
   
 
 

 
Abstract 

 
Most existing camera placement algorithms focus on 

coverage and/or visibility analysis, which ensures that the 
object of interest is visible in the camera’s field of view 
(FOV).  However, visibility, a fundamental requirement of 
object tracking, is insufficient for persistent and automated 
tracking.  In such applications, a continuous and 
consistently labeled trajectory of the same object should be 
maintained across different cameras’ views.  Therefore, a 
sufficient overlap between the cameras’ FOVs should be 
secured so that camera handoff can be executed successfully 
and automatically before the object of interest becomes 
untraceable or unidentifiable. The proposed sensor 
planning method improves existing algorithms by adding 
handoff rate analysis, which preserves necessary 
overlapped FOVs for an optimal handoff success rate.  In 
addition, special considerations such as resolution and 
frontal view requirements are addressed using two 
approaches: direct constraint and adaptive weight.  The 
resulting camera placement is compared with a reference 
algorithm by Erdem and Sclaroff.  Significantly improved 
handoff success rate and frontal view percentage are 
illustrated via experiments using typical office floor plans. 
 

1. Introduction 
With the increased scale and complexity involved in most 

practical surveillance applications, it is almost impossible 
for any single camera (either fisheye or PTZ) to fulfill 
persistent tracking and monitoring tasks with an acceptable 
degree of continuity and/or reasonable accuracy.  Systems 
with multiple cameras find extensive use in surveillance 
applications.  The need for sensor planning comes naturally 
when the question of how to place multiple cameras to fulfill 
given tasks with given performance requirements arises. 

In literature, most sensor planning algorithms are 
proposed for such applications as 3D object inspection and 
reconstruction.  Roy et al. reviewed existing sensor planning 
algorithms for 3D object reconstruction [1] and proposed an 
online scheme using a probabilistic reasoning framework for 
next-view planning and object recognition [2].  Wong et al. 
defined a metric evaluating the unknown information in each 
group of potential viewpoints and used it in the search of the 

next best view for 3D modeling [3].  Yous et al. designed an 
active scheme for multiple PTZ camera assignment so that 
each camera observes a specific part of a moving object, 
mainly pedestrians, and achieves the best visibility of the 
whole object [4].  Sensor planning for surveillance systems 
also received increasing attention in recent years [5-7].   
Cameras are placed such that a full or specified coverage of 
the environment or object is achieved.  A probabilistic 
camera planning framework with visibility analysis was 
proposed by Mittal and Davis [8].  Erdem and Sclaroff 
defined different types of coverage problems and developed 
corresponding solutions using perspective cameras [9]. 

The conventional requirements in sensor planning, such 
as coverage and visibility, are unable to ensure a persistent 
and automated tracking in real-time surveillance systems.  
Sufficient amounts of overlap between the FOVs of adjacent 
cameras should be reserved so that consistent labeling and 
camera handoff can be executed successfully.  However, 
coverage and overlapped FOVs are at two opposite ends.  
Given the same camera configuration, an increase in 
overlapped FOVs leads to a decrease in coverage.  
Therefore, an optimal balance between coverage and 
overlapped FOVs is to be found via sensor planning.  The 
optimal balance requires a maximum increase in handoff 
success rate at the cost of a minimum decrease in coverage 
using the same number of cameras.   

We refer to the necessary overlapped FOVs as handoff 
safety margin and design an observation measure (OM) to 
differentiate it from other visible areas in the camera’s FOV.  
Based on this safety margin, we develop sensor planning 
algorithms balancing the tradeoff between overall coverage 
and adequate overlap.  Furthermore, variations, including 
direct constraint and adaptive weight approaches, are 
introduced for special considerations of resolution and 
frontal view requirements.  We then compare the efficiency 
of our algorithms with the scheme proposed by Erdem and 
Sclaroff [9] under three criteria: coverage, handoff success 
rate, and frontal view percentage using typical office floor 
plans, an example of which is shown in Figure 1. 

The major contributions of this paper are listed as follows.  
(1) An observation measure is designed for perspective 
cameras to describe the suitability of tracking and to define 
the handoff safety margin.  (2) A general sensor planning 
algorithm for persistent and automated tracking is developed 
to secure sufficient handoff margins.  (3) Special 
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considerations such as resolution and frontal view are 
addressed by two types of solutions: direct constraint and 
adaptive weight. 

