
Efficient Mean Shift Belief Propagation for Vision Tracking

Minwoo Park†, Yanxi Liu†* and Robert T. Collins†
†Department of Computer Science and Engineering, *Department of Electrical Engineering

The Pennsylvania State University, University Park, PA 16802
{mipark,yanxi,rcollins}@cse.psu.edu http://vision.cse.psu.edu/msbp.htm

Abstract

A mechanism for efficient mean-shift belief propagation
(MSBP) is introduced. The novelty of our work is to use
mean-shift to perform nonparametric mode-seeking on be-
lief surfaces generated within the belief propagation frame-
work. Belief Propagation (BP) is a powerful solution for
performing inference in graphical models. However, there
is a quadratic increase in the cost of computation with re-
spect to the size of the hidden variable space. While the
recently proposed nonparametric belief propagation (NBP)
has better performance in terms of speed, even for contin-
uous hidden variable spaces, computation is still slow due
to the particle filter sampling process. Our MSBP method
only needs to compute a local grid of samples of the be-
lief surface during each iteration. This approach needs a
significantly smaller number of samples than NBP, reduc-
ing computation time, yet it also yields more accurate and
stable solutions. The efficiency and robustness of MSBP is
compared against other variants of BP on applications in
multi-target tracking and 2D articulated body tracking.

1. Introduction
Many vision problems suffer from a multimodal like-

lihood and posterior, high dimensionality and inaccurate
local evidence. However, when prior knowledge is well-
encoded in a graphical model, the resulting constrained
inference process becomes more accurate. Belief Propa-
gation (BP) is a powerful tool for inference of marginal
distributions in a graphical model. Because BP can ap-
proximately solve NP hard problems in polynomial time,
it has been widely used in many areas. It is guaranteed to
give an exact solution for acyclic graphs and has been em-
pirically shown to give satisfactory results even on loopy
graphs [4, 15, 16, 8].

As a sample vision problem using BP, consider tracking
a group of people marching in formation (Figure 1). Here,
each node in the graphical model corresponds to one per-
son, and the hidden variables are the (x, y) location of that
person in the image. Links between adjacent people spec-

(a) (d)

(b) (e)

(c) (f)

Figure 1. (a-c) Close spacing and similar appearance of people
in low resolution video of a marching band yields a multimodal
posterior distribution for the location of each individual when in-
ference is based only on local evidence. (d-f) By encoding spatial
geometric (lattice) constraints between people, the posterior dis-
tribution for each person’s location becomes much more concen-
trated around a single mode. Note: (b) and (e) are positions for a
single individual

ify spatial lattice constraints, which constrain the location
of a person based on the locations of neighboring people.
This constraint is specified by a distance based compati-
bility function. In addition to geometric constraints, the
likelihood of a person being at a particular location in the
image is measured by an appearance-based likelihood func-
tion that computes similarity between an intensity template
model of the person and the image patch at that location.

As can be seen in Figure 1(a-c), when individuals are
treated independently without neighbor compatibility links,
the posterior distribution on location of any one person is
highly multimodal. This is so because the posterior is dom-
inated by the appearance likelihood function, which is mul-
timodal due to the ambiguity of similar people at this res-
olution in this application. Compare this to Figure 1(d-f),

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

where inference of the location of each person becomes un-
ambiguous when the prior knowledge of the structured spa-
tial layout of people is properly encoded into a graphical
model.

The combination of graphical models and BP has proven
to be effective in many vision problems such as stereo
vision, multi-target tracking, and articulated body track-
ing [4, 12, 9, 8, 6]. However, some problems are not well-
suited for belief propagation, because there is a quadratic
increase in computation time with respect to the size of
the hidden variable space, that is, the computation time is
O(kn2T) where k is the number of nodes, n is the size of
the hidden variable space, and T is the number of iterations
needed for convergence. BP is therefore no longer feasible
in large hidden variable spaces, and the need for more effi-
cient and robust algorithms arises. The goal of this paper is
to develop an efficient belief propagation algorithm for vi-
sion tracking that produces accuracy comparable to discrete
belief propagation. To validate the generality of the pro-
posed method, our approach is applied to two challenging
applications, multi-target tracking and 2D articulated body
tracking.

