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Abstract

We present a novel geometrical constraint on the ego-
motion of a single, moving camera. Using a camera with
a large field-of-view (FOV), the optical flow measured at
a single pair of antipodal points on the image sphere con-
strains the set of all possible camera motion directions to a
subset region. By considering the flow at many such antipo-
dal point pairs, it is shown that the intersection of all sub-
set regions arising from each pair yields an estimate on the
directions of motion. These antipodal point constraints rely
on the geometrical properties of using a spherical represen-
tation of the image as well as the larger information content
available from a large FOV. An algorithm using these con-
straints was implemented and tested on both simulated and
real images. Results show comparable performance to the
state of the art in the presence of noise and outliers whilst
processing in constant time.

1. Introduction

Egomotion estimation from the image motion perceived
by a single, moving camera has been extensively studied in
the case of cameras with planar images, such as that found
in traditional cameras. However, with the introduction of
sensors such as catadioptric devices and fish-eye lenses, an
extremely large field-of-view (FOV) can be obtained. A
suitable space to represent such images is the image sphere
and we wish to explore the geometry of this space and ex-
ploit its properties for egomotion estimation.

We focus on solutions using image correspondences or
optical flow. The method developed uses only directions of
flow (not magnitudes) and correspondingly, only directions
of motion are found. Later, these can be re-substituted into
the equations to find magnitude of the rotation angle. Scene
depth is unknown and only rigid body motion occurs.

Whilst the equations governing motion and image pro-
jection are fundamentally nonlinear, a linear formulation is

possible via epipolar geometry. The recovery of the funda-
mental matrix (and thus motion) is possible with a minimum
of 8 point correspondences [18, 8], or just 5, for calibrated
cameras [15, 23]. The outputs may then be refined via local
iterative techniques such as bundle adjustment [28]. Whilst
these reflect the current state of the art, a wide range of alter-
natives exist, including linear subspace methods [11], non-
linear optimization [5, 24], qualitative egomotion methods
[6, 25], approaches using scene depth positivity [4], funda-
mental matrix from flow [12]; the approaches of [9], [21],
[13], [10], [3], [26], [20] and many, many more.

We investigate a new approach that exploits the larger
information content inherently present in images with large
FOV and the geometry of representing the image on a
sphere. Stability analyses by [7] suggest that a large FOV on
a spherical image may be optimal for the recovery of self-
motion. Furthermore, [4] suggests that two different rigid
motions cannot give rise to the same motion/optical flow
fields when the entire viewsphere is considered whereas
such confusions may occur when a smaller FOV is used.
We are also inspired by eye design in biology, where fly-
ing creatures such as insects have compound eyes that give
them vision over nearly the entire viewsphere.

Prior work exploiting the large FOV of spherical im-
ages [22, 6, 25] often perform a 2D search. Our method is
much more efficient compared to searching. Our approach
is most similar to the method of [17], which studies in detail
a constraint observed by [27] as a special case of linear sub-
space methods [11, 27]. This method takes the vector sum
of optical flow at antipodes to constrain translation. The
main difference with our method is that the constraint of
[17, 27] recovers only translation. Rotation is later found
by re-substituting translation, but this propagates errors in
the translation estimate through to rotation. Our method di-
rectly recovers both the direction of translation (DOT) and
axis of rotation (AOR) with the same constraints. Both the
DOT and AOR can be recovered in parallel. Also, no sum-
mation of flow occurs and only directions of flow are used.

We discuss the antipodal point geometrical constraint in
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Section 2 before presenting a complete algorithm using the
constraint (Section 3). The algorithm is a ‘non-numerical’
approach in that the constraints are obtained without nu-
merically solving equations. In fact, no mathematical op-
erations more complex than that required for voting will be
performed. Furthermore, run-time is constant with increas-
ing noise and outliers, and that, together with the naturally
parallelizable nature of the algorithm gives it potential for
real-time egomotion estimation. Finally, the algorithm is
tested and results are discussed in Section 4.

