
3D Occlusion Recovery using Few Cameras

Mark Keck James W. Davis

Dept. of Computer Science and Engineering

The Ohio State University

Columbus, OH 43210

{keck,jwdavis}@cse.ohio-state.edu

Abstract

We present a practical framework for detecting and mod-

eling 3D static occlusions for wide-baseline, multi-camera

scenarios where the number of cameras is small. The frame-

work consists of an iterative learning procedure where at

each frame the occlusion model is used to solve the voxel

occupancy problem, and this solution is then used to update

the occlusion model. Along with this iterative procedure,

there are two contributions of the proposed work: (1) a

novel energy function (which can be minimized via graph

cuts) specifically designed for use in this procedure, and

(2) an application that incorporates our probabilistic oc-

clusion model into a 3D tracking system. Both qualitative

and quantitative results of the proposed algorithm and its

incorporation with a 3D tracker are presented for support.

1. Introduction

Detection and tracking are two very important problems

to the surveillance community in the computer vision field.

It is widely known that one of the biggest challenges when

dealing with these problems is handling occlusion. The

presence of occlusion in imagery will often lead to poorer

detection performance [16]. Similarly in tracking, if the

tracked object moves behind an obstruction, the tracker will

often lose the object completely and not be able to recover.

Because occlusions can be such a hindrance to trackers,

there have been many methods proposed in the literature for

dealing with them. Some trackers focus on reasoning about

dynamic occlusions [7, 10, 15], which occur when one fore-

ground object occludes another foreground object. How-

ever, these trackers tend to have difficulty with full static

occlusions (i.e. when a foreground object is occluded by a

background object) because they are often based on back-

ground subtraction.

Another way to deal with occlusion is to add multiple

views to a scene and track in 3D. 3D tracking affords many

advantages. For example, 3D tracking offers a way to reg-

ister a real-world scene with a virtual model (e.g. georeg-

istration). However, even if cameras are deployed wisely,

trackers that reason well about dynamic occlusions still suf-

fer when static occlusions occur in multiple views.

This inadequacy necessitates the modeling of static oc-

clusions for tracking systems. In this work we propose a

method for recovering a static 3D occlusion model for a

particular scene. We assume a wide-baseline configuration

of few (= 3) static cameras because surveillance systems

can rarely afford to put a large number of cameras in a sin-

gle area, especially with small baselines. We refer to this as

our real-world assumption. To deal with this small number

of cameras, we do not attempt to reconstruct the occluding

structures, but instead detect occluded areas in 3D, which,

as we will show, is still robust even with few cameras.

Specifically, our proposed algorithm performs an itera-

tive procedure which learns the occluded areas in each of

the camera views by first solving the voxel occupancy prob-

lem via graph cuts. We introduce a novel energy function

in the graph cut formulation that is specially designed to

reconstruct foreground objects that are occluded in some

camera views by utilizing the learned occlusion model. This

solution to the voxel occupancy problem is then used to up-

date the occlusion model for the next iteration, similar to

the EM algorithm. We finally show an application that in-

corporates the occlusion model into a tracking algorithm to

improve results.

The rest of the paper is organized as follows. An in-

depth investigation of related work is supplied in Sect. 2.

An overview of the algorithm is provided in Sect. 3. We

describe our experimental evaluation and discuss results in

Sect. 4. We offer concluding remarks and future directions

for this research in Sect. 5.

2. Related Work

Occlusion recovery is a problem that has been studied

in both cognitive and computer vision fields. Classically

occlusions in images have been identified by finding T-

1

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

junctions, popularized by [2]. T-junctions in single images

are a very powerful cue for finding occluding contours and

are still often employed to recover occluding boundaries

in multiple cameras [1, 3]. As strong as T-junctions can

be, practical implementations are still a challenge as reli-

able extraction of the features and matching among mul-

tiple views (especially wide-baseline views) are both still

difficult problems.

