..., l1), ..., Q(l2|l1, I)q(l1|I) ,

where li represents the ith layer in the tree, and Q(li) com-
putes the discriminative probability by each boosting node.

4.3. Experimental Results

We experiment with two multi-class datasets: a 10-class,
400-image subset of the LHI dataset [23], and a 21-class,
590-image dataset called MSRC from [17]. Examples from
the LHI dataset are given in figure 1. In both cases, we
randomly split the data into training and testing sets; LHI
uses 170 training images and MSRC uses 327. We use the
PBT.M2 model on LHI, and use the auto-context model [21]
on MSRC.

Based on the labeled training images, we first train the
PBT.M2 classifier to select and fuse a set of features out of
a pool of around 105 features (color, intensity, position, and
histograms on Gabor responses). This is our discrimina-
tive model. Second, we learn the pair-wise contextual rela-
tionships of the objects, which is our generative model part.
For a test image, we first compute its classification maps
(multi-class discriminative probabilities) using the learned
PBT.M2 classifier; i.e., for each pixel, the probability that
it belongs to each class. Then, a final labeling is obtained
by minimizing the hybrid energy term 1 using graph-shifts.
Computing the classification maps for all the pixels takes
about 17 seconds on a modern PC and energy minimization
by graph-shifts takes on average 3 seconds.

Figure 10 illustrates some LHI testing images by our al-
gorithm. The first row shows the original images; the sec-
ond row displays the manual labels; the third row are the
initial classification maps (maximum discriminative proba-
bility); the fourth row shows the results without the region



Algorithm Dataset Accuracy
Adaboost Cascades [22] LHI 50.0%

Classifier Only LHI 55.9%
Graph-Shifts LHI 75.5%

Shotton et al. [17] MSRC 72.2%
Classifier Only MSRC 74.0%
Graph-Shifts MSRC 76.6%

Table 2. Total pixel accuracy comparisons for both datasets.

context term (κ = 0 in equation 8); the last row are the
results by our overall algorithm. We show some example
test results on the MSRC dataset in figure 11. Regions are
labeled and color-coded. We see that even in the higher
21-class case, the graph-shifts minimizer can yield good re-
sults. Lower quality results are given to the right.

Table 2 gives a quantitative measure of the region label-
ing results. On the LHI dataset, the graph-shifts process
improves the overall pixel accuracy by almost 20%. On
the MSRC dataset, it improves the results by about 3%, the
lower improvement in this case is because the auto-context
model learns some E2-like information directly into E1 al-
ready; so, graph-shifts has less work to do. On the MSRC
dataset, with graph-shifts, our overall accuracy is 76.6%,
which is 4.4% higher than the published results in [17].
Confusion matrices for LHI (table 4) and MSRC (table 3)
help to explain more details about the proposed method.
Empty cells indicate < 0.05% confusion. In the LHI con-
fusion, the animal/human (creature) and bridge score very
low because of their comparative intra-class variability–to–
amount of training data ratio. Most other confusion is intu-
itively explained: sky is, when misclassified, confused with
water, and buildings are confused as mountains, etc.

5. Conclusion
In summary, this paper explored the graph-shift algo-

rithm for labeling problems on natural images. Graph-shifts
does energy minimization by dynamically manipulating an
adaptive hierarchical decomposition of the image. For low-
level vision, we explored the problem of image restoration.
Using the exact same MRF model, we compared graph-
shifts to state-of-the-art methods, including BP, TRW-S, and
α-expansion, and we found that graph-shifts achieves the
lowest sum-of-squared differences error at almost the fastest
computing rate. In high-level vision, we tackled the region
labeling (coupled segmentation and classification) problem
on two multi-class datasets. We use a hybrid discriminative-
generative model learned with an extension of the PBT al-
gorithm called PBT.M2 that optimally selects between a
2-class and multi-class classifier at each node in the tree.
Graph-shifts is able to improve upon the classification re-
sults, by 20% in one case. Our final labeling results are
superior to the current published state-of-the-art results and
obtained in seconds.
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Figure 10. Example region labeling results on the LHI dataset (label legend in fig. 1). The two columns on the right make mislabelings.