1.1. Related Works
To improve the speed of inference using belief propa-

gation, several approaches have been suggested. Ramanan
& Forsyth [11] speed up BP by removing states that have
low image likelihood value, thus reducing the size of input
to the belief propagation framework. However, preprocess-
ing is needed to compute the image likelihood for the en-
tire space, which needs O(nT) pre-processing time, where
n is the size of the hidden variable space and T is the time
needed for evaluation of image likelihood. Moreover, this
kind of pruning method is susceptible to error; once an im-
portant state is wrongly pruned in the pre-processing stage,
the inferencing may not reach the correct solution. Cough-
lan & Shen [2] also speed up BP by state pruning. However
the pruning method they use is dynamic quantization which
allows addition and subtraction of states during the belief
propagation process. The method of Coughlan & Shen has
less risk than static pruning of the hidden variable space.
However, neither approach is suitable for continuous hid-
den variable spaces, because they are based on DBP.

More recently, efficient BP methods for early vision have
been developed in [3]. The computation time of discrete be-
lief propagation (DBP) is reduced by several orders of mag-
nitude using min convolution, bipartite graphs and multi-
grid methods. However, the use of min-convolution in [3]
is only applicable because of the convexity of their com-
patibility function. Moreover, it is not feasible in high-
dimensional spaces due to the need for uniform discretiza-
tion.

To tackle problems with high dimensional continuous
state spaces, several versions of continuous BP have been

proposed recently [13, 7, 6]. By representing arbitrary den-
sity functions using particles, with each particle being the
mode of a Gaussian in a mixture of Gaussian distribution,
BP inference can be approximated for a continuous hidden
variable space. It has been reported that 100 ∼ 200 Gaus-
sians suffice for an arbitrary and accurate representation of
the density [13, 6]. However, the standard NBP algorithm is
slow due to the sampling process [6]. Recently, a more effi-
cient version of NBP was proposed using sequential density
estimation and mode propagation [6]. It is reported that this
efficient NBP is 80 times faster than standard BP for track-
ing a 2D articulated body model.

1.2. Mean-Shift Belief Propagation
The methods discussed so far treat the entire hidden vari-

able space as a whole. We have developed a more effi-
cient and simple method called MSBP (Mean-Shift BP) that
works iteratively with local samples and weights. We note
that mean-shift is equivalent to finding a local mode within
a Parzen window estimate of a density function, and use
mean-shift as a non-parametric mode-seeking mechanism
operating on weighted samples generated within the belief
propagation framework. Geometrically, we can visualize
this process as performing mean-shift on the implicit belief
surface or marginal density generated by the belief propaga-
tion algorithm (Figure 2). Because the mean-shift algorithm
only needs to examine the values of the belief surface within
its local kernel window, we can avoid generating the entire
belief surface, yielding great computational savings.

(a) (b)

Figure 2. Illustration of a 2D marginal density (left) computed by
the BP process and mean-shift hill-climbing on that belief surface
(right). Only a small local grid of belief values within the mean-
shift window need to be computed during any iteration, so the ma-
jority of the belief surface can remain implicitly defined (and thus
not computed). Computational savings increase as the dimension-
ality of the belief surface increases.

Since a significantly smaller number of samples is
needed than particle filtering, computation time is reduced
as compared to NBP. If we were doing mean-shift on the
weights and samples generated by image likelihood alone,
then they might settle on a local mode that is of no inter-
est, caused by clutter or noise. However, this is not likely

in our case; although there might be many local modes in
the image likelihood, the pairwise neighborhood compati-
bility constraints in BP can reduce false local modes in the
posterior(Figure 1).

