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Abstract

Visual tracking usually involves an optimization process
for estimating the motion of an object from measured im-
ages in a video sequence. In this paper, a new evolutionary
approach, PSO (particle swarm optimization), is adopted
for visual tracking. Since the tracking process is a dynamic
optimization problem which is simultaneously influenced by
the object state and the time, we propose a sequential par-
ticle swarm optimization framework by incorporating the
temporal continuity information into the traditional PSO al-
gorithm. In addition, the parameters in PSO are changed
adaptively according to the fitness values of particles and
the predicted motion of the tracked object, leading to a
favourable performance in tracking applications. Further-
more, we show theoretically that, in a Bayesian inference
view, the sequential PSO framework is in essence a multi-
layer importance sampling based particle filter. Experimen-
tal results demonstrate that, compared with the state-of-the-
art particle filter and its variation-the unscented particle fil-
ter, the proposed tracking algorithm is more robust and ef-
fective, especially when the object has an arbitrary motion
or undergoes large appearance changes.

1. Introduction

Visual tracking has emerged as a central problem in
many applications such as surveillance, vision-based con-
trol, human-computer interfaces, intelligent transportation,
and augmented reality. Recent years have witnessed great
advances in the literature, e.g. the snakes model [1], tem-
plate matching [2], mean shift [3], condensation [4], ap-
pearance models [5], probabilistic data association [6] and
so on.

Most of the existing tracking algorithms can be formed
as an optimization process, which are typically tackled us-
ing either deterministic methods [1, 2, 3, 7, 8, 9] or stochas-
tic methods [4, 11, 12, 13, 14, 15, 16]. Deterministic meth-
ods usually involve a gradient descent search to minimize
a cost function. The snakes model introduced by Kass et

al. [1] is a good example. The aim is to obtain a tight con-
tour enclosing the object by minimizing an energy function.
In [2], the cost function is defined as the sum of squared
differences between the observation candidate and a fixed
template. Then the motion parameters are found by mini-
mizing the cost function through a gradient descent search.
Mean shift, which firstly appeared in [10] as an approach for
estimating the gradient of a density function, is applied by
Comaniciu [3] to visual tracking, in which the cost func-
tion between two color histograms is minimized through
the mean shift iterations. In general, deterministic methods
are usually computationally efficient but they easily become
trapped in local minima. In contrast, stochastic methods in-
troduce some stochastic factors into the searching process
in order to have a higher probability of reaching the global
optimum of the cost function. For example, in [11], object
tracking is viewed as an online MAP (maximum a poste-
rior) problem, which is solved by randomly generating a
large number of particles to find the maximum of the pos-
terior distribution. Bray et al. [12] use the stochastic meta-
descent strategy to adapt the step size of the gradient descent
search, and thus avoid local minima of the optimization pro-
cess in articulated structure tracking. Leung and Gong [13]
incorporate random subsampling into mean shift tracking to
boost its efficiency and robustness for low-resolution video
sequences. Compared with the deterministic counterparts,
stochastic methods are usually more robust, but they suffer
a large computational load, especially in high-dimensional
state space. Although considerable work has already been
done above, a more effective optimization method is still
intensively needed for robust visual tracking.

Recently PSO (particle swarm optimization) [17, 18,
19, 20], a new population based stochastic optimization
technique, has received more and more attentions be-
cause of its considerable success in solving nonlinear, non-
differentiable, multimodal optimization problems. Unlike
other particle based stochastic optimization techniques such
as genetic algorithms, the particles in PSO interact locally
with one another and with their environment in analogy
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with the ’cognitive’ and ’social’ aspects of animal popu-
lations, found in fish schooling, birds flocking, and insects
swarming. Starting from a diffuse population, now called a
swarm, individuals, now termed particles, move about the
search space and eventually cluster in the regions where the
optima are located. The advantages of this mechanism are,
on one hand, the robustness and sophistication of the group
behavior, and on the other hand, the simplicity and low cost
of the computation associated with each particle.