building 72.1 0.7 6.0 1.5 1.2 0.9 0.2 3.4 1.0 0.1 0.3 0.4 4.9 1.2 3.8 0.8 0.6 1.0
grass 0.3 93.1 4.4 0.2 0.1 0.1 0.1 0.6 0.1 0.1 0.9 0.1

tree 4.5 2.7 84.7 0.1 0.5 0.4 1.4 0.1 1.8 0.9 2.7 0.1
cow 1.9 13.8 4.2 66.1 0.9 0.1 1.2 4.7 2.9 4.1 0.2

sheep 1.0 15.8 0.3 8.2 70.0 0.3 4.2 0.3
sky 1.4 1.2 93.3 0.3 2.6 0.1 1.1

airplane 7.3 0.5 0.2 0.8 86.2 0.3 0.7 4.0
water 5.1 0.5 0.8 3.1 0.4 68.7 0.4 0.6 0.5 11.7 6.7 0.1 1.5

face 5.3 1.0 0.6 0.2 0.1 84.5 0.1 0.8 2.6 0.3 4.5
car 18.0 1.2 1.2 5.2 65.8 0.6 1.3 5.1 0.2 1.5

bicycle 5.0 1.1 2.2 84.9 5.0 1.7
flower 2.8 2.9 1.5 0.1 0.1 1.4 0.1 7.0 58.0 7.1 14.0 0.7 2.3 2.0

sign 20.1 0.1 2.0 0.5 0.5 63.6 11.2 0.2 1.7 0.1
bird 23.6 7.0 6.7 10.2 0.8 3.5 4.0 5.2 24.7 1.6 8.2 2.5 0.8 1.2

book 1.9 1.3 0.1 0.4 0.1 1.9 1.6 90.6 0.8 0.9 0.3
chair 23.5 2.8 11.6 0.3 0.3 3.2 3.3 2.4 3.8 43.7 4.8 0.5
road 6.2 1.6 0.3 0.1 0.2 0.1 14.3 0.4 0.6 0.1 0.1 74.3 1.2 0.3 0.2

cat 4.4 2.2 1.3 9.5 5.6 0.3 0.7 0.8 1.1 18.6 40.6 11.9 2.4 0.6
dog 9.5 6.5 3.2 7.6 4.6 0.8 15.3 1.2 11.4 0.7 30.4 8.9

body 13.8 3.9 1.4 0.7 0.1 1.0 4.2 0.8 0.1 9.2 0.8 1.0 6.9 2.2 1.0 0.2 50.9 1.6
boat 11.2 2.0 0.4 6.6 25.5 8.7 2.8 0.1 0.3 42.5

Table 3. Confusion matrix for the MSRC dataset (empty cells have values < 0.05). Total pixel accuracy is 76.6%, before graph-shifts it is
74.0%, and the published result by Shotton et al. [17] 72.2%.

sky 87.8 8.0 0.3 1.8 0.8
water 2.7 65.2 4.6 2.1 5.9 15.6 3.0 0.3
road 0.1 15.7 69.5 0.4 0.8 4.8 3.3 0.9

grass 0.5 0.9 0.6 68.4 7.7 18.9 1.5 0.1
tree 1.1 1.9 0.5 4.3 65.8 16.9 7.3 0.2

mountain 1.9 3.4 0.6 3.9 9.8 73.7 5.2 0.1
creature 4.9 5.9 3.0 4.0 29.4 8.3 39.6 2.7
building 1.8 1.1 1.9 1.1 3.7 9.6 78.6 0.5

bridge 0.2 2.1 6.3 6.5 4.2 13.0 56.7 7.9 2.2
vehicle 5.2 10.8 0.1 6.5 20.3 0.1 21.5 34.3

Table 4. Confusion matrix for LHI dataset. Total pixel accuracy is
73.5%, pixel accuracy with just the PBT.M2 model is 55.9%
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Figure 11. Example results on the MSRC dataset The last column
shows a poor labeling.