2. Mathematical Background
A Markov Random Field (MRF) specifies a factoriza-

tion of the joint probability of a set X of random vari-
ables. An MRF can be represented as an undirected graph
G = (N,E), where each node in N represents a random
variable in set X and each edge in E represents a statisti-
cal dependency between random variables in X. The set of
state values of the collection of variables is called the hidden
variable space, since it is not observable directly but must
be inferred through measurement and statistical dependence
information. Brute force evaluation of the marginal distri-
bution of a single random variable in the set X leads to
O(nk) computation time where k is the number of nodes
in the graph and n is the size of the hidden variable space,
and thus it is O(knk) for all random variables in a set X.
Computation of the marginal distribution of a single ran-
dom variable xj is given by

p(xj) =
∑
1

...
∑
N\j

= p(x1, x2, ..., xN , z1, z2, ..., zN) (1)

where zi is an observable or measurable quantity given the
state of xj and N \ j means the nodes in set N except for
node j. However, the joint probability over the state x and
measurement z in a MRF can be factored as

p(x1, ..., xN , z1, ..., zN) =
∏

(i,j)∈E

ψ(xi, xj)
∏
s∈N

φ(xs, zs)

(2)
where Ψ and Φ are pairwise compatibility and joint compat-
ibility functions, respectively. For vision problems, the joint
compatibility function φ(xj , zj) is a function governing sta-
tistical dependency between xi and zi. The compatibility
function ψ(xi, xj) is a function governing the assumed geo-
metric structure between neighboring nodes, xi and xj . For
acyclic graphs (e.g. chains or trees), the above equations
can be evaluated efficiently through belief-propagation. The
term “belief” simply means a marginal probability that is
computed approximately. Cost of computation is thus re-
duced from brute force evaluation of O(knk) to O(kn2).

2.1. Discrete Belief Propagation
One of the advantages of BP on discrete spaces is that

messages and compatibility functions can be expressed as
arrays. Therefore, computation of message products and
beliefs can be performed using only element-wise product
of arrays and linear algebraic product of two arrays. There
are two different message update rules:

2.1.1 Sum-Product rule

The sum-product rule corresponds to a Minimum-Mean-
Square-Error (MMSE) solution. MMSE yields the cor-
rect posterior marginal probability for graphs without loops.
Even in loopy graphs, it gives correct means for Gaussian
processes [4]. The message mi→j(xi, xj) passing from
node i to j at each iteration is given by

mi→j(xj) =
∑
xi

φi(xi, zi)ψij(xi, xj)
∏

s∈N(i)\j

ms→i(xi)

(3)
whereN(i)\ j means all neighbors of node i except j, φi is
the joint compatibility and ψij is the compatibility function.
The MMSE solution is given by computing an expectation
over the possible state of

xi =
∑
xi

xibi(xi), bi(xi) = kφi(xi, zi)
∏

s∈N(i)

ms→i(xi)

(4)
where bi is the belief at node i and k is a normalizing con-
stant.

2.1.2 Max-Product rule

The max-product rule corresponds to the Maximum a Poste-
riori (MAP) solution. Max-product gives the MAP estimate
for graphs without loops and it finds a local maximum of the
posterior even for non-Gaussian distributions [4]. The mes-
sagemi→j(xi, xj) passing from node i to j at each iteration
is given by

mi→j(xj) = max
xi

φi(xi, zi)ψij(xi, xj)
∏

s∈N(i)\j

ms→i(xi)

(5)
The MAP estimate of belief over the possible states of xi is
determined by

xi = argxi max bi(xi) (6)

3. Mean-shift belief propagation - MSBP
Instead of evaluating all the possible states of our hidden

variable space, MSBP works within a local regular grid of
samples centered at the predicted state. We first resample
the continuous hidden variable space into a regular grid of
samples for each node. This is a standard method in the
context of density estimation [1]. This grid of samples be-
comes a hidden variable space within which BP message
passing is performed to compute a weight (belief) for each
sample. Once weights are computed, mean-shift on the
samples at each node performs hill-climbing to reach a new
predicted state for each node. A new discrete grid of sam-
ples is then generated centered on this predicted state, and
the process repeats. The details of the new MSBP approach
are given below; for concreteness we describe the messages,

compatibility functions and joint compatibility functions in
terms of our multi-target tracking application.

Figure 3. Lattice graph with 9 nodes. Several sample locations of
the kernel are circled. Given a set of sample regions, observation
and compatibility terms are measured by intensity correlation and
distance between nodes.

3.1. Samples
Consider a lattice graph with 9 nodes as shown in Fig-

ure 3. The 2D hidden variable space xi is the (x, y) loca-
tion of the person represented by node i. Let ẋi, {ẋ = (x, y)
|x ∈ xi

1, ...x
i
n, y ∈ yi

1, ...y
i
m} be a set of local samples cen-

tered at the current predicted state for node i. The obser-
vation(joint compatibility) function is computed as normal-
ized correlation between an appearance model of the per-
son and the image patch at sample location (x, y) (Figure
3). Compatibility is a function measuring the pixel dis-
tance between nodes i and j. If the distance between ad-
jacent people is close to a reference model distance, it gives
a high value, while allowing some tolerance. A message
from node 1 to 2 is simply interpreted as node 1’s idea about
where node 2 should be, based on the appearance observa-
tion made in node 1 and the compatibility between nodes
1 and 2. The observations and belief arrays at each node
have size equal to the number of local samples we use to
approximate the continuous hidden variable space.

3.2. Weight
1 To generate the sample weights for mean-shift BP, a

message is built with each weight computed by equation (7)
below. Message passing from node i to node j according to
the sum-product rule is given by

m
(n+1)
i→j (ẋj) =

∑
ẋi

φi(xi, zi)ψij(xi,xj)
∏

s∈N(i)\j

m
(n)
s→i(xi)

(7)
where N(i) \ j means all neighbors of node i except j, φi

is the joint compatibility function, and ψij is the compati-
bility function. Note that sample points and summation are

1The equations presented in this section are identical to BP except that
MSBP works on the grid of local samples representing the hidden variable
space at each node.

restricted to a discrete grid of points within the mean-shift.
After passing of messages according to the message up-

date scheme, the corresponding observation is built with
weights computed by the image likelihood function eval-
uated on each sample. The weight of each sample is com-
puted by equation (8) and the belief of each node is con-
structed. For a graphical intuition of computing weights,
please see Figures 4 and 2. Belief about the state of node j
(probability of state of node j based on the evidence about j
gathered from its neighborhood plus the image observation
at node j) is given by

bi(ẋi) = kφi(ẋi, żi)
∏

s∈N(i)

ms→i(ẋi) (8)

where k is a normalization constant.

Figure 4. Illustration of the 2D MSBP procedure. Instead of eval-
uating a continuous hidden variable space, MSBP works with a
regular grid of samples centered at the current predicted state at
each node.

3.3. Mean-shift on weighted samples
Once the grid of samples and their weights are computed

within the BP framework, the next step is to perform mean-
shift on the set of weighted samples. Mean-shift is per-
formed on the belief array for each node, in the sense that
mean-shift is performed on a weighted grid of samples the
same size as the belief array, where the weight of each sam-
ple is the entry contained in the belief array. The mean-shift
result for each node gives an updated estimate of the mode
of the marginal posterior. The procedure in section (3.1,3.2
and 3.3) is then repeated, centered at the new estimate, until
its convergence. We compute a mean-shift update as

x(n+1) =
∑

iK(xi − x(n))b(xi)xi∑
iK(xi − x(n))b(xi)

(9)

where b(xi) is the weight computed in section 3.2, x(1) is
the initial predicted location, x(n) is the estimated location
after the nth iteration, and xi is a sample inside the mean-
shift kernel K.

MSBP is efficient because it maintains a small set of
samples, and it only has to compute a convolution value at a
relatively small number of points on the path to a local pos-
terior mode. Recall from Figure 2 that instead of looking
at the entire marginal density, MSBP only needs to com-
pute a local window of sample values on the density surface
as it proceeds to the mode. Therefore, the density surface
can be sampled more densely, as well as efficiently. This
more detailed analysis of the surface leads to more accurate
and stable solutions, with the same number of samples, as
compared to DBP (via quantization of the space) or NBP.

3.4. Gaussian Graphical Models

In order to test our MSBP method on a loopy BP prob-
lem that has an analytic solution, we adopt the approach of
Sudderth et al [13] and measure MSBP’s performance on
a Gaussian MRF with a 5 × 5 regular grid and randomly
chosen inhomogeneous compatibility potentials. The goal
of this test is to verify: (1) the convergence of MSBP; (2)
whether MSBP is an unbiased mode estimator; and (3) the
stability of the estimator. To assess (1), the number of iter-
ations needed to achieve steady state is measured. For (2)
and (3), E(m̃s) and V ar(m̃s) are measured for 1000 trials
respectively, where m̃s = (m̂s −ms)/σs, m̂s is estimated
marginal mean, ms is the true mean, and σs is the true vari-
ance.

As can be seen in Figure 5(a), the MSBP algorithm gives
unbiased estimates for the mean, and the standard devia-
tion is very small. This shows that the estimator is stable
and accurate. The variance of the estimate decreases as the
number of samples approximating the local density surface
increases. Although the number of iteration varies depend-
ing on the initial state of each node, MSBP enters into a
steady state after about 20 iterations, as can be seen in the
sample convergence plot in Figure 5(b).

(a) (b)

Figure 5. (a)MSBP performance on a GMRF with a 5 × 5 grid.
The solid line is the mean estimate and the dashed lines are the
standard deviation of the normalized error computed by E(m̃s)
and V ar(m̃s) (b) Sample convergence rate of the MSBP

4. Applications
4.1. Multi-target tracking

In [9], a lattice graph model is used to track multiple
people marching in formation. Good results were achieved
under lighting changes and occlusion. It was also demon-
strated that tracking the formation using a netted collabora-
tive tracker [14] exhibited higher error, which indicates that
the use of graphical models can improve the performance of
multi-target tracking. We adopt the method of [9] to test the
robustness and efficiency of our proposed MSBP algorithm.
For brevity, all the parameters used by our applications are
explained in Section 4.3.

4.1.1 Compatibility (Graph model)

The compatibility function ψ(xi,xj) is a pairwise con-
straint function defined over the structure of the local neigh-
borhood of xi, and is given by

ψ(xi,xj) = exp(−β | d(xci,xcj)−d(xmi,xmj) |)2 (10)

where xci,xcj are random variables indicating the current
position of two neighboring targets, xmi,xmj are constants,
indicating the initial geometric configuration of the targets,
and d(a, b) is the distance between a and b. This compat-
ibility function allows some amount of change in distance
between nodes by treating every link between nodes as an
elastic band. Parameter β adjusts elasticity of the band in
the graph model; if β is higher, the elasticity is lower, and
vice versa.

4.1.2 Joint Compatibility (Observation model)

The observation image likelihood is given by a function of
appearance similarity

φ(xi, zi) = exp(−α(1−zi)), zi = NCC(Ti, I(xi)) (11)

where zi is normalized correlation between a template Ti

and I(xi), a patch of the same size centered at location xi

of the incoming image, and α is a parameter governing the
influence of the observation zi over the lattice model.

4.1.3 Experiment Results

We present experimental results on two sequences where
multiple targets move in a lattice formation. “Crowd Se-
quence” is a medium resolution video taken from an air-
borne camera circling around a set of 9 marchers. The
“Marching Band Sequence” is a low resolution video of
a marching band, shot from a handheld camcorder during
the halftime show of a football game. We have used 30x30
search regions, 100 particles and a 10x10 discrete kernel
(circular) for DBP, NBP and MSBP, respectively. Because

the “Crowd sequence” was taken by an airborne camera, it
has large inter-frame movement as well as changes in view-
point and lighting. Our choice of 30x30 search region for
DBP was deemed to be the minimum size capable of han-
dling the amount of pixel displacement between frames in
the “Crowd Sequence” video.

Figure 6. Timing results of DBP, NBP and MSBP on the Crowd
sequence (note the log scale). Timings are based on 30x30 lo-
cal regions, 100 particles and 69 samples used for DBP, NBP and
MSBP, respectively.

The experimental timings in Figure 6 show that MSBP
is more efficient than DBP and NBP. According to the the-
oretical computation time with respect to the size of the
hidden variable space, NBP should generally be faster than
DBP. However, in this example, the computation needed for
Gibbs sampling offsets the efficiency of the NBP for the
medium size of the hidden variable space. As can be seen
in Figure 7, results of MSBP are better than DBP and NBP
in terms of accuracy as well. In Figure 7, the accuracy of
NBP is the worst. Although formal verification is difficult,
we hypothesize that NBP’s approximate message updates
and message products lead to accumulation of error in the
estimates of the template position.

Each algorithm is also compared in terms of tracking
stability. Liu et al [10] define a pair of regularity mea-
surements for appearance and geometry. We adopt their ap-
pearance regularity measurement, A-score, to compare the
stability of each tracking result. A-score is given by

A =
1
m

m∑
i=1

std([T1(i), · · · , Tn(i)]) (12)

where Tn is a template taken from the estimated target loca-
tion in frame n, and m is the number of pixels within each
template Tn. A lower A-score means more appearance sim-
ilarity among corresponding pixels in the region around the
estimated target location. In our multi-target tracking exam-
ple, a series of templates extracted by each algorithm over
n frames forms the set of templates, T1, T2, · · ·Tn. As can
be seen in Figure 8, stability of MSBP is better than NBP
(see Figure 5 and [13]) and comparable to that of DBP.

Sample tracking results are shown in Figures 9 and 10.
MSBP is used to track members of a marching band and
gives smooth tracking result even in challenging situations

Figure 7. Tracking error compared to ground truth. MSBP is the
most accurate and NBP is the worst. Due to the approximation
error built-up during the tracking procedure, error is cumulative
and tends to increase over time. MSBP has lower RMSE error
than DBP and NBP.

A-score seq1 seq2 seq3
NBP 31.76 36.01 -
DBP 16.11 19.98 17.57

MSBP 16.71 17.35 17.35

Figure 8. Quantitative A-score computed for 3 different sample
sequences with over 300 frames length. Smaller scores are better.

without using any motion prediction model. For more in-
formation, please refer to our website.

Figure 9. (a) Sample frame from tracking 128 marching band
members using MSBP for over 600 frames (b) Sample tracking
result of 110 marching band members using MSBP for over 300
frames. Smaller scores are better.

4.2. 2D articulated body tracking
We also tested our algorithm on a second tracking appli-

cation where the goal is to track human body parts. Given
an approximately known pose, a 2D view of the human
body can be represented by a graphical model as shown in
Figure 11. The model is similar to a loose-limbed body
model where body parts are not rigidly connected but at-
tracted to each other [6, 12]. Each body part is repre-
sented by a node in a tree graph and the hidden variables
we want to infer are 3 dimensional xi = (x, y, θ), repre-
senting image translation (x, y) and in-plane rotation θ. The
attraction between body parts is modeled by a compatibility
function ψ(xi,xj) that tolerates small changes of distance

Figure 10. Tracking using MSBP is robust to occlusion and clutter.
Without using any motion prediction model, the tracker can track
multiple targets successfully under challenging situations such as
this sequence where several rows of marchers pass each other.

between body parts and penalizes large changes. The obser-
vation image likelihood is given by a function of appearance
similarity based on normalized correlation between a body
part’s intensity template model and the tracked body part’s
hypothesized location and orientation in the current image.
The messages are propagated inward to node X0 (Torso),
then propagated outwards again, as can be seen in Figure
11(a).

4.2.1 Compatibility function (Graph model)

The compatibility function ψ(xi,xj) between adjacent
body parts is a pairwise constraint function defined over the
structure of the local neighborhood of xi, and is given by
the same equation (10) used in the multi-target tracking ap-
plication. This compatibility function allows some amount
of change in distance between joints by treating every link
between nodes as a spring. This is natural for any loose-
limbed model because body parts cannot be separated.

4.2.2 Joint Compatibility (Observation model)

The observation image likelihood is given by the same func-
tion of appearance similarity as equation (11), where zi is
normalized correlation of a model template with a patch
centered and rotated in the image according to xi(x, y, θ),
and α is a parameter governing the influence of the obser-
vation similarity zi over the body model.

4.2.3 Experimental Results

A C++ implementation of MSBP and DBP were compared
using the CMU motion of body database [5]. The first frame
has body parts labeled by hand according to the graphical
model from Figure 11. Both algorithms are run on each
subsequent frame until convergence. The current pose is
used as the predicted initial pose for the next frame. Results

(a) (b)

Figure 11. Graphical model representing a loose-limbed body
model. Each body part is a node in the graph. The observation
likelihood function is based on intensity patch correlation, and the
compatibility function penalizes large distances between joints.
(a) Messages are first propagated inward to node X0 (Torso), then
propagated outwards. (b) Joint vectors drawn from the center of
each body part to its joints. For example, each forearm has one
joint vector, each upper arm has two joints (shoulder and elbow)
and the torso has 4 joints.

are shown for two sequences in Figure 13. MSBP outper-
forms DBP in terms of speed and gives equivalent results.
Due to large 3D motion and weak bottom-up cues (only the
template matching), MSBP exhibits some error. As can be
seen in Figure 12, MSBP is about 300 times faster than our
implementation of standard DBP on a hidden variable space
of size 203 for a 486 by 640 image sequence.

Figure 12. Speed comparison by algorithm and resolution, plotted
on a log-CPU time scale. MSBP is approximately 300 times faster
than standard BP with hidden variable space size of 203.

4.3. Parameter Selection
In the context of the mean-shift algorithm, the major pa-

rameter to be selected is the kernel size. There are automatic
methods to select this, but in our application the kernel size
was chosen as half the size of the initial template used for
tracking. For the binsize of the kernel, we choose a size
equal to the image pixel size. The binsize could be big-
ger than one pixel unit for efficiency, but we do not need a
binsize smaller than one pixel because image measurements
exist only at each pixel in our application of interest.

Application-specific parameters for the compatibility
functions are chosen depending on the spacing between tar-

gets or maximum tolerance of change between nodes. The
α parameter governing the tradeoff between model and data
constraints is a parameter seen frequently in vision applica-
tions. A higher value means more sensitivity to the mea-
surement data. We used α = 5 for the first application and
α = 50 for the second. Parameter β governs the expected
elasticity of the geometric placement of nodes; please re-
fer to section 4.1.1 and 4.2.1. In the “Marching Band Se-
quence”, we select β to be 0.1, because it is a low resolution
sequence and target spacing is at most 5 ∼ 6 pixels. How-
ever the crowd sequence is a medium resolution sequence
with larger spacing between each target, thus β = 0.001 is
chosen. In the 2D articulated body tracking case, β = 0.005
is chosen.

Figure 13. Leftmost column shows results of tracking individual
body parts without a graphical body configuration model. All
other frames show results of the MSBP algorithm. The sequence
shown in the second row exhibits large 3D motion. In all cases,
MSBP gives results that are visually equivalent to the standard BP
algorithm (not shown here), while being 300 times faster.

5. Conclusion
We have developed an efficient belief propagation frame-

work(MBSP) for vision tracking. Our method is com-
pared to discrete belief propagation and non-parametric be-
lief propagation in terms of tracking speed, stability and
accuracy. To validate the general applicability of our pro-
posed method, multi-target tracking(2D state space) and 2D
articulated body tracking(3D state space) applications are
shown. The results show that MSBP is efficient and robust,
and outperforms DBP and NBP in terms of accuracy and
stability. Computation time of MSBP in our 2D state space
is 30 ∼ 50 times faster than DBP, while computation time
of MSBP in our 3D state space is about 300 times faster, il-
lustrating the efficiency of MSBP for applications with high
dimensional spaces. Our future work will include theoreti-
cal validation of our proposed method and extension of the

MSBP algorithm to larger and higher dimensional hidden
variable spaces through applications such as 3D body track-
ing.

Acknowledgement This work was partially funded under
NSF grant IIS-0535324 on Persistent Tracking, and NIH
P50-AG05133.

References
[1] D. Comaniciu and P. Meer. Mean shift: a robust approach

toward feature space analysis. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 24(5):603–619, 2002.

[2] J. Coughlan and S. Huiying. Shape matching with belief
propagation: Using dynamic quantization to accomodate oc-
clusion and clutter. In Computer Vision and Pattern Recog-
nition Workshop, p180-180, 2004.

[3] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief
propagation for early vision. International journal of com-
puter vision, 70(1):41, 2006.

[4] W. T. Freeman. Learning low-level vision. International
journal of computer vision, 40(1):25, 2000.

[5] R. Gross and J. Shi. The CMU motion of body (mobo)
database. June 2001.

[6] T. X. Han, N. Huazhong, and T. S. Huang. Efficient non-
parametric belief propagation with application to articulated
body tracking. In Computer Vision and Pattern Recognition
Vol. 1, p214-221, 2006.

[7] M. Isard. PAMPAS: real-valued graphical models for com-
puter vision. In Computer Vision and Pattern Recognition,
Vol. 1, p613-620, 2003.

[8] S. Jian, Z. Nan-Ning, and S. Heung-Yeung. Stereo matching
using belief propagation. IEEE Trans Pattern Analysis and
Machine Intelligence, 25(7):787–800, 2003.

[9] W. Lin and Y. Liu. A lattice-based MRF model for dynamic
near-regular texture tracking. IEEE Trans Pattern Analysis
and Machine Intelligence, 29(5):777–791, 2007.

[10] Y. Liu, W. Lin, and J. Hays. Near-regular texture analysis and
manipulation. ACM Transactions on Graphics, 23(3):368–
376, 2004.

[11] D. Ramanan and D. A. Forsyth. Finding and tracking people
from the bottom up. In Computer Vision and Pattern Recog-
nition, Vol. 1, p467-474, 2003.

[12] L. Sigal, S. Bhatia, S. Roth, M. J. Black, and M. Isard. Track-
ing loose-limbed people. In Computer Vision and Pattern
Recognition, Vol. 1, p421-428, 2004.

[13] E. B. Sudderth, A. T. Ihler, W. T. Freeman, and A. S. Willsky.
Nonparametric belief propagation. In Computer Vision and
Pat. Recognition, Vol. 1, p605-612, 2003.

[14] Y. Ting and W. Ying. Decentralized multiple target tracking
using netted collaborative autonomous trackers. In Computer
Vision and Pattern Recognition, Vol. 1, p939-946, 2005.

[15] Y. Weiss. Correctness of local probability propagation in
graphical models with loops. Neural computation, 12(1):1,
2000.

[16] J. Yedidia, W. Freeman, and Y. Weiss. Understanding be-
lief propagation and its generalizations. International Joint
Conference on Artificial Intelligence, 2001.