1.1. Background

For a spherical imaging surface, the optical flow equation
is (refer Figure 1a):

ṙ = ftr(r) + frot(r)

=
1

| R | ((t · r)r − t) − w × r
(1)

where the flow at an image point r corresponding to scene
depth | R | is given by ṙ when the camera translates in di-
rection t whilst simultaneously rotating with rotation w [4].
This equation does not model noise. Equation 1 consists of
two terms - the term due to translational motion, ftr(r) and
that of rotational motion, frot(r).

Equation 1 has seven unknowns - the scene depth, three
unknowns for translation and another three for rotation. It is
well-known that the translation can only be recovered up to
a scale [8] and we can rearrange the equation such that we
have six unknowns (| t

R | is consolidated as one unknown).
We wish to recover five of these unknowns - the DOT, the
AOR and the magnitude of rotation. However, a straightfor-
ward least squares solution is impossible since scene depth,
R, is a function of r and the system of equations is under-
constrained. A standard method for overcoming this is to
introduce an additional constraint via epipolar geometry.

We suggest an alternative approach using constraints on
the directions of motion arising from the spherical geometry
available from images with large FOV to disentangle the
motion parameters of Equation 1.

2. Directions of Motion from Antipodal Point
Constraints

Let us consider two antipodal points r1 and r2 on the
image sphere. There exist infinitely many great circles that
will pass through both points and we consider one of them,
the circle C. The flow vector at a point r inhabits the tan-
gent plane to the image sphere at that point. Let us define
a vector c at r that is tangent to the image sphere and that
lies on the plane of the great circle C (refer Figure 1 (b)).
Therefore, c is both tangent to great circle C and also tan-
gent to the image sphere. It lies on the same tangent plane

(a)

(b)

Figure 1. (a) Optical flow on the image sphere. (b) ṙ1, c1 and ṙ2,
c2 lie on two parallel tangent planes if r2 = −r1 (i.e. they are
antipodal).

as the flow vector ṙ at that point r. Let the projection of the
flow vector ṙ onto the vector c be termed as projected flow
and denoted as proj(ṙ) where proj(ṙ) = ṙ · c.

From proj(ṙ1) and proj(ṙ2), we obtain constraints on
egomotion as per Theorem 1 (illustrated by Figure 2):

Theorem 1 If the projected flow vectors, proj(ṙ1) and
proj(ṙ2), at two antipodal points r1 and r2 are in the same
direction (same sign), then the DOT is constrained to lie in
a hemisphere bounded by a great circle Cbound that passes
through r1 and r2 and is perpendicular to the great cir-
cle C. The hemisphere is such that proj(ṙ1) and proj(ṙ2)
point away from it.

Likewise, if proj(ṙ1) and proj(ṙ2) are in opposite di-
rections (opposite signs), the direction of the AOR is con-
strained to lie in a hemisphere bounded by C. Which side of
C this hemisphere lies on is determined by the cross product
in the rotational component of flow, −w × r.

Without loss of generality, let us choose a Cartesian co-
ordinate frame such that our antipodal points r1 and r2 are
at (1, 0, 0) and (−1, 0, 0) and such that the great circle C
lies on the x-y plane. Expanding Equation 1, substituting
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Figure 2. (a) If tc exists, DOT is constrained to lie in the shaded
hemisphere A(tr). (b) The AOR is constrained to lie in the hemi-
sphere A(rot). Since proj(ṙ1) and proj(ṙ2) are in a clockwise
configuration, the direction of wc is upward due to the cross prod-
uct, −w × r (the left hand grip rule).

for r1 and r2 and projecting onto c1 and c2 which in this
case are both simply (0, 1, 0), the projected flow is:

proj(ṙ1) = − | t
R1

| ty − wz

proj(ṙ2) = − | t
R2

| ty + wz

(2)

where | R1 | and | R2 | are the depths of the scene at r1 and
r2 and | t | is the magnitude of translation. The unknowns
are reduced to ty, and wz , which are mutually orthogonal.