The remainder of this paper is organized as follows.  The 
problem definition is given in Section 2.  Section 3 defines 
the observation measure.  Our sensor planning algorithms 
are described in Section 4.  Section 5 demonstrates our 
experimental results and comparisons with the reference 
algorithm.  Section 6 concludes this paper. 

2. Problem definition 
When formulated mathematically as an optimization 

process, sensor planning algorithms fall into two categories: 
(1) the search for the maximum coverage given a fixed total 
cost or number of cameras and (2) the search for the 
minimum cost or number of cameras for a full or designated 
coverage.  In this paper, we refer to (1) and (2) as Type 1 and 
Type 2 problems, respectively. 

Assuming that a polygonal floor plan is represented as an 
occupancy grid, a binary vector b can be obtained by letting 

1=ib  if the corresponding grid can be seen by at least one 
camera and 0=ib otherwise.   We construct a binary matrix 
A with 1=ija if the ith grid is covered by the jth camera 
configuration.  Each camera configuration specifies one 
combination of camera intrinsic and extrinsic parameters, 
including camera’s focal length f, pan/tilt angle TP θθ / , and 

position TC.  The following relation holds: bi=1 if 0' >ib ; 
and bi=0 otherwise, with xb A='  where the solution vector 
x is a set of chosen camera configurations with the 
corresponding elements xj being one. 

Let the cost associated with the jth camera configuration 
be jω .  Given the maximum cost Cmax, the Type 1 sensor 
planning problem can be described by: 

maxsubject to ,max Cxb
j jji i ≤∑∑ ω . (1) 

Given a specified coverage vector bo or a minimum 
coverage percentage Cmin, the Type 2 problem can be 
modeled as: 

oj jj Ax bx ≥∑  subject to ,min ω , (2) 

or 

min subject to ,min Cbx
i ij jj ≥∑∑ ω . (3) 

The Type 2 problem with specified coverage was addressed 
and solved using binary programming in [9]. 

3. Observation measure 
To describe the observation of a tracked target in addition 

to visibility, we consider the resolution MR and the distance 
to the edges of camera’s FOV MD.  From a viewer’s point, 
visibility is a fundamental requirement.  Herewith, the 
viewer includes not only operators but also successive 
processing such as consistent labeling and face/object 
recognition.  An observation with different detail levels 
affects the performance of these algorithms.   For example, a 
frontal face image with an inter-ocular distance of 60 pixels 
is recommended by a well-known face recognition engine 
FaceIt® for a face to be automatically recognized [10].  The 
MR component is designed to evaluate a valid observation 
for the viewer.  For a persistent object tracking and smooth 
camera handoff, the tracked target should be at a reasonable 
distance from the edges of the camera’s FOV.  The MD 
component considers the safety margin before the object 
falls out of the camera’s FOV.   

3.1. Definition 
To begin our study, the camera and world coordinates are 

defined and illustrated in Figure 2.  A point 
[ ]TZYXP =  in world coordinates is projected onto a 

point [ ]Tzyx '''=p  in camera coordinates by: 
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with [ ]TZYXC TTTT = .  Assuming zero skew, unit aspect 
ratio, and zero image center, the projected point in the image 

plane is given by: 
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Letting Z=0 (in the ground plane), the target depth 'ẑ  can 
be estimated by: 
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and the resolution component is then expressed as 
'ˆ/ zfM R α= , where α  is a normalization coefficient.  

However, when the target is at a close distance, this relation 
is not entirely valid, especially when part of the target falls 
out of the camera’s FOV.  Therefore, the above definition is 
adjusted by: 

( )





−≤
−+

−>
=

TZ
TZTZ

TZ

R Tz
TTz

f
Tzzf

M θ
θθ

α
θα

tan/'ˆ
tan/tan/'ˆ

tan/'ˆ'ˆ/

2

. 
(6) 

 10m 

11m 

10m 11m 

16m 

: Entrance 

Height: 3m 

: Obstacles 
: Trajectory 

A 
B 

: Point of interest  

 
Entrance 

Obstacles

A 

B

 
(a) (b) 

Figure 1.  (a) Example floor plan and (b) a snapshot of the room to 
surveil. 