Because of this, other cues have also been used to find

occlusion boundaries and regions in images, such as in [8]

where the effective boundary of an object is defined and ev-

idence is accumulated over time to find the exact occlud-

ing boundary. These occluding regions are found in im-

age space instead of 3D, and are used to reconstruct visual

hulls [12] in the presence of partial occlusions. Further,

in [9] these same authors fully recovered the 3D structure

of occlusions in the scene by modeling p(O|I,B), the pos-

terior probability of a voxel being an occluder given a video

sequence I and a background model B. Occlusions are dis-

covered by maximizing this posterior. Although [9] has a

similar goal to the proposed work, it isn’t exactly the same.

The authors there are reconstructing occluding structures,

which is possible with a large number of cameras (9 in their

experiments), while we are only modeling the probability

that a particular voxel is being occluded in a particular view,

which is feasible with few cameras.

We think it is also important to cite relevant tracking al-

gorithms that explicitly model occlusions. Some algorithms

like [7, 10, 15] are more concerned with dynamic occlusion

reasoning than recovering static occlusions. Other algo-

rithms model static occlusions for object tracking (e.g. [21]

uses motion layer estimation to find occluding layers), but

generally these approaches are done in image space and are

difficult to extend to 3D.

To overcome some of these limitations we propose an al-

gorithm which will directly model occlusions in a 3D space.

The algorithm is an iterative procedure that at each frame

first solves the voxel occupancy which then feeds back into

the system by updating the occlusion model. Because the

algorithm is not attempting to reconstruct the occluding

objects, and only modeling which areas are occluded and

which are not, over time it is able to reliably identify these

areas, even with very few cameras.

3. Algorithm

We start by defining our problem mathematically. We as-

sume a scene with M overlapping views that are calibrated.

We then generate a voxel lattice in the calibration space that

has dimensionsN = nx×ny×nz and enumerate the voxels

from 1 to N .

With this voxel lattice, we define a binary random vari-

able Oi
j over the lattice that takes on value 1 if voxel j is oc-

cluded when projected into view i and 0 otherwise. We de-

note the probability over the random variable asP (Oi
j = b),

where b ∈ {0, 1} is a binary constant. In the remainder of

this paper, for brevity we will use the notation P (Oi
j) for

P (Oi
j = 1) as it is obvious that P (Oi

j = 0) = 1 − P (Oi
j).

Our goal is to estimate this distribution per voxel to deter-

mine which voxels are occluded in each view.

We estimate these probabilities using an iterative, EM-

style framework. The algorithm operates on a video se-

quence, and at each incoming frame, it first solves the voxel

occupancy problem via a specialized graph cut approach

which takes into account the current probabilistic occlusion

model. We then update the occlusion model using this so-

lution. We specify details in the following subsections.

3.1. MRF Solution with Occlusion Model

In this section we discuss our solution to the voxel oc-

cupancy problem, which is an MRF formulation that takes

advantage of the explicit occlusion model.

We first remind the reader of the voxel occupancy prob-

lem. The goal is to determine which voxels in a lattice are

occupied at a given frame. It is analogous to the foreground-

background segmentation problem in 2D space. The prob-

lem is often solved by finding the visual hull [12], and over

the past five years graph-based solutions like [19] have be-

come more popular as they allow fuzzy local decisions that

are resolved by a global energy minimization. The min-

imization is done by constructing a Markov Random Field

(MRF) and finding the min-cut on the graph which separates

the voxels into two mutually exclusive sets, one which cor-

responds to the “on”-voxels and one which corresponds to

the “off”-voxels. This approach has two advantages: (1) it

does not force the algorithm to make difficult decisions at

each voxel, and (2) it naturally incorporates dependence of

neighboring voxels into the energy minimization formula-

tion.