In view of the forgoing discussion, we propose a se-
quential PSO based tracking framework. To the best of our
knowledge, the proposed framework is new in the tracking
literature. The main contributions of this paper are as fol-
lows. The sequential information in the tracking process
is effectively incorporated into PSO method to form a ro-
bust tracking framework, in which any appearance models
can be used. Meanwhile, we show theoretically that, in a
Bayesian inference view, the PSO iterations are essentially
a swarm-intelligence guided multi-layer importance sam-
pling strategy which incorporates the new observations into
a sampling stage, and thus avoids the sample impoverish-
ment problem suffered by the particle filter.

The rest of this paper is structured as follows. A brief in-
troduction to the traditional PSO algorithm is presented in
Section 2. In Section 3, the proposed sequential PSO frame-
work is described in detail. Section 4 presents the proposed
tracking algorithm in the sequential PSO framework. Ex-
perimental results are shown in Section 5, and Section 6 is
devoted to conclusion.

2. Particle Swarm Optimization
Particle swarm optimization, originally developed by

Kennedy and Eberhart in 1995 [17], is a population based
stochastic optimization technique, which is inspired by the
social behavior of bird flocking. In detail, a PSO algorithm
is initialized with a group of random particles {xi,0}N

i=1 (N
is the number of particles). Each particle xi,0 has a corre-
sponding fitness value which is evaluated by the observation
model f(xi,0), and has a relevant velocity vi,0 which directs
the movement of the particle. In each iteration, the ith parti-
cle moves with the adaptable velocity vi,0, which is a func-
tion of the best state found by that particle (pi, for individual
best), and of the best state found so far among all particles
(g, for global best). Given these two best values, the parti-
cle updates its velocity and state with following equations
in the nth iteration (as shown in Fig.1),

vi,n+1 = X (vi,n + ϕ1u1(p
i − xi,n) + ϕ2u2(g − xi,n)) (1)

xi,n+1 = xi,n + vi,n+1 (2)

where ϕ1, ϕ2 are acceleration constants, u1, u2 ∈ (0, 1) are
uniformly distributed random numbers, and X is a constric-
tion factor to confine the velocity within a reasonable range:
||vi,n|| ≤ vmax. In Equation (1), the three different parts

Figure 1. The nth iteration of particle i

represent inertial velocity, cognitive effect and social effect
respectively.

After the nth iteration, the fitness value of each particle
is evaluated by a predefined observation model as follows.

f(xi,n+1) = p(oi,n+1|xi,n+1) (3)

where oi,n+1 is the observation corresponding to the state
xi,n+1. Then the individual best and global best of particles
are updated in the following equations:

pi =

{
xi,n+1, if f(xi,n+1) > f(pi)

pi, else
(4)

g = arg max
pi

f(pi) (5)

In this way, the particles search for the optima (here, as-
suming optimization means maximizing) through the above
iterations until convergence. In PSO algorithm, there are
several parameters to be tuned: constriction factor X , maxi-
mum velocity vmax, acceleration constants ϕ1, ϕ2, the max-
imum number of iterations T , and the initialization of the
particles.

3. Sequential Particle Swarm Optimization
3.1. Motivation

In this section, an interpretation of the tracking process
in a stochastic optimization view is presented to show why
PSO can achieve good performance in tracking applica-
tions.

Essentially, visual tracking is the successive localization
of a specific region in a video sequence. Let’s consider the
following version of the tracking problem: suppose there
is a groundtruth corresponding to the object (food) in the
image (state space) being searched. Suppose a group of
particles (birds) are randomly generated in the image (state
space), and none of the particles (birds) knows where the
object (food) is. But each particle (bird) knows how far it
is from the object (food) by evaluating the observation in
each iteration. What is the best strategy to find the object
(food), and how can the information obtained by each parti-
cle (bird) be used efficiently? The PSO framework, inspired
by the swarm intelligence–birds flocking, provides an ef-
fective way to answer these questions, which motivates us
to design a PSO based framework for robust and efficient
visual tracking.

However, in tracking applications, the data is typically a
time sequence, and hence the task is essentially a dynamic
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Figure 2. Overview of the sequential PSO algorithm

optimization problem which distinguishes it from tradi-
tional optimization problems. In this case, the cost function
is influenced by both the object state and the time, and op-
tima may shift spatially, change both height and shape, or
come into or go out of existence according to the time.

To effectively tackle such a dynamic optimization prob-
lem, we need to answer these questions: a) how to utilize
the temporal continuity information between two consecu-
tive frames, b) how to maintain the diversity of the particles
in the optimization process.

3.2. Sequential PSO Based Framework

Motivated by the above discussion, we propose a sequen-
tial PSO based framework for visual tracking. To give a
clear view, the flowchart of the sequential PSO based frame-
work is schematically shown in Fig.2. First, the individual
best of particles from the previous optimization round are
randomly propagated to enhance their diversities. Then, the
modified PSO with parameters adaptively tuned is carried
out. Finally, an effective convergence criterion is checked
to decide whether the PSO iteration stops or not. There are
three major stages in the sequential PSO based framework:
random propagation, adaptive PSO and convergence crite-
rion, which are described in the following sections.

3.2.1 Random Propagation

When PSO is applied to such dynamic optimization prob-
lems, the major difficulty is the diversity loss of particles
due to the convergence of the previous optimization pro-
cess. Thus, a re-diversification mechanism must be em-
ployed when the particles are propagated to the next image
frame.

An effective re-diversification mechanism needs to know
the prior knowledge of the object motion. In this paper, the
particle set is randomly propagated according to a Gaus-
sian transition model whose mean is the previous individ-
ual best particle and covariance matrix is determined by the
predicted velocity of the object motion.

Given the individual best of particle set {pi
t}N

i=1 con-

verged at time t, the re-diversification strategy is carried out
as follows.

xi,0
t+1 ∼ N (pi

t, Σ) (6)

where Σ is the covariance matrix of the Gaussian distribu-
tion, whose diagonal elements are proportional to the pre-
dicted velocity vpred

t of the optimum at time t.

vpred
t = gt−1 − gt−2 (7)

Meanwhile, the velocity vi,0
t+1 is sampled from the uniform

distribution U(0, vpred
t ).

In our re-diversification strategy, resampling process is
not needed because the individual best of particle set con-
verged at time t provides a compact sample set for propaga-
tion (for the reason, please see the Section 3.2.3). Although
randomly propagation according to the predicted velocity is
simple, it is sufficient because it is only used to produce an
initial value for a subsequent search for the optimal state.

3.2.2 Adaptive PSO

A drawback of the aforementioned version of PSO is the
lack of a reasonable mechanism for controlling the accel-
eration parameters ϕ1, ϕ2 and the maximum velocity vmax

t ,
fostering the danger of swarm explosion and divergence es-
pecially in high-dimensional state space. To overcome this
deficiency, we propose a modified PSO by self-tuning its
parameters, where the acceleration parameters ϕ1, ϕ2 can
be set as follows,

ϕ1 = 2f(pi)/(f(pi) + f(g)) (8)

ϕ2 = 2f(g)/(f(pi) + f(g)) (9)

Compared with the canonical PSO in [17] which con-
stantly sets these parameters to 2, our strategy is more rea-
sonable. Meanwhile, the equations (8)(9) demonstrate that
the preference for the ’cognitive’ part or ’social’ part is de-
termined by their fitness values.

In tracking applications, the maximum velocity vmax

provides a reasonable bound in order to cover the particle’s
maximum motion and prevent the particle from arbitrary
moving. Traditionally, the maximum velocity vmax is set to
a predefined constant. However, it is not reasonable when
the object has an arbitrary motion. Therefore, we propose a
novel scheme for selecting vmax

t based on predicted velocity
vpred

t of the optimum.

vmax
t = 1.2 ∗ vpred

t (10)

So X is set to

X =

{
||vmax

t ||/||vi,n+1
t ||, if ||vi,n+1

t || > ||vmax
t ||

1, else
(11)

In this way, the maximum velocity vmax is heuristically
selected by utilizing the motion information in the previous
tracking process, and thus provides a reasonable limitation
to the moving of particles and a certain capability to absorb
their acceleration.



Figure 3. The convergence criterion of the sequential PSO algo-
rithm
3.2.3 Convergence Criterion

The goal of tracking is to find the object as soon as possi-
ble. It is not necessary for all the particles to converge to the
object. As a result, the convergence criterion is designed as
follows:
f(gt) >Th , where Th is a predefined threshold, and all the in-
dividual best {pi

t}N
i=1 are in a neighborhood of gt, as shown

in Fig.3, or the maximum iteration number is encountered.
According to this criterion, the object to be searched can be
efficiently identified and the convergent particle set {pi

t}N
i=1

provides a compact initialization without sample impover-
ishment for the next optimization process, and the tempo-
ral continuity information can be naturally incorporated into
the sequential PSO framework.

4. A Bayesian Inference Interpretation of Se-
quential PSO

We investigate the sequential PSO in a Bayesian infer-
ence view, and find that sequential PSO is a unified frame-
work which combines the multi-layer importance sampling
and particle filter. The multi-layer importance sampling
stage incorporates the newest observations into importance
sampling process to approximate the ’optimal’ proposal dis-
tribution p(xt|xi

t−1, ot) [21].
To make this paper self-contained, we first briefly review

the standard particle filter and its major limitation, which
are described in more detail in [22]. We then present multi-
layer importance sampling carried out by PSO iterations.

4.1. Standard Particle Filter

Particle filter [22] is an online Bayesian inference pro-
cess for estimating the unknown state xt at time t from a se-
quential observations o1:t perturbed by noises. A dynamic
state-space form employed in the Bayesian inference frame-
work is shown as follows,

state transition model xt = ft(xt−1, εt) ↔ p(xt|xt−1) (12)

observation model ot = ht(xt, νt) ↔ p(ot|xt) (13)

where xt, ot represent system state and observation, εt, νt

are the system noise and observation noise. ft(., .)

and ht(., .) are the state transition and observation mod-
els, which are determined by probability distributions
p(xt|xt−1) and p(ot|xt) respectively. The key idea of par-
ticle filter is to approximate the posterior probability distri-
bution p(xt|o1:t) by a set of weighted samples {xi

t, w
i
t}N

i=1,

Figure 4. An illustration of importance sampling (left: sample
from p(xt|xt−1), right: after PSO iterations )

which are sampled from a proposal distribution q(·), i.e.
xi

t ∼ q(xt|xi
t−1, o1:t), (i = 1, · · ·, N), and then each parti-

cle’s weight is set to

wi
t ∝ p(ot|xi

t)p(xi
t|xi

t−1)

q(xt|xi
t−1, o1:t)

(14)

Finally, the posterior probability distribution is approxi-
mated as p(xt|o1:t) =

∑N
i=1 wi

tδ(xt − xi
t), where δ(·) is the

Dirac function.
The proposal distribution q(·) is critically important for

a successful particle filter since it concerns putting the sam-
pling particles in the useful area where the posterior is
significant. In practice, the dynamic transition distribu-
tion p(xt|xt−1) is usually taken as the proposal distribu-
tion. However, it is unreasonable when p(xt|xt−1) lies in
the tail of p(ot|xt) (as shown in Fig.4). In fact, Doucet
et al. [21] show that the ’optimal’ proposal distribution
is p(xt|xi

t−1, ot). So the question is, how to incorporate
the current observation ot into the transition model to form
an effective proposal distribution in reasonable computation
cost.

4.2. Multi-layer Importance Sampling and Incor-
poration of Measurement

From the above description, we can see that the sequen-
tial PSO is a combination of the PSO iterations and the
particle filtering procedure. Unlike the traditional particle
filter algorithm which directly samples the particles from
state transition distribution, the PSO iterations employed in
our framework is essentially a multi-layer importance sam-
pling stage which progressively updates the sampled parti-
cles based on the newest observations.

Specially, the initial particles in sequential PSO method
are firstly sampled from the transition distribution as fol-
lows.

xi,0
t+1 ∼ N (pi

t, Σ) (15)

In each PSO iteration, the particles are updated according
to the newest observations. The detail of the multi-layer
importance sampling strategy is presented in Algorithm 1.

As shown in Fig.4, the particles directly sampled from
transition model are situated in the tail of the observation
likelihood. In contrast, through the PSO iterations, the par-
ticles are moved towards the region where the likelihood of
observation has larger values, and are finally relocated to
the dominant modes of the likelihood.



Algorithm 1 Multi-layer Importance Sampling

1. Initialization Xt+1 = {xi,0
t+1}N

i=1

2. for n = 0 : T do
3. Carry out the PSO iteration based on Equ.(1)(2)
vi,n+1

t+1 = X (vi,n
t+1+ϕ1u1(p

i
t+1−xi,n

t+1)+ϕ2u2(gt+1−xi,n
t+1))

xi,n+1
t+1 = xi,n

t+1 + vi,n+1
t+1

4. Evaluation of fitness values
f(xi,n+1

t+1 ) = p(oi,n+1
t+1 |xi,n+1

t+1 )
5. Incorporation of the current observations

pi
t+1 =

{
x

i,n+1
t+1 , if f(x

i,n+1
t+1 )>f(pi

t+1)

pi
t+1, else

gt+1 = arg maxpi
t+1

f(pi
t+1)

5. Update the parameters.
6. Check the convergence criterion: if satisfied, break;
7. end for
8. Output the particles set Xt+1 = {xi,n

t+1}N
i=1

5. Proposed Tracking Algorithm
In this section, we introduce the proposed tracking algo-

rithm and demonstrate how the aforementioned sequential
PSO framework is adopted for tracking. Our algorithm lo-
calizes the tracked object in each image frame using a rect-
angular window, and the motion of a tracked object between
two consecutive frames is approximated by an affine image
warping. Specifically, the motion is characterized by the
state of the particle xt = (x, y, θ, s, α, β) where {x, y} de-
note the 2-D translation parameters and {θ, s, α, β} are de-
formation parameters. Moreover, the fitness value of each
particle is evaluated by a spatial constraint MOG (mixture
of Gaussian) based appearance model. In the following
parts, we first introduce the spatial constraint MOG based
appearance model, then give a detailed description of the
proposed tracking algorithm in the sequential PSO based
framework.

5.1. Spatial Constraint MOG Based Appearance
Model

The appearance of the target is modeled by a spatial con-
straint MOG, with the parameters estimated by an online
EM algorithm.

1) Appearance Model: Similar to[5],[23], the appear-
ance model consists of three components S, W, F , where
the S component captures temporally stable images, the W

component characterizes the two-frame variations, and the
F component is a fixed template of the target to prevent the
model from drifting away. However, this appearance model
treats each pixel independently and discards the spatial lay-
out of the target. So it may fail in the case that, for instance,
there are several similar objects close to the target or par-
tial occlusion. In our work, we apply a 2-D gaussian spa-
tial constraint to the SWF based appearance model, whose
mean vector is the coordinate of the center position and the
diagonal elements of the covariance matrix are proportional
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Figure 5. A 2-D gaussian spatial constraint MOG based appear-
ance model

to the size of the target in the corresponding spatial direc-
tions, as illustrated in Fig. 5. Thus the fitness value of par-
ticles can be evaluated by the following appearance model,

f(xt) = p(ot|xt) =

d∏
j=1


N(x(j); xc, Σc) ∗

∑
l=s,w,f

πl,t(j)N(ot(j); µl,t(j), σ
2
l,t(j))




(16)
where {πl,t, µl,t, σ

2
l,t, l = s, w, f} represent mixture prob-

abilities, mixture centers and mixture variances of the
S, W, F components respectively, ot is the candidate region
corresponding to state of particle xt and d is the number
of pixels inside ot. x(j),xc and Σc represent the coordinate
of the pixel j, the center coordinate of the target and the
variance matrix in the spatial space. Here, N(x; µ, σ2) is a
Gaussian density defined as follows.

N(x; µ, σ2) = (2πσ2)−1/2exp

{
− (x − µ)2

2σ2

}
(17)

This spatial constraint appearance model is based on the
assumption that the closer the pixel to the center, the more
important it is for the model representation. Fortunately,
such an assumption is almost satisfied in real applications.

2) Parameter Estimation: In order to make the model
parameters depend more heavily on the most recent obser-
vation, we assume that the previous appearance is exponen-
tially forgotten and new information is gradually added to
the appearance model. To avoid having to store all the data
from previous frames, an online EM algorithm is used to es-
timate the parameters of the S, W, F components as follows.

Step1: During the E-step, the ownership probability of each
component is computed as

ml,t(j) ∝ πl,t(j)N(ot(j); µl,t(j), σ
2
l,t(j)) (18)

which fulfills
∑

l=s,w,f ml,t = 1.

Step2: The mixing probability of each component is esti-
mated as

πl,t+1(j) = αml,t(j) + (1 − α)πl,t(j); l = s, w, f (19)

and a recursive form for moments {Mk,t+1; k = 1, 2} are
evaluated as

Mk,t+1(j) = αok
t (j)ms,t(j) + (1−α)Mk,t(j); k = 1, 2 (20)

where α = 1 − e−1/τ acts as a forgotten factor and τ is a
predefined constant.

Step3: Finally, the mixture centers and the variances are
estimated in the M-step



µs,t+1(j) =
M1,t+1(j)

πs,t+1(j)
, σ2

s,t+1 =
M2,t+1(j)

πs,t+1(j)
− µ2

s,t+1(j)

µw,t+1(j) = ot(j), σ2
w,t+1(j) = σ2

w,1(j)

µf,t+1(j) = µf,1(j), σ2
f,t+1(j) = σ2

f,1(j)

5.2. Sequential PSO Based Tracking Algorithm

Sequential PSO has provided a general and effective
tracking framework. Therefore, we embed the spatial con-
straint MOG based appearance model into this framework
for the fitness value evaluation. The detail of the sequential
PSO based tracking algorithm is presented as follows.

Algorithm 2 Sequential PSO Based Tracking Algorithm

Input: Given the individual best particles {pi
t}N

i=1 at time t;
1. Randomly propagate the particle set to enhance their diversi-
ties according to the following transition model

xi,0
t+1 ∼ N (pi

t, Σ)

where Σ is a diagonal covariance matrix whose elements
are the corresponding variances of affine parameters, i.e.,
σ2

x, σ2
y, σ2

θ , σ2
s , σ2

α, σ2
φ.

2. The fitness value of each particle is evaluated by the spatial
constraint MOG based observation model as follows.

f(xi,n
t+1) = p(oi,n

t+1|xi,n
t+1), i = 1 · · · N, n = 0 · · · T

3. Update {pi
t+1}N

i=1 and gt+1 by the fitness values obtained
above, and update the parameters.
4. Carry out the PSO iteration based on Equ.(1),(2);
5. Check the convergence criterion: if satisfied, continue, oth-
erwise go to step 2;
Output: Global optimum: gt+1;

6. Experiment Results
In our implementation, each candidate image corre-

sponding to a particle is rectified to a 30×15 patch, and the
feature is a 450-dimension vector of gray level values sub-
jected to zero-mean-unit-variance normalization. All of the
experiments are carried out on a CPU Pentium IV 3.2GHz
PC with 512M memory.

6.1. Sequential PSO vs PF and UPF
First, we conduct a comparison experiment among the

SPSO (sequential PSO) based tracking algorithm, a stan-
dard PF (particle filter) and its variation-UPF (unscented
particle filter) [24] on a video with manually labeled
groundtruth. Then, a theoretical investigation is presented
to show why SPSO has advantages over the other two algo-
rithms.

This video sequence1 contains a human face moving to
the left and right very quickly. Although the sequence is
simple, it is effective to show the claimed advantages of
the SPSO framework. In our implementation, the param-
eters in the particle filter and unscented particle filter are set

1The sequence is available at http://vision.stanford.edu/ birch/headtra-
cker/seq/.

to {N = 600, Σ = diag(82, 82, 0.022, 0.022, 0.0022, 0.0022)}
corresponding to the number of particles and the covariance
matrix of the transition distribution respectively. To give
a convincing comparison, the sequential PSO algorithm is
calibrated in the same metric, implementing with the same
covariance matrix and with 60 particles in each iteration.
As shown in Fig.6(a), the particle filter based tracker fails
to track the object at frame 19, because it can not catch the
rapid motion of the object. More particles and an enlarge-
ment for the diagonal elements of the covariance matrix
would improve its performance, but this strategy involves
more noises and a heavy computational load, and it may trap
in the curse of dimensionality when the dimension of the
state increases. Fig.6(b) shows the tracking performance of
the unscented particle filter, from which we can notice that
the tracker follows the object throughout the sequence, but
the localization accuracy is unsatisfactory. In comparison,
our method, which utilizes individual and environmental in-
formation in the search space, never loses the target and
achieves the most accurate results. Furthermore, we have
conducted a quantitative evaluation of these algorithms, and
have a comparison in the following aspects: frames of suc-
cessful tracking, MSE (mean square error) between the es-
timated position and the labeled groundtruth. In table 1, it is
clear that the PF tracker fails at frame 19 while the UPF and
SPSO trackers succeed in tracking throughout the sequence.
Additionally, the SPSO tracker outperforms the UPF tracker
in term of accuracy.

A theoretical investigation shows the underlying reasons
for the above experimental results. The undesired behavior
of particle filter in Fig.6 is caused by the sample impover-
ishment in its particle generation process. Let’s focus on the
frame 19 when the PF tracker loses the target. Here, the par-
ticles are sampled from the Gaussian based transition distri-
bution to catch the object motion. When the object has rapid
and arbitrary motion, the particles drawn from this distribu-
tion do not cover a significant region of the likelihood (as
shown in top-left of Fig.7), and thus the weights of most
particles are low, leading to the tracking failure. As for the
unscented particle filter, the sigma-states are generated by
UT (unscented transformation) and propagated (as shown
in top-right Fig.7), and the weighted mean and covariance
are calculated to form a better proposal distribution, thus
enhancing the tracking performance to some degree. How-
ever, the estimation accuracy of UT is only to the second-
order for non-Gaussian data, which may not be coincident
with actual motion and thus leads to inaccurate localization.
Meanwhile, the generation of sigma-states and the updat-
ing of the covariance are time-consuming. While the SPSO
framework extracts the local and global information in the
particle configuration, and incorporates the newest observa-
tions into the proposal distribution, resulting in a better per-
formance. The bottom row of Fig.7 shows the multi-layer



(a) Particle filter

(b) Unscented particle filter

(c) Sequential PSO
Figure 6. Tracking performances of a human face with rapid motion

Tracking Framework Frames Tracked MSE of Position (by pixels)

PF 18/31 17.069
UPF 31/31 6.975
SPSO 31/31 4.172

Table 1. Quantitative results of SPSO tracker and its comparison with PF tracker and UPF tracker

importance sampling processes in SPSO framework, which
pulls the particles to significant regions of likelihood. As
a result, the SPSO framework can handle this rapid motion
even with a smaller particle number.

6.2. Tracking Results of Different Scenes

In order to further evaluate the performance of the pro-
posed tracking framework, it is tested on three video se-
quences with different environments. The first video se-
quence contains a man walking across a lawn with a
cluttered background, large appearance and illumination
changes. In the second video sequence, a pedestrian walks
with a large pose change (bows down to reach the ground
and stands back up later). Both of these two video se-
quences are taken from moving cameras outdoors. The third
video sequence is a figure skating match, which contains a
figure skater with a drastic motion.

From Fig.8(a), we can see that the online updating
scheme easily absorbs the appearance and illumination
changes, and our tracking framework provides an effective
solution to follow the walking man in the cluttered back-
ground, because the sequential PSO framework is very ef-
fective at finding the global optimum. Fig.8(b) shows the
result of tracking the walking pedestrian, demonstrating the
effectiveness of our framework in tracking the large pose
changes. A tracking result of the figure skater with ag-
ile motions is shown in Fig.8(c), which demonstrates that
our algorithm has the ability to track the object where large
movements exist between two successive frames.

7. Conclusion

A new sequential particle swarm optimization frame-
work for visual tracking has been proposed in this paper.
The sequential information required by the tracking process
is incorporated into the modified PSO to make this swarm
technique properly suited for tracking. In addition, we have
reformulated the SPSO framework in a Bayesian way, and
found that it is essentially a multi-layer importance sam-
pling based particle filter. Furthermore, this framework has
been naturally extended to multi-object tracking as multi-
modal optimization. In experiments, the sequential PSO
based tracker is compared very favorably with the particle
filter and the unscented particle filter, both in terms of accu-
racy and efficiency, demonstrating that the sequential PSO
is a promising framework for visual tracking.

In summary, the sequential PSO provides a more rea-
sonable mechanism and an more effective way to tackle
the dynamic optimization problems than sequential Monte
Carlo methods. So it has many other potential applications
in computer vision, including image registration, template
matching and dynamic background modeling.
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