   
 
 

In practice, for a better observation and to reserve enough 
computation time for handoff, the target should remain at a 
distance from the edges of the camera’s FOV.  Moreover, 
this margin distance is affected by the target depth.  When 
the target is at a closer distance, its projected image 
undergoes larger displacement in the image plane.  
Therefore, a larger margin should be reserved.  In our 
definition, different polynomial powers are used to achieve 
varying decreasing rates of the MD component as the object 
of interest approaches the edges of the camera’s FOV.  The 
MD is then given by: 

( ) ( )[ ] 01 'ˆ22 2/||2/||
ββ

β
+

−+−=
z

colrowD NyNxM , (7) 

where Ncol and Nrow denote the image’s width and height, β  
is a normalization weight, and coefficients 1β  and 0β are 
used to adjust the polynomial power. 

The observation measure for a perspective camera is then 
given by: 
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where Rw  and Dw  are importance weights and Π  denotes 
the image plane.  Note that no explicit visibility component 
is present in (8).  Instead, the visibility analysis is included in 
the definition of MR and MD.   

3.2. Handoff safety margin 
A failure threshold SF and a trigger threshold ST are 

derived to define three disjoint regions: (1) invisible area 
with Fij SS <  where Sij represents the OM value of the ith 
grid observed by the jth camera configuration, (2) visible 
area with Tij SS ≥ , and (3) handoff safety margin with 

TijF SSS <≤ . The failure threshold SF segments the 
invisible areas and is used for coverage analysis. The trigger 
threshold ST separates the visible areas and handoff margins.  
It is introduced for handoff rate analysis, where the 
overlapped FOVs between adjacent cameras are optimized. 
The trigger threshold ST is given by 

HmFT TVSS µ+= where Vm represents the average moving 
speed of the object of interest, TH denotes the average 

duration for a successful handoff, and µ  is a conversion 
scalar. 

The individual and combined effects of MR and MD 
become evident when we study the contours of OM 
projected onto the ground plane.  In Figure 3, the black solid 
lines and red dashed lines depict the contours with 

Fij SS = and Tij SS = , respectively.  The resolution 
component MR provides limits along the direction of the 
camera’s optical axis while the MD component generates 
constraints mainly in the direction across the camera’s FOV.  
In the example shown in Figure 3(a) with 'ˆ/ zfM R α= , the 
handoff margin is only defined at the far end of the camera’s 
FOV along the optical axis.  The scenario where the target is 
so close to the camera that part of it falls out of the camera’s 
FOV is ignored.  The modification in (6) imposes a proper 
constraint at the near end of the camera’s FOV along the 
optical axis.  Therefore, the resulting observation is both 
complete and with desired resolution, as shown in Figure 
3(b).  Figure 3(c) shows the combined effects of the 
resolution and distance components, which defines the 
handoff safety margin. 

4. Sensor planning 
Based on the definition of OM given in Section 3, our 

sensor planning algorithm is developed to achieve the 
optimal balance between coverage and sufficient overlapped 
margins for successful camera handoff.  

Let A1 represent the grid coverage with 1,1 =ija  if 

Fij SS ≥  and 0,1 =ija  otherwise.  The A1 matrix resembles 
the A matrix in the conventional coverage analysis discussed 
in Section 2.  Two additional matrices are constructed A2 and 
A3.  The A2 matrix has 1,2 =ija  if TijF SSS <≤  and 

0,2 =ija  otherwise.  The A3 matrix has 1,3 =ija  if Tij SS ≥  

and 0,3 =ija  otherwise.  Matrices A2 and A3 represent the 
handoff safety margin and visible area, respectively.  Let 

xc kk A=' , 3,2,1=k .  The objective function at the ith grid is 
formulated as: 

)1'()2'()0'( ,33,22,11 >−=+>= iiii cwcwcwc , (9) 
where w1, w2, and w3 are predefined positive weights.  The 
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Figure 2. Illustration of the camera and world coordinates. 

  
S=SF

S=ST  
(a) (b)             (c) 

Figure 3. The contours of OM projected onto the ground plane.  (a) 
'ˆ/ zfMS R α== .  (b) RMS =  as defined in (6).  (c) 

DDRR MwMwS +=  with 5.0=Rw , 5.0=Dw , 11 =β  and 
10 =β . 