Here, we are interested in the directions (i.e. the sign)
of proj(ṙ1) and proj(ṙ2). Equation 2 shows that the pro-
jected flow consists of two components, the translational
component, | t

R1
| ty , and the rotational component, wz .

We find that the translational components of both proj(ṙ1)
and proj(ṙ2) act in the same direction because they have
the same sign whilst the rotational components have oppo-
site signs and therefore, act in opposing directions.

Logically, we can conclude that if we observed proj(ṙ1)
and proj(ṙ2) to have the same sign (same direction), then

some translational component of projected flow, | t
R1

| ty ,
must exist. This is because the rotational component of pro-
jected flow, wz , acts in opposite directions at r1 and r2 and,
on its own, could never give rise to what we observe.

Similarly, if we observed proj(ṙ1) and proj(ṙ2) to be
in opposite directions (opposite signs), then there must exist
some rotational component of flow that is causing it as the
translational component could not, on its own, give rise to
the observed signs. These conclusions hold true for any
general pair of antipodal points since the coordinate frame
can always be chosen such that it is aligned conveniently in
the above manner, leading us to the statements of Lemma 1:

Lemma 1 If the projected flow vectors, proj(ṙ1) and
proj(ṙ2), at two antipodal points r1 and r2 are in the same
direction (same sign), there must exist a component of trans-
lation, tc, that is parallel and in the opposite direction to
proj(ṙ1) and proj(ṙ2) (Figure 2a). Likewise, if proj(ṙ1)
and proj(ṙ2) are in opposite directions (opposite signs), a
component of rotation, wc, that is normal to the plane of the
great circle C must exist. (Figure 2b)

Furthermore, for tc to be in the opposite direction to
proj(ṙ1) and proj(ṙ2), the DOT, t, is constrained to lie in
a hemispherical region, A(tr), shown in Figure 2. If t was
outside A(tr), then tc would be parallel to but in the same
direction as the projected flows proj(ṙ1) and proj(ṙ2); thus
contradicting Lemma 1. This hemisphere, A(tr) is bounded
by the great circle, Cbound, obtained by the intersection of
a plane with normal vector tc with the image sphere. Simi-
larly, for the AOR to have a component in the direction wc,
it must lie in a similar hemispherical region A(rot).

2.1. The constraints from all great circles passing
through a pair of antipodal points

In Theorem 1 we saw that a great circle passing through
a pair of antipodal points will yield a hemispherical re-
gion, A(tr), that constrains the DOT and another region,
A(rot), that constrains the AOR. Since there exist infinitely
many great circles that will pass through these two antipodal
points, an infinite set of hemispherical constraint regions,
A1, A2, · · · , Ai, · · · will result. As the motion must simul-
taneously satisfy all these constraints, the direction of mo-
tion must lie within the intersection of all these hemispher-
ical constraint regions, Ares = A1 ∩ A2 ∩ · · · ∩ Ai · · · .

Let Ci be the ith great circle in the infinite set of great
circles passing through r1 and r2. Associated with every
Ci, is the vector ci that is tangent to the sphere and lying in
the plane of the circle Ci as defined earlier. The intersec-
tion of constraints can then be described in Theorem 2 and
illustrated by Figure 3:

Theorem 2 The optical flow ṙ1 and ṙ2 observed at any two
antipodal points r1 and r2 on the image sphere will give rise
to a constraint on the DOT and a constraint on the AOR.
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Figure 3. (a) Shaded lune Ares(tr) is resultant constraint region on
translation (b) Ares(rot)is resultant constraint region on rotation

The DOT lies in a region on the sphere bounded by great
circles Cbound,r1 and Cbound,r2 that pass through r1 and r2

and are such that the associated ci vectors are cbound,r1 =
ṙ1 and cbound,r2 = ṙ2.

The direction of the AOR lies in a region on the sphere
bounded by great circles Cbound,r1 and Cbound,r2 such that
cbound,r1 is perpendicular to ṙ1 and cbound,r2 is perpendic-
ular to ṙ2.

Theorem 2 can be shown using a geometrical argument.
For simplicity, we consider only the vectors inhabiting the
two tangent planes to the sphere at r1 and r2. They are the
flow vectors and the ci vectors that are associated with the
great circles. As the two tangent planes are parallel in R

3,
we can represent everything in just one plane, as is done in
Figure 4. Every great circle passing through a point r is
characterized completely by r and ci, so in Figure 4, great
circles Ci and vectors ci are synonymous.

Recall that proji(ṙ) = ci · ṙ. So, for the case of transla-
tion, only the great circles with ci satisfying the following
condition will give constraints on translation:

sgn (proj(ṙ1)) = sgn (proj(ṙ2)) > 0 (3)

That is to say, the acute angles between ṙ1 and ci and be-
tween ṙ2 and ci must both be less than π/2. Such ci vec-

(a)

Figure 4. The two tangent planes containing ṙ1, ṙ2, c1 and c2 are
parallel to the plane of the page. Intersection of all hemispherical
constraints on translation is the lune Ares

tors lie in the shaded region U in Figure 4. Consider the two
great circles Ca and Cb with ci’s exactly perpendicular to
ṙ1 and ṙ2. Let their ci vectors be ca and cb. From Theorem
1, we obtain two hemispherical regions constraining trans-
lation that are bounded by Cbound1 and Cbound2 which are
again perpendicular to Ca and Cb. This means that the ci

vectors for Cbound1 and Cbound2 are actually cbound,1 = ṙ1

and cbound,2 = ṙ2. The DOT must lie within the intersec-
tion of these two hemispherical regions - the region Ares of
Figure 4.

In fact, Cbound1 and Cbound2 are the boundary cases. All
other great circles that give valid constraints on translation
- those with ci’s lying between ca and cb - will give rise
to hemispherical regions that contain Ares. For example,
see the great circle represented by the vector cj in Figure
4. It gives rise to the hemispherical region bounded by the
great circle Cj and that hemisphere contains Ares. So the
Ares bounded by Cbound1 and Cbound2 is the smallest such
region that satisfies all the constraints. In geometry, these
wedge-shaped constraint regions are termed lunes.

To show the case of constraining rotation, simply reiter-
ate the previous argument, but now let cbound,1 be perpen-
dicular to ṙ1 and cbound,2 be perpendicular to ṙ2.

2.2. Motion estimation with constraints from N an-
tipodal point pairs

Thus far, we have shown that once the direction of flow
ṙ1 and ṙ2 at antipodal points are computed, finding the
boundaries of the lune shaped constraint regions is trivial.
N pairs of antipodal points on the image sphere will give
rise to N constraint regions for the DOT and N regions for
the AOR. The intersection of these will give some estimate
of the directions of motion. By sampling sufficiently many
antipodal points from all over the image sphere, this will



Figure 5. Point ra and its antipode ra ant gave rise to constraint
region A. Then, point rb was chosen such that it was inside region
A. rb and rb ant gave rise to region B. Region A ∩ region B is
guaranteed to be convex and smaller in size than regions A and B.

give a global estimate of motion.
However, does this method converge to the true direc-

tions of motion as N becomes large? We argue that if the
next antipodal point pair is always chosen such that one of
the points lie inside the current intersection of all previously
obtained constraint regions, the intersection of the new con-
straint with the current intersection region will be a convex
region smaller than the current region (Figure 5).

Lunes are convex regions. Since the intersections of con-
vex regions are themselves convex, the intersection of the
lunes must also be convex. Let the region of intersection
from all previous lunes be A and the constraint region from
a newly chosen antipodal point pair be B. One of the points
in this pair is P , so P ∈ B. Let us pick P subject to two
conditions. Firstly, it is inside region A, that is, P ∈ A and
therefore P ∈ (B∩A). Secondly, P is not on the boundary
of A, that is, there is an open ball, C, around P such that
C ⊂ A. Since P , the antipodal point, lies on the boundary
of B there exists some point Q in the neighborhood of P
such that Q ∈ A but Q /∈ B, so Q /∈ (B ∩ A). Therefore,
(A∩B) ⊂ A, i.e. the intersection of the original constraint
region and the lune is smaller than the original region.

Using such a scheme to choose the antipodal point pairs,
as N becomes large, the constraint region will converge to-
wards the true motion direction. Thus, for the noise-free
case of dense optical flow, we have a convergent algorithm.

In practice, we need to incorporate Hough-like voting,
simulated annealing or other such methods to account for
noise, outliers and independently moving objects that would
give erroneous constraint regions. Furthermore, once the
solution has been constrained to some region smaller than
a hemisphere, a gnomonic projection can map great circles
on the sphere onto straight lines on a plane and intersecting
lunes onto polygons. This reduces the convex problem into
a linear one which can be efficiently solved by robust linear
programming methods.

Once the DOT and AOR have been recovered, estimat-
ing the magnitude of rotation is easy and several methods
are possible. Here is one suggestion: ṙ = ftr(r) + frot(r)
(Equation 1) is a vector sum triangle. We now know the
directions of ftr(r) and frot(r), that is, we know the an-
gles between the sides of that triangle. Thus, magnitude of
frot(r) can be found by the sine rule of triangles. Repeating
for several points on the image, an overconstrained system
of linear equations is obtained and a least squares solution
to rotation angle may be found.

3. Algorithm and Implementation

The quickly converging method earlier described could
be used if speed was critical, but here, we use a simple but
very robust vote-based algorithm. N antipodal point pairs
were randomly picked on the image sphere. The constraint
regions from each pair contributed to votes in a voting table
in a coarse-to-fine scheme. The centre of mass of the bin(s)
with the highest votes gives the Maximum Likelihood esti-
mate of motion direction. We chose a vote-based approach
because it is highly robust to noise and outliers in the flow.
Its disadvantage is that accuracy is limited by voting bin res-
olution. Errors were measured based on the angle between
the recovered motion direction and the true motion.

Matlab simulations: We compared performance with the
5-point algorithm of [15] (code supplied by author) and the
other existing antipodal point method of [17]. The cam-
era simultaneously underwent rotation and translation ran-
domly generated from the range of all possible directions
(azimuth ∈ [0, 360◦], elevation ∈ [−90◦, 90◦]). Baseline
was 2 units and rotation angle, 0.2 radians. 500 pairs of
random antipodal scene points were uniformly distributed
in all directions with depth ranging from 10 to 15 units.
Results were averaged over 100 trials. 5-point used point
match inputs, whilst flow for antipodal point algorithms was
generated from Equation 1. To simulate noise, the ray of
a matched point was perturbed by some angle modeled as
Gaussian noise with standard deviation σ. Outliers were
simulated by randomly replacing matches with errors.

5-point was implemented in a RANSAC framework
from [14]. Sampling was adaptive with probability p =
0.99 and Sampson distance threshold of 0.01 (see [8] for
details). We chose 5-point with RANSAC as a compari-
son since it is well-known, widely used and code is widely
available. For the baselines used in our experiments, we
found 5-point to work reasonably well (sub-pixel accuracy
for zero noise and < 1◦ error for small noise).

Translation estimates were also compared with the ex-
isting antipodal point method of [17] (special case of lin-
ear subspace methods [11, 27], see Section 1). Briefly, the
method sums antipodal flow to constrain DOT on a great
circle. It does not find rotation. For better comparison with
our work, we adapted [17] into a voting scheme which votes



along great circles (our method votes on lunes). In this im-
plementation, both our method and that of [17] use all avail-
able flow (no sampling).

Real videos: Real sequences were captured with a La-
dybug camera [2] which returns 5 images positioned in
a ring. Scale Invariant Feature Transform (SIFT) feature
matching (code from [19]) was used as input to 5-point and
also used to calculate sparse optic flow for our method. In
the pure translation case, the camera translated along the
ground with baseline 2cm per frame in the direction of the
x-axis, which is parallel to the ground plane. In the simulta-
neously translating and rotating case, it also rotated 5◦ per
frame about the z-axis, which is perpendicular to the ground
plane. Our algorithm ran on consecutive frames whilst for
5-point, we skipped a frame for every estimate, to afford
it larger baselines and rotation. Two points within 0.01 ra-
dians of being antipodal were considered antipodal. In the
real images of cluttered indoor scenes, experiments using
SIFT matches obtained flow at typically 300 to 800 of these
near antipodal points. Increasing this margin finds more
antipodes, but at the expense of accuracy. We also experi-
mented with using dense flow calculated by iterative Lucas-
Kanade in a pyramidal, multi-scale hierarchy (code from
[1]) as input to our algorithm. With this method, antipo-
dal flow is dense and more plentiful, but noisier than SIFT.
Experiments randomly picked flow at 400 antipodes.

4. Results and Discussion

Outliers: Figures 6A and 6B show averaged errors for
translation and rotation as outliers increase. Our method is
labeled ‘our antipodal’ and the method of [17], which sums
antipodal flow, is labeled ‘sum antipodal’.

Unsurprisingly, 5-point with RANSAC estimates trans-
lation most accurately for low noise since voting bin resolu-
tion limits our method in this implementation. Interestingly,
both our method and [17] outperformed 5-point-RANSAC
as outliers grew. Here, errors in RANSAC arise because
some outliers fall within the model distance threshold used
(0.01). Reducing RANSAC distance threshold improves
performance; but in general, both antipodal methods tended
to outperform RANSAC for very large outlier proportions.
This is because antipodal methods require only 2 points for
a constraint. If q is the probability of an inlier, then the
probability of obtaining a good constraint is q2 for antipodal
methods and q5 for 5-point. Therefore, antipodal methods
are always more likely to obtain more good constraints.

However, 5-point with RANSAC outperformed our
method in finding rotation. Compared to estimating transla-
tion, our method performed the same but 5-point was much
more accurate in estimating rotation. This is probably be-
cause 5-point estimates rotation more easily than transla-
tion, as observed by [23]. The important point is that our
method degrades at a comparable rate to 5-point for rota-

tion errors, implying similar robustness to increasing out-
liers in the two methods.

Gaussian Noise: Figures 6C and 6D show the transla-
tional and rotational errors under noise. All three methods
degrade comparably for translation and both our method
and 5-point show similar robustness for rotation estimation.
Once again, for large noise, the trend is for antipodal meth-
ods to perform better than 5-point.

Timing: We have seen that our vote-based antipodal
algorithm shows comparable robustness with 5-point and
RANSAC. Figure 6E further demonstrates that our algo-
rithm achieves this with constant processing time compared
to RANSAC, which runs in approximately cubic time here
as outliers increase. Our algorithm uses all available flow
(although sampling is an option), yet it is still faster than
5-point with RANSAC which samples points adaptively ac-
cording to N = log(1−p)/log(1−(1−ε)s) (refer [8]). The
numbers in 6E are obviously implementation dependent but
the trend will remain the same. Our algorithm has minimal
mathematical complexity (voting and some dot products).
Furthermore, it is quite naturally parallelizable. Theoreti-
cally, some parallel machine could simultaneously cast all
votes from all constraints in one time step - potentially mak-
ing this an ‘instant’ time egomotion method.

Real sequences: Comparisons with measured ground
truth and 5-point-RANSAC estimates show accurate and ro-
bust egomotion recovery for simultaneous translation and
rotation sequences and for pure translation sequences. Er-
rors for the former are summarized in Figures 6G and 6H.
Experiments using SIFT inputs for our method (marked
‘SIFT’) showed little difference in performance when com-
pared with 5-point-RANSAC. Average errors over the
whole sequence range from 2◦ to 3◦ for both methods, with
the average slightly lower for 5-point (1◦ lower for trans-
lation and 0.5◦ lower for rotation axis). Experiments with
pyramidal Lucas-Kanade flow inputs (marked ‘LK’) for our
algorithm showed that our method is robust to the consid-
erably noisier inputs. Results were, on average, about 1 de-
gree worse than those obtained using matched SIFT points
as inputs. The pure translational sequence gave similar
good results. Supplementary videos are included.

4.1. Discussion

Are antipodal points practical? Crucial to our algorithm
is the availability of useful antipodal points. Useful means
that the constraint arising from an antipodal pair should
serve to further disambiguate the current constraint region.
Also, the Ladybug multi-camera system used is not exactly
single-viewpoint, leading to points being less than ideally
antipodal. Nevertheless, the results demonstrate that with
real images, flow can be found at sufficient numbers of an-
tipodes, with sufficiently strong constraints on motion, such
that accuracies comparable to 5-point are achievable.



Figure 6. The method of [17] is labeled ‘sum antipodal’. (A-B) Translation and rotation axis errors in simulations with increasing outliers.
(C-D) Translation and rotation axis errors with increasing Gaussian noise. (E) Run time comparison with 5 point RANSAC. (F) Errors as
rotation angle increases. (G-H) Errors for real sequences. Videos attached.

Complex scenes. In general, the algorithm is suitable for
feature rich environments. In environments such as unstruc-
tured, dynamic outdoor scenes with many features but also a
multitude of moving shadows, fluttering leaves, moving ob-
jects and many other sources of noise and outliers, the sim-
ulations suggest that this algorithm would be at least as ac-
curate as 5-point with RANSAC, while running much faster
(in fact, in constant time). The results also suggest combin-
ing the method of [17] with our algorithm. Such a hybrid
can find translation with [17] since it gives stronger con-
straints on translation and is very robust to outliers, whilst
rotation is recovered with our method.

Fail-soft. Insufficient antipodal points does not break the
algorithm - the motion only becomes more ambiguous. Vot-
ing returns a probability map (eg. Figure 7) where regions
of higher votes indicate higher probability of the motion be-
ing in that direction. Ambiguity occurs when constraints
fail to further disambiguate motion, and a patch of direc-
tions has tied votes. The true solution lies within that patch
with maximum probability given the available antipodes.
This is better than many other motion methods that return a
nonsensical number when they fail.

Doesn’t voting resolution limit accuracy? Voting is an
approach that works well here and in other motion estima-
tion methods (eg. [20]). However, alternative implementa-
tions are possible, such as linear programming, as suggested
in Section 2.2. Nevertheless, the real image experiments
demonstrate that under practical levels of noise and cali-
bration errors, voting is comparable to exact methods like
5-point-RANSAC. For further refinement, methods like 5-

point or antipodal point can obtain initial estimates which
are then refined by bundle adjustment [28]. Also, voting al-
lows variable resolutions, which is suited to the multi-scale
nature of real world tasks like robot navigation.

Field of View: As Equation 1 shows, flow is an entan-
glement of translational and rotational components. The
flow in certain parts of the viewsphere are strongly influ-
enced by translation or rotation. For example, if the camera
rotates about the z-axis, flow near the equator (x-y plane)
gives strong constraints on rotation. Also, if either trans-
lation or rotation is large relative to the other, it becomes
harder to estimate the weaker motion and easier to find the
dominant one. Figure 6F shows that for baseline of 2 units,
as rotation angle varies from 3◦ to 18◦, rotation becomes
easier to estimate and translation harder to estimate.

Why use only directions of flow? [17, 27] use the mag-
nitude information of antipodal flow and its constraint on
translation is therefore stronger. However, by using only di-
rections of flow, we are able to extend antipodal constraints
to rotation as well. Other benefits include improved ro-
bustness since it is independent of noise in the magnitude
of flow vectors - only noise in the direction of flow affects
it. It is also theoretically interesting because our constraint
regions (the lunes) arise immediately from the flow vec-
tors without further mathematical processing, be it addition,
multiplication or more complex operations.

5. Conclusion

We presented a geometric constraint on egomotion from
directions of antipodal point flow. Simulated and real
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Figure 7. Voting on the sphere.

experiments show that this constraint works in practice,
and that by combining many pairs of such points we are
able to gain robust and accurate egomotion estimates.
Supplementary videos included (also available at our
website [16]).
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