When solving a labeling problem with an MRF, the typi-

cal approach is to maximize the posterior distribution of the

labeling given the data, denoted P (L|D), by recognizing

that it is proportional to the likelihood of the data times the

prior of the labeling:

P (L|D) ∝ P (D|L)P (L) (1)

The optimal labeling L∗ is defined as the labeling which

maximizes the product

L∗ = arg max
L

P (D|L)P (L) (2)

The heart of the problem then lies in modelng these two

distributions, the first being the likelihood of the data given

the labeling, and the second being the prior of the label-

ing P (L). This is often transformed into negative log-

likelihood space for numerical stability:

L∗ = arg min
L

− lnP (D|L) − lnP (L) (3)

We now describe how we model these terms in our frame-

work. We would like to note that there are some similari-

ties between our approach and the approach to foreground-

background segmentation in [17], as we both model fore-

ground and background likelihoods for input into an MRF.

However, the proposed energy function is different to ac-

count for our explicit occlusion model, and further our seg-

mentation problem is in 3D, not image space.

3.1.1 Voxel Likelihood

To estimate the likelihood of the observed data given a

particular voxel, we model both the foreground and back-

ground likelihoods in the images where that voxel projects.

We create a background model Bi where i = 1, . . . ,M for

each camera view. In this work we assume that the back-

ground is a single Gaussian in RGB color space with a diag-

onal covariance matrix. Therefore the likelihood of a voxel

being generated by this distribution given that its label is 0

(i.e. Lj = 0) is given by:

PB(di
j |B

i) ∝ exp

(

−
1

2
(di

j − b
i
j)

⊤Σ−1(di
j − b

i
j)

)

(4)

where d
i
j is an RGB 3-vector in image i where voxel j

projects, and b
i
j is the RGB 3-vector to the correspond-

ing pixel in the background model for image i. We can

also model the likelihood that a voxel belongs to the fore-

ground. We will model this as a uniform distribution, intu-

itively meaning that we assume all colors are equally likely

to appear as part of a foreground object. We denote this uni-

form distribution as constant γ = 1/(R×G×B) where R,

G, and B are the number of possible colors in each of the

bands (in this case R = G = B = 256).

Up to this point we have ignored the information we

have from the occlusion model. We can improve our es-

timate of the foreground likelihood with this information.

If it is known that a voxel is very likely occluded in im-

age i, then it is also highly probable that the projection of

that voxel into image i will resemble the appearance of the

background model, even if the voxel is truly occupied. We

can incorporate this knowledge into our foreground model

in the following way:

PF (di
j |F

i,Bi) = P (Oi
j)PB(di

j |B
i)+

[

1 − P (Oi
j)

]

γ (5)

where PB(di
j |B

i) is given by Eqn. 4. By the same reason-

ing, the occlusion model will not alter the background like-

lihood function PB . We incorporate this occlusion model

expecting that in cases where we think something is very

likely occluded in a given view, it can still be labeled as

foreground if the other views label the voxel as likely to be

in the foreground.

With these two likelihood functions, we can rewrite the

first factor of Eqn. 2 as:

P (D|L) =

N
∏

j

M
∏

i

PB(di
j |B

i)1−LjPF (di
j |F

i,Bi)Lj (6)

3.1.2 Labeling Prior

To model the prior in Eqn. 2, in these types of image label-

ing problems one often chooses a predefined prior P (L). A

popular choice is the Ising model, which preserves disconti-

nuities while still filling in the noisy gaps of the reconstruc-

tion:

P (L) = exp

∑

i<j

λ [LiLj + (1 − Li)(1 − Lj)]

(7)

where i and j are neighboring nodes in the graph and λ
is a system parameter, usually a small positive number. In

our case on the lattice, these are the six-connected neigh-

bors in the x, y, and z directions. This model gives a

higher likelihood to labelings that are smooth (i.e. neighbors

usually have the same label). However, it is limited as it

gives all connections the same weight, namely λ. We again

could improve this function by including scene knowledge.

Specifically, we would like to increase the likelihood of as-

signing two voxels the same label when they are neighbors

and they are in the “same” image region. We adopt this

idea because we don’t want these occluded regions to bleed

through the boundaries of edges of the objects in the im-

ages, as it is likely that an occluding region will have the

same color/texture since the region is likely a single object.

To this end, we only allow this increase in likelihood if two

regions are part of the same object in a particular image.

To define “same”, we perform an image segmentation

on the background image. We first perform a nonlinear

smoothing of the image based on [13], extended for color

images. This will result in a smoothed color image that re-

spects edges and does not smooth over them. We then per-

form a mean shift segmentation[5] on the smoothed image.

Our modified Ising model then becomes

P (L) = exp

∑

i<j

[

M
∑

k

λδ(Sk
i ,S

k
j)

]

(8)

There are several symbols to define for this equation. First,

λ is again a small positive constant. The function δ(·, ·) is

the delta function, which returns 1 if the two arguments are

the same and zero otherwise. Finally, Sk
i is the segment in

image k to which the projection of voxel i belongs.

Now we can rewrite Eqn. 3 in terms of our likelihood

Figure 1. Top row: the layout of the BALL experiment. There are two large obstructions in the scene we wish to extract. Middle row:

results of our method. Bottom row: cumulative background subtraction results on this sequence.

and prior.

L∗ = arg min
L

N
∑

i

Ei(Li) +
∑

i<j

Eij(Li,Lj)

 (9)

where

Ei(Li) =

M
∑

j

− lnP (di
j |B

i)1−LjP (di
j |F

i,Bi)Lj (10)

and

Eij(Li,Lj) = −

[

M
∑

k

λδ(Sk
i ,S

k
j)

]

(11)

We write these in the form of Eqn. 9 to show that this

log-likelihood indeed an element of the F2 class of energy

functions defined in [11]. It also satisfies the regularity con-

dition. Given this, we can optimally solve our labeling prob-

lem via graph cuts. We use the graph construction provided

in [11] to build the graph based on our energy function, and

minimize it using the standard push-relabel max flow algo-

rithm to find the min-cut solution to our voxel occupancy

problem.

After solving the voxel occupancy problem, we perform

a 3D connected component algorithm and remove small

components (those with less than 20 voxels) to remove spu-

rious noise, which is analogous to removing small regions

after background subtraction. We would also like to point

out that we are reconstructing the visual hull in the presence

of partial, and even full, occlusion in the imagery, solving

the same problem as [8] in a different manner.

3.2. Occlusion Model Update

With the solution to the voxel occupancy problem we can

update our occlusion model. Up to this point, we have just

assumed that we have some occlusion model O at time t.
Specifically what we store are two numbers. The first is the

value P (Oi
j) for each voxel j in each view i, given a total

of N ×M probabilities.

We also keep track of the number of times a particular

voxel has been labeled as “on” by the min-cut algorithm,

which we will denote αj for each voxel j. Given these two

numbers we update P (Oi
j) as follows. We first get a fore-

ground mask by thresholding the background subtraction

results for each frame. We then project each “on” voxel

from our min-cut solution into these foreground masks. For

each projection, if the voxel j projects to an “on” pixel in

foreground i, then we update by the rule

P (Oi
j) =

P (Oi
j)αj

αj + 1
(12)

and if it projects to an “off” pixel, we assume that voxel j is

occluded in view i, and we update the occlusion model by

the rule

P (Oi
j) =

P (Oi
j)αj + 1

αj + 1
(13)

After each of the occlusion probabilities are updated, we

then increment αj for each voxel labeled as “on”. Intu-

itively, we are just keeping track of both the number of

times the voxel has been occupied, and also how many of

those times it was not in the foreground in each view. This

estimates the probability with which we believe a voxel is

occluded in each view.

This process then iterates over all frames of a sequence,

incrementally improving the estimate of the occlusion with

every frame. We note it has a similar motivation to [4],

as we refine our estimate across time due to the lack of

cameras, except again our algorithm is not doing a full 3D

50

100

150

200

Figure 2. Top row: the layout of the BIG ZERO experiment. Bottom row: results on this video sequence.

reconstruction of the occluding structure. In the follow-

ing sections we provide experimental results to support our

method.

4. Experiments

To test the proposed method, we applied to three

datasets, each of which consisted of a sequence of video

captured from three Sony Handycam hand-held video cam-

eras always at half (320×240) resolution. First we captured

an indoor video sequence to show proof of concept. We

then deployed the three cameras at two different locations

outside on a university campus. Each of the two locations

had at least one large occlusion visible in each view.

In all cases, we started by manually selecting around 30

points in each of the camera views to calibrate the scene

using the method from [14]. We then created a voxel oc-

cupancy lattice in this calibrated space of dimension nx =
ny = nz = 60 giving a total of 216,000 voxels in each

lattice. We implemented our min-cut solution by utilizing

the max flow algorithm that is available in the Boost Graph

Library [18].

4.1. Indoor BALL Experiment

The layout of our first experiment can be seen in Fig. 1.

We have three views of a scene in which two large lego-built

structures occlude different portions of each view. With

the cameras deployed, we captured video through a Matrox

Morphis Quad at a rate of ∼20 Hz for about six minutes,

resulting in a total of 7630 frames. Because our model

of occlusion is based on activity, we inserted a “Weazel

Ball” (an autonomous pet toy) into the area and allowed

it to roll around the scene on its own during the capture

time. The learned occlusion model is shown in the middle

row of Fig. 1. We created these images by raytracing each

pixel and determining if that pixel intersected a voxel that

has a high probability of occlusion (i.e. P (Oi
j) ≥ .999).

We again did not allow 3D regions with size less than 20

voxels. If the pixel does intersect with such a voxel, it is

colored white. Edges in the background image are colored

black, and all other areas are colored gray.

One can see that most of the occluding structure is col-

ored white and nothing else in the scene is found as an oc-

clusion, but that some areas of the occluding structures are

not recovered. However, one must keep in mind that our

approach is driven by activity in the scene. When one con-

siders that the ball is a rather small item (it is not as tall

as the structures), we have recovered almost everything we

can from the scene. Still, for a quantitative analysis of our

results, we first reconstructed the visual hulls of the occlud-

ing structures to serve as ground truth, and then created per-

view depth maps by raytracing this ground truth with the

camera calibration matrices. Using this ground truth, we

project all voxels that have been labeled as “on” at least

ψmin times into each of the three views. This will discount

areas that have rarely been occupied by the ball. In our ex-

periments ψmin = 20.

With the voxels projected to corresponding pixels, we

then compute the confusion matrix. We define a true posi-

tive as a voxel v that is labeled as occluded by our algorithm

and is projected onto a pixel pi
v in view i such that the depth

map at pi
v is less than the depth voxel v. True negatives,

false positives and false negatives follow similarly. Again,

we consider a voxel as labeled occluded in view i by our al-

gorithm if P (Oi
v) ≥ .999. Doing this we get an F-measure

of .8170, suggesting that we are effectively discriminating

between occluded and visible areas when enough activity

has taken place in the monitored scene.

For comparison to our results, we display binary images

showing cumulative background subtraction results in the

bottom row. Pixels that are white in this image are those

pixels that were found in the foreground at leastψmin times.

The black pixels are therefore those pixels that either oc-

cluded something or were not active at least ψmin times

(the ball rarely rolled into that area). We can see that the

areas found in our result images correspond to those areas

that are black in the bottom row that correspond areas that

are both occluded and have had at least a minimal amount

of activity, which supports our method.

4.2. BIG ZERO Sequence

To further demonstrate the effectiveness of the method,

we also captured data from two outdoor scenarios. In the

first scenario we set up three cameras around a large zero

shaped structure on campus. The three cameras all have

very different views of the structure, with one looking di-

rectly at it. The views can be seen in Fig. 2 on the top row.

In this sequence we captured from the three cameras at real

time, synchronizing the video post-capture, and ended up

with 10620 frames.

The results are shown on the bottom row, with the white

pixels being those which have some occlusion found along

their line of sight. We can see in large part that even here

in the outdoor scenario our algorithm is able to recover a

great deal of the occluded areas that it possibly can, as the

top part of the structure is not recoverable (there are no vox-

els behind it that are ever occupied in the entire sequence).

However, as shown, there is more noise outdoors than in-

doors. This noise is attributed to two factors.

The first factor is the presence of shadows and highly

varying lighting conditions. For instance in the lower right

area of the third view, next to the large structure, there is

some noise that shows up as false positives. This problem

exists because, due to the location of the sun, the shadows

of the people in the scene near the structure are consistently

cast in that area of the image. These areas actually would

have been removed, but they are too small for people to oc-

cupy. A similar effect happened in image 1, but the regions

were small enough so that the connected component algo-

rithm could remove them on the lower right side, and left

only a small amount of noise on the lower left.

The other factor that significantly contributed to noise

was poor background subtraction results in view two. A

sample background image is provided on the top row on the

far right of Fig. 2. There were many frames with this same

effect, which led to the small amount of noise in image two

(false positives), although some noise voxels were removed

via connected components. This also had somewhat of an

effect on the false negatives at the edge of image 3, where

some of the zero structure was missed. This was because

background subtraction failed in view 2 very often, and this

particular area was usually occluded in both views 2 and 3.

Therefore this area was very difficult to reconstruct.

On the other hand, the method is able to extract the large

parts of the structure but leave out the inner area both in

views 1 and 3, lending the method credibility even in an

outdoor scenario with as few as 3 cameras. Note that the

method is easily extendible to more than 3 cameras, but

because we are primarily concerned realistic scenarios we

have limited ourselves to 3. In the case of more cameras,

we could only expect the results to improve as the visual

hulls will become much crisper and produce less noise. We

also illustrate the effectiveness of using the new smooth-

ness term by comparing to Fig. 2, at the lower right. One

can see that much of inside of the structure is marked as

occluded, again because this model does not respect seg-

mentation boundaries.

4.3. ARCHITECTURE Sequence

The final test location was chosen to see how the algo-

rithm would perform in an outdoor area with multiple oc-

clusions in each view during a time of natural pedestrian

traffic. Here we had around 12-14 pedestrians come into

the monitored area instead of just our actors. We wished to

test this scenario because it is well known that as the number

of foreground objects increase, the reliability of the visual

hull algorithm decreases significantly when using a small

number of cameras. To accomplish this we deployed our

cameras near a busy campus building that has three large

columns at one end of the edifice and again captured half-

resolution video for about six minutes resulting in just over

11000 frames. We refer to this experiment as the ARCHI-

TECTURE experiment, and the three views can be seen in

Fig. 3, again with the results depicted below the views.

The third experiment again demonstrates how the ap-

proach, over time, learns occluded areas and tends not to

generate many false positives. In the first view we can see

that the occlusions are recovered very accurately, especially

for having so few cameras. The second and third views are

also show much of the occluded areas recovered, with some

false positives. Similar to the BIG ZERO experiment, back-

ground subtraction played a part in some of the false nega-

tives we see in these images. Because the first image has a

large dark window area in the background, and many people

are wearing fairly dark clothes, we have quite a few misses

in background subtraction. This is the reason there is a gap

in the center column in the second view. Similarly, there are

misses in the third view on the rightmost column, where we

get the top area of the column (where a pedestrian’s head

would be) but the bottom area is missed.

Even with these errors, the method delivers some very

compelling results for and outdoor scenario with quite a

few pedestrians and only three wide-baseline cameras from

which to extract information.

4.4. Application to Tracking

There are a number of applications for an occlusion

model like the one proposed here. For instance, one could

use this to ignore certain areas in an image when solving

the object detection problem. Or as in [8], the occlusion

model could be used to recover visual hulls from partially

occluded silhouette images. We actually already solved this

problem with our MRF as we can reconstruct areas that are

even fully occluded in one view because of our novel energy

function.

Figure 3. Top row: the layout of the ARCHITECTURE experiment. Bottom row: results on this video sequence.

We would also like to show how a 3D model like this one

could be integrated into a 3D tracking algorithm. For this

purpose, we implemented a version of the tracker in [20].

This tracker is a 3D version of the mean shift tracker pop-

ularized by [6]. We will discuss the parts of the tracker

modified for occlusion reasoning here, but refer the reader

to [20] for further details.

To extend mean shift to 3D, [20] uses a feature fusion

approach by combining information from all cameras in the

3D space. They extend the mean shift equation to by sam-

pling 3D points, and weighting these 3D points by a kernel

which takes into account these fused features. We further

extend the method by adding a factor to this weighting term:

q̂u = C

N
∑

i=1

∑

Vj∈N (0)

ϕi(Vj , u)k(Vj)w
i
j (14)

p̂u(X) = D

N
∑

i=1

∑

Vj∈N (X)

ϕi(Vj , u)k(Vj − X)wi
j (15)

where Vj is voxel j, N (X) denotes the neighborhood of X,

ϕi(·, u) evaluates to 1 only if the voxel argument projection

in view i corresponds to color bin u in the histogram, and C
and D are normalization constants. These are the standard

equations from the original mean shift paper and the 3D

version. There is only one change. It is the function wi
j :

wi
j = 1 − P (Oi

j) (16)

The standard feature fusion approach adds all histograms

with equal weight, which is what makes it robust to rota-

tions of the object in space. However, when an object be-

comes occluded, especially in more than one view, feature

reliability can become an issue. However, in our algorithm,

when we know a feature is occluded in a particular view, we

weight it much lower than the original algorithm, allowing

the feature fusion approach to ignore faulty data. That is

exactly what this weight term wi
j accomplishes.

We show qualitative results in Fig. 4. Due to space rea-

sons, we include only 2 sequences, showing only the oc-

cluded camera view. The original tracker is depicted as the

yellow dot inside a red circle, and the new tracker is de-

picted as the green dot inside the blue circle. From this

figure, we can see where the occlusion model can signif-

icantly increase the performance under full occlusion in a

view, and justifies the motivation of the approach by show-

ing its applicability in a real world scenario. In the first

frame, the trackers are seen lined up with one another, but

as time goes forward, we see that when faced with full oc-

clusion in one of the views, tracker performance can suffer.

However, when using our occlusion model, the tracker can

overcome the occlusion problem and recover by following

the tracked object all the way behind the large pillar by ig-

noring the corrupted information from the faulty view.

5. Conclusion and Future Work

In this paper we presented a method for modeling 3D oc-

cluded areas that is effective even when the number of cam-

eras is small the environmental conditions are imperfect.

The paper’s main contributions are an iterative method to

recover these occluded areas, which itself includes a novel

energy function specifically designed to recover these 3D

regions. Further, we have discussed two applications for

which our method could be used to improve results, the

first being 3D reconstruction under occlusion, and the sec-

ond being a simple extension of a 3D tracker which fuses

features from multiple cameras. Experimental results were

provided in all cases to support our method.

In the future we would like to extend our method to re-

cover 3D occlusions themselves by growing our occluded

regions in images, and then reconstructing these regions.

We would also like to integrate the probabilistic model into

other trackers on a deeper level, and see how much results

can be improved in both single camera and multi-camera

tracking. We would also like to integrate a dynamic occlu-

sion reasoner in with this static model, resulting in a track-

ing system that is robust to both types of occlusions.

Frame 1978 Frame 2025 Frame 2040 Frame 2058

Frame 7837 Frame 7880 Frame 7895 Frame 7940

Figure 4. Tracker performance from two sequences in the ARCHITECTURE dataset.

Acknowledgments

We would like to thank Ambrish Tyagi and Vinay

Sharma for many stimulating discussions and feedback dur-

ing the production of this manuscript.

References

[1] N. Apostoloff and A. Fitzgibbon. Learning spatiotemporal

T-junctions for occlusion detection. In Proc. Comp. Vis. and

Pattern Rec., pages 553–559, 2005.

[2] I. Biederman. Recognition-by-components: A theory of

human image understanding. Pyschological Review, pages

115–147, 1987.

[3] A. Broadhurst and R. Cipolla. The applications of uncali-

brated occlusion junctions. In Proc. Brit. Mach. Vis. Conf.,

pages 245–254, 1999.

[4] G. Cheung, S. Baker, and T. Kanade. Visual hull align-

ment and refinement across time: A 3d reconstruction algo-

rithm combining shape-from-silhouette with stereo. In Proc.

Comp. Vis. and Pattern Rec., 2003.

[5] D. Comaniciu and P. Meer. Mean shift: A robust approach

toward feature space analysis. IEEE Trans. Patt. Analy. and

Mach. Intell., may 2002.

[6] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object

tracking. IEEE Trans. Patt. Analy. and Mach. Intell., may

2003.

[7] S. Dockstader and A. M. Tekalp. Multiple camera fusion

for multi-object tracking. In Proc. of the IEEE Wkshp. on

Multi-Object Tracking, 2001.

[8] L. Guan et al. Visual hull construction in the presence of

partial occlusion. In 3rd Int’l. Symp. on 3D Data Proc., Vis.,

and Transmission, 2006.

[9] L. Guan, J.-S. Franco, and M. Pollefeys. 3D occlusion infer-

ence from silhouette cues. In Proc. Comp. Vis. and Pattern

Rec., 2007.

[10] Y. Huang and I. Essa. Tracking multiple objects through oc-

clusions. In Proc. Comp. Vis. and Pattern Rec., 2005.

[11] V. Kolmogorov and R. Zabih. What energy functions can

be minimized via graph cuts? IEEE Trans. Patt. Analy. and

Mach. Intell., February 2004.

[12] A. Laurentini. How far 3d shapes can be understood from

2d silhouettes. IEEE Trans. Patt. Analy. and Mach. Intell.,

17(2):188–195, 1995.

[13] P. Perona and J. Malik. Scale-space and edge detection using

anisotropic diffusion. IEEE Trans. Patt. Analy. and Mach.

Intell., July 1990.

[14] M. Pollefeys et al. Visual modeling with a hand-held camera.

Int. J. of Comp. Vis., 59(3):207–232, 2004.

[15] A. Senior et al. Appearance models for occlusion handling.

In Proc. Int. Wkshp. on Perf. Eval. of Tracking and Surveil-

lance, 2001.

[16] V. Sharma and J. W. Davis. Integrating appearance and mo-

tion cues for simultaneous detection and segmentation of

pedestrians. In Proc. Int. Conf. Comp. Vis., 2007.

[17] Y. Sheikh and M. Shah. Bayesian object detection in dy-

namic scenes. In Proc. Comp. Vis. and Pattern Rec., pages

74–79, 2005.

[18] J. G. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph

Library: User Guide and Reference Manual. Addison-

Wesley, Reading, MA, 2001.

[19] D. Snow, P. Viola, and R. Zabih. Exact voxel occupancy

with graph cuts. In Proc. Comp. Vis. and Pattern Rec., pages

345–352, 2000.

[20] A. Tyagi et al. Fusion of multiple camera views for kernel-

based 3D tracking. In Proc. Wkshp. Motion and Video Com-

puting, February 2007.

[21] Y. Zhou and H. Tao. A background layer model for object

tracking through occlusion. In Proc. Int. Conf. Comp. Vis.,

2003.