   
 
 

operation )0'( ,1 >ic means 
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otherwize
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,1 .  The 

first term in the objective function considers coverage, the 
second term produces sufficient overlapped handoff margins, 
and the third term penalizes excessive overlapped visible 
areas.  Our objective function achieves a balance between 
coverage and adequate margins for camera handoff.  The 
optimal sensor arrangement for the Type 1 and Type 2 
problems then can be obtained by: 

  subject to,max maxi
Cxc

j jji ≤∑∑ ω  (10) 

min subject to,max and min Cbcx
i ii ij jj ≥∑∑∑ ω . (11) 

The choice of the weights depends on the importance 
assigned to coverage and handoff success rate.  A rule of 
thumb is w1<w2<w3. 

4.1. Function validation  
In this section, we examine the behavior of the newly 

defined objective function to validate its effectiveness.  For 
clear illustration, we study the behavior of the objective 
function based on the relative position between two cameras.  
The position of one camera is fixed while the position of the 
other camera has four degrees of freedom including 
horizontal translation ∆X, vertical translation ∆Y, pan θP, 
and tilt θT.  From the definition of OM, the contours defined 
by Fij SS =  and Tij SS =  approximately constitute a 
trapezoid. The corresponding parameters are given in Figure 
4.   

The derivation of the exact expression of the objective 
function is not difficult but tedious.  To simplify the process 
and yet reveal the characteristics of the objective function, 
we fix ∆Y= θP = θT =0 and study the relation between the 
objective function and ∆X as our first step.  The resulting 
function ∑=

i icF can be expressed as: 
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(12)

with 2)3)(1(2 dDDX th −−−=∆ η .  Since the coverage, 
overlapped handoff margins, and overlapped visible areas 
become effective in (9) in sequence as ∆X decreases, the 
corresponding objective function has three expressions 
depending on the value of ∆X.   

Given the expression in (12), Figure 5 shows the objective 
function with different choices of weights.  We can see that 
the optimal ∆X* is achieved with thXXD ∆<∆< *2η .  
When a smaller weight is assigned to the coverage term, the 
optimal ∆X* is shifted toward Dη2 , resulting in more 
overlapped FOVs for executing camera handoff.  On the 
contrary, if a larger weight is assigned to the coverage term, 
the optimal ∆X* is shifted toward thX∆ , leading to an 
improved coverage at the cost of decreased overlapped 
handoff margins.  From the derivatives of the functions in 
(12), we note that F1 and F3 are monotonically decreasing 
and increasing functions, respectively, with a proper choice 
or the weights in (9).  The turning point falls in the range of 
F2 and is determined by the relation between w1 and w2, the 
weights for the coverage and handoff margin terms in (9).   

4.2. Special performance requirements 
For general sensor planning, the objective function 

defined in (9) can be used.  However, when special 
requirements are to be satisfied, additional constraints need 
to be included.  The resolution consideration corresponds to 
priority areas which need a specified resolution.  The frontal 
view component points to path constraints where there exist 
predefined paths within which the objects’ movements are 
restricted. 

There exist two approaches to impose the resolution 
requirements: direct constraint and adaptive weight.  To 
incorporate the resolution requirements, we construct a 
supplementary matrix A4 with 1,4 =ija if ioRijR MM ,,, ≥  and 

0,4 =ija otherwise, where ioRM ,, is the corresponding 
resolution requirement at the ith grid point.  The direct 
constraint approach is carried out by introducing an extra 
constraint oRA ,4 bx ≥  where bR,o represents the required 
resolution with 1,, =ioRb if the corresponding grid needs the 
minimum resolution and 0,, =ioRb otherwise.  The adaptive 
weight approach on the other hand assigns different weights 
w1,i to the grid points according to the coverage 
requirements.  Larger weights are used if the corresponding 
grids require the minimum resolution.  The objective 
function then becomes: 

X
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Figure 4.  Schematic illustration of the geometric relation between 
the adjacent cameras’ FOVs for computing the objective function.  
The position of camera 1 is fixed while the position of camera 2 can 
be varied with four degrees of freedom. 
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iii
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cwcw

cwcwc
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where xc 44' A= and iw ,4 are different weights allocated 
according to the resolution requirement. