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Abstract

In this paper, we address the problem of constrained seg-

mentation of natural images, in which a human user places

one seed point inside each object of interest in the image

and the task is to determine the object boundaries. For

this purpose, we study the connection between seed-based

and hierarchical segmentation. We consider an Ultrametric

Contour Map (UCM), the representation of a hierarchy of

segmentations as a real-valued boundary image. Starting

from a set of seed points, we propose an algorithm for con-

structing Voronoi tessellations with respect to a distance de-

fined by the UCM. As a result, the main contribution of the

paper is a method that allows exploiting the information of

any hierarchical scheme for constrained segmentation. Our

algorithm is parameter-free, computationally efficient and

robust. We prove the interest of the approach proposed by

evaluating quantitatively the results with respect to ground-

truth data.

1. Introduction

Image segmentation is one of the fundamental and most

studied problems in computer vision. However, automatic

segmentation remains essentially unsolved and, as will be

discussed below, state-of-the-art algorithms are still far

from human performance. Furthermore, in many contexts

(e.g. medical imaging), the quality of a segmentation can

only be judged a posteriori, by its pertinence for a partic-

ular application. In these cases, an interactive approach is

often preferred, where a human operator interprets the se-

mantic contents of the image, selects the objects of interest

and the segmentation algorithm is used to extract them au-

tomatically from the background. In this paper, we address

this constrained segmentation problem, illustrated in Figure

1, in a quantitative framework.

There is a large literature on interactive segmentation. A

classical approach is the markers and watersheds method

from morphology [3], where the watershed lines are com-

puted on a topographic surface (usually a gradient modulus)

Figure 1. The problem studied in this paper: With what accuracy

can the true object boundaries be predicted, starting only from a

single point inside each object?

obtained by imposing a selected set of markers as only re-

gional minima. Many recent approaches rely on graph-cuts,

building on the min-cut / max-flow algorithm of [6]. The

seminal work of [5] was improved in [4], where a Gaus-

sian Mixture Markov Random Field model is proposed in

order to learn parameters of color and contrast for figure

and background. In [2], the segmentation is obtained by

computing weighted geodesic distances to the user input.

Research in automatic boundary detection goes back to

the early days of computer vision. Local approaches to the

problem predict the presence of an edge at a given loca-

tion by examining the image information on a neighborhood

around it. Classic local detectors, such as Canny’s [7], look

for discontinuities in the brightness channel, while more re-

cent approaches consider also color and texture information

and rely on learning techniques for cue combination [14, 9].

Another category of methods considers global image in-

formation to address the task. This goal can be achieved

through graph partitioning formulations [20, 12, 13, 21].

Other recent techniques are [10], where an approximate

solution to the minimum-cover problem is used to extract

smooth salient curves and [18], where curvilinear continu-

ity of contours is enforcedwith Conditional Random Fields.

In previous work [1], we proposed a boundary-based for-

mulation for hierarchical segmentation relying on the Ul-

trametric Contour Map (UCM), the real-valued image de-

fined by weighting the boundary of each region in a hier-

archy of segmentations by its scale of disappearance. The
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Figure 2. From left to right: Indexed hierarchy of segmentations, its representation as a dendrogram and as an Ultrametric Contour Map.

UCMs proposed in that paper achieve the best performance

reported to date on the Berkeley Segmentation Dataset and

Benchmark (BSDS) [11]. Furthermore, in contrast to most

of the other leading boundary detectors, thresholding an

UCM provides always a set of closed curves, the bound-

aries of a segmentation in regions.

In this paper, we study the connection between seed-

based and hierarchical segmentation. We propose a front

propagation algorithm on the UCM that constructs Voronoi

tessellations with respect to collections of subsets of the im-

age domain. Consequently, the main contribution of the pa-

per is a parameter-free, computationally efficient and robust

algorithm for constructing constrained segmentations from

any hierarchical approach.

The quantitative evaluation of interactive segmentation

has received little attention in the past. Although the

Precision-Recall curves proposed in [14] have become

a standard methodology for the evaluation of automatic

boundary detection, the empiric validation of interactive ap-

proaches depends in great extent on the amount of user in-

tervention allowed. As an example, in the framework pro-

posed by Blake et al. [4], a user trimap (dividing the im-

age into a single connected figure, a background and an un-

known region) is provided. The algorithms are evaluated

by their ability to determine the location of the boundary

in the unknown band surrounding it, while allowed using

the information in the rest of the image. In this paper, we

are interested in the more challenging problem of determin-

ing the boundaries of any number of objects. Furthermore,

in order to evaluate machine performance for this task sep-

arately from the amount of human intervention, we restrict

the latter to the selection of a single point inside each object.

Since there is not, to the best of our knowledge, a study in

which such a problem has been evaluated quantitatively, we

suggest a method to extract ground-truth seeds from the hu-

man segmentations of the BSDS, which allows measuring

performance with the Precision-Recall methodology.

The rest of this paper is organized as follows. Section

2 recalls the definition of Ultrametric Contour Maps. Sec-

tion 3 presents our algorithm for constrained segmentation

and Section 4 contains the results. Section 5 presents some

concluding remarks.

2. Ultrametric Contour Maps

In this section, we recall the formulation of hierarchical

segmentation in terms of boundaries. For this purpose, we

follow the presentation of [1].

A traditional way of thinking about hierarchical segmen-

tation is to consider a family of nested partitions {Pλ}λ

of the image domain Ω, associated to a scale parameter
λ ∈ [0, λM ], a finest partition P0 (e.g., the pixel grid) and

a coarsest partition PM = {Ω}. This imposes a hierar-
chical structure to the set of all the regions in the family

H = {R ∈ Ω | ∃λ : R ∈ Pλ}. The hierarchy H can be
represented by a tree, where the root is Ω, the leaves are the
elements of P0 and the regions are ordered by inclusion.

The scale of appearance of each region in the hierarchy

can then be used to define a stratification index f :

f(R) = inf{λ ∈ [0, λM ] | R ∈ Pλ}, ∀ R ∈ H (1)

The couple (H, f) is called an indexed hierarchy. Defin-
ing a stratification index f amounts to assigning a unique

height f(R) to each node R in the tree of regions, which

can then be represented as a dendrogram (see Figure 2).

A classical theorem of hierarchical data analysis states

that the structure of indexed hierarchy (H, f) is equivalent
to the definition of an ultrametric distance Υ between ele-
ments ofP0, given by the index of the smallest region in the

hierarchy containing them:

Υ(x, y) = inf{f(R) | (x ⊆ R) ∧ (y ⊆ R) ∧ (R ∈ H)}.
(2)

Alternatively, a segmentation can be defined by consid-

ering the boundaries, rather than the regions of a partition.

This is the approach proposed by Morel et al. [16] on a con-

tinuous domain, where a segmentation K is a finite set of

rectifiable Jordan curves and the regions are the connected

components of Ω \K . A segmentation can therefore be ex-

pressed equivalently by its contours K or by the partition

P = {Ri}i of Ω.
One can then define a Hierarchical Segmentation Oper-

ator (HSO) as a family {Kλ}λ with a finest set of contours

K0 and such that all the contours vanish at finite scale. The

hierarchical structure is expressed in this case by the princi-

ple of strong causality:

λ ≤ λ′ ⇒ Kλ ⊇ Kλ′ , (3)
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Figure 3. Example of classical metric tessellations on the ultrametric space of Figure 2. (a): two sites s1 and s2. (b): distance to s1. (c):

Tessellation obtained by thresholding the distance to s1 at level 3. (d): distance to s2. (e): Voronoi tessellation with respect to the two

sites. Note that (e) cannot be obtained by thresholding the UCM at a constant level.

which establishes that the localization of contours is pre-

served through the scales.

An advantage of defining segmentations in terms of one-

dimensional objects is that it allows representing a whole

family of partitions as a single two dimensional image:

Let Υ be the ultrametric distance defined by a HSO. The
Ultrametric Contour Map (UCM) associated to Υ is the
application C(Υ) : K0 → [0, λM ] given by:

C(Υ)(∂) = inf{λ ∈ [0, λM ] | ∂ * Kλ}, ∀ ∂ ∈ K0. (4)

We call the number C(Υ)(∂) the saliency of contour ∂.

Note the duality with the regions, the saliency of ∂ being

its scale of disappearance from the hierarchy of contours.

The UCM is a representation of a HSO as a single real-

valued image. Figures 2 and 4 present examples of UCMs.

By definition, thresholding this soft boundary image at scale

λ provides a set of closed curves, the segmentationKλ.

Hence, the problem of hierarchical segmentation is for-

mulated in this framework as defining an ultrametric dis-

tance from the image data such that the UCM models the

boundaries of the objects. In [1], this is achieved by inte-

grating local contour cues along the regions boundaries and

combining this information with intra-region attributes.

3. Constrained Segmentation

The equivalence between ultrametric distances and in-

dexed hierarchies gives rise to a type of metric tessella-

tions specific to hierarchical segmentation: the set of all

the balls of ultrametric radius λ corresponds to the segmen-

tation Kλ and can be obtained by thresholding the corre-

sponding UCM at level λ.

However, in order to study constrained segmentation, we

are interested in partitioning the image domain with respect

to an arbitrary set of points or subsets of P0. The classical

tool for this purpose on general metric spaces is the Voronoi

tessellation. Therefore, we focus in this section on the con-

struction of this type of tessellations on ultrametric spaces.

3.1. Voronoi Tessellations

Let (X, D) be a metric space. The first obvious tessella-
tion of X with respect to a subset S consists in choosing a

threshold d for the distance to S and separating the points

in two sets, depending on whether they are closer or farther

than d from S: X1 = {x ∈ X |D(x, S) ≤ d}, X2 =
X \ X1. X1 is called a dilation of S of radius d andX2 an

erosion of its complementary set X \ S. If S contains only

an isolated point s, then X1 is the closed ball of radius d

centered at s.

If we now have a collection of subsets of X instead of a

single one, then we can partition the space with a Voronoi

tessellation. Given a set of sites S = {Si}i∈I , one considers

the region of influence, or Voronoi cell, of each Si:

Vi = {x ∈ X |D(x, Si) < D(x, Sj), ∀j ∈ I \ {i} }.

The Voronoi tessellation is then given by the set of

Voronoi cells and the Voronoi diagram V , the points at the

same distance of two or more sites:

V = {x ∈ X | ∃i, j ∈ I : D(x, Si) = D(x, Sj)}.

Figures 3 and 4 present examples of the notions intro-

duced above.

3.2. Segmentation Algorithm

In order to construct Voronoi tessellations on ultrametric

spaces and study their interest for constrained segmentation,

we need a way of measuring an ultrametric distance to a

collection of subsets of the image domain. The algorithm

we now describe extracts this information from the UCM.

The core of our approach is the front propagation strat-

egy employed in algorithms such as Dijkstra’s [8] or the

Fast Marching [19]. A general front propagation algorithm

is shown in Table 1. This type of methods operate on a

graph G = (N ,L), whereN is the set of nodes and L is the
set of links between nodes. In the case of the Fast Marching,

N is a regular sampling of a subjacent continuous space.
The objective of a front propagation algorithm is to cal-

culate the minimal distance U from any node inN to a start-
ing set of nodesM. It acts by partitioningN into three sub-
sets: Alive, the nodes where the final value of U has been



Figure 4. Original image, UCM, and ultrametric distance to three seed points.

computed; Trial, the nodes with an estimate of U , and Far,
all the other nodes. The algorithm is initialized by setting

Alive the nodes inM, Trial their neighbors and Far all the
other nodes. The initial estimate of U is 0 inM and+∞ in
N \M.

Table 1. General Front Propagation Algorithm

While the priority queue is not empty:

• Let p be the Trial node with the smallest priorityQ(p)

• Move p from the Trial to the Alive set

• For each neighbor q of the current node p:

– if q is Far, then add it to Alive and compute a new

value for U(q)

– if q is Alive, recompute the value U(q), and up-
date it if the new value is smaller

– recompute the priorityQ(q)

A particular front propagation algorithm is determined

by the implementation of the following: (1) A priority map

Q that orders the set of Trial points. (2) A way to update
the value U at a given Trial node. See [17] for specific in-
stantiations for the Dijkstra, Fast Marching, A* and other

algorithms.

In our algorithm, the input is an UCM and a set of seed

pixelsM, marked with labels. Several seed pixels can share
the same label. The outputs are the ultrametric distance

from any pixel toM and a label for each pixel.

We consider the weighted graph G = (N ,L,W), where
the nodes n ∈ N are the elements of P0, a link l(p, q) ∈ L
joins two adjacent elements and the weight w(l(p, q)) ∈ W
equals the saliency of the boundary between p and q in the

UCM.

Our priority map Q(p) and our function U(p) are both
equal to Υ(p,M), the ultrametric distance from p toM.
Their value at a node p is given by the maximum weight w

along a shortest path betweenM and p.

The seeds labels are propagated with the front and are

updated with U . Hence, all the elements in the Voronoi cells
are assigned a unique label by the algorithm. However, for

the elements in the Voronoi diagram, there is a choice to be

made, since they are at the same distance of two or more

seeds. We address this issue by ordering the nodes with

equal priority in Q by their current label. Thus, all the el-
ements in each connected component of the Voronoi dia-

gram obtain the same label. Although this heuristic can po-

tentially modify the output of the algorithm for a particular

image, in practice it does not affect the global performance

reported in the next section.

The computational complexity of our algorithm is the

usual in front propagation methods: O(Nlog(N)), where
N is the total number of nodes of the graph (the number of

elements of P0 in our case).

Note that, if the ultrametric is obtained by a region merg-

ing strategy, then the segmentation can be constructed si-

multaneously with the hierarchy by preventing the merging

of regions with different labels. However, by working di-

rectly on the UCM, our algorithm can be used with any hi-

erarchical scheme.

4. Results

In the rest of the paper, we use as input to our method

the UCMs of [1], noted CA and available at [11].

Figure 5 shows how our constrained segmentation algo-

rithm takes advantage of the coarseness of an ultrametric

distance for its robustness. In this case, the boundary of the

object to be extracted has the highest saliency in the UCM.

As a consequence, the output of our algorithm remains un-

affected, regardless of the exact location of the seed inside

the object or in the background.

4.1. Groundtruth Seeds

In order to evaluate quantitatively a constrained segmen-

tation algorithm, we need a point placed inside each object

perceived in a large variety of natural images. Since there

is not, to our knowledge, such an annotated database, we



Figure 5. UCM and segmentations corresponding to three sets of

seeds.

use for this purpose the human-labeled segmentations of the

BSDS.

Figure 6. Determination of ground-truth seeds (see text)

The method for constructing ground-truth seeds is illus-

trated in Figure 6. Consider the natural image in Top-Left.

Top-Right presents one of the human segmentations pro-

vided for this image, with segments represented by their

mean color. For each segment, we pick as seed one of

the points with highest Euclidean distance to the segment

boundary. Bottom-Left presents the overall distance to the

set of boundaries, with high values depicted with low inten-

sities, and Bottom-Right shows the seeds for this segmen-

tation. Now, the BSDS provides an average of five human

segmentations for each image, and their level of detail and

coherence can vary greatly from one another. In order to

cope with the variability inherent to the dataset, we allow

the use any of the segmentations provided for producing the

ground-truth seeds of an image.

4.2. Evaluation

We measure the performance of a constrained segmenta-

tion algorithm by segmenting the images of the BSDS with

respect to the ground-truth seeds and then evaluating the

accuracy of the contours obtained with the precision-recall

framework [14]. This standard methodology considers two

quality descriptors. Precision, that measures the fraction of

true positives in the contours obtained, and Recall, defined

as the fraction of ground-truth boundaries detected. Since

a constrained segmentation method produces a set of hard

boundaries, a point in the precision-recall plane is obtained

for each image. The overall performance of the method

is measured by considering the global descriptors on the

dataset. Finally, the global F-measure, defined as the har-

monic mean of Precision and Recall, provides a score for

the algorithm.

We use as a baseline the Matlab implementation of the

markers and watershedsmethod from morphology [3]. The

initial topographic surface is given by the Pb operator [14]

before non-maxima suppression. The surface is modified

with morphological reconstruction in order to make the

ground-truth seeds its only regional minima and the water-

shed lines of this new surface provide the boundaries of the

regions.

The evaluation results are presented in Figure 7. The

black and red dots represent the performance of the water-

sheds (WS) and of our method respectively, extended along

the iso-level lines of the function F (P, R). Our method ob-
tains a global recall of R = 0.70 and a global precision of
P = 0.76, leading to an F-measure of F = 0.73, a sig-
nificant improvement with respect to the watersheds, whose

descriptors are: R = 0.55, P = 0.81 and F = 0.65.
The human consistency on this dataset, obtained by com-

paring the human segmentations between them, is F =
0.79, with overall recall of R = 0.71 and overall preci-
sion of P = 0.90 (green dot and line). Thus, our method
detects roughly the same fraction of ground-truth bound-

aries as the human reference and the difference in the global

scores comes from the lower Precision for the machine, in-

dicating a higher fraction of false positives.

The other curves show for reference the leading bound-

ary detection techniques evaluated on the BSDS. The score

of CA, obtained by thesholding the UCMs at a fixed level

(0.19) for all the images is the highest performance reported

to date with this methodology for automatic segmentation.

The global descriptors for CA are R = 0.69, P = 0.65 and
F = 0.67.
Although the problems addressed by CA and our algo-

rithm are different (automatic and constrained segmenta-

tion respectively), the evaluation shows that the introduc-

tion of semantic information through the selection of a

set of ground-truth seeds and the application of our semi-

automatic method improve the performance with respect to



Figure 7. Benchmark Results

a fully automatic approach. The improvement is obtained

mainly by reducing the fraction of false positives. Our re-

sults in this challenging database are promising for the ap-

plication of our algorithm to interactive segmentation.

In terms of efficiency, the evaluation was carried out on a

Pentium 4 at 3.2 Mhz. The average number of ground-truth

seeds per image on the test set of the BSDS is 28. Starting

from the UCMs and the seeds, the average computation time

for the segmentations with our current C++ implementation

is 0.2 s per image.

Figure 8 presents some benchmarked results and Figure

9 shows an example of interface of our method for interac-

tive Figure/Ground labeling. In this case, the user can mark

the objects of interest directly on the UCM, by assigning

one label to each object and one label to the background.

The human intervention in this case consists in drawing

lines of different colors. Note that, by marking pixels on

both sides of a boundary, the user can easily correct errors

in the original UCM.

5. Conclusion

We proposed a straight-forward, robust and efficient al-

gorithm for constrained segmentation. Its key idea is to ex-

ploit the information provided by the contours of a hierar-

chical segmentation method. We validated empirically our

approach with respect to ground-truth segmentation data,

by using a standard methodology and the UCMs of a lead-

ing hierarchical method. The evaluation results prove the

potential of our algorithm for interactive segmentation ap-

plications.
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Figure 8. Examples of benchmarked results. From left to right: ground-truth seeds on original image, segmentation result and correspon-

dence with ground-truth boundaries (true positives, false positives and missed detections represented in blue, red and gray respectively).



Figure 9. Application to interactive Figure / Ground segmentation. From left to right: Original image, automatic segmentation of CA (for

comparison), user input (thickened for better visualization) and result of our method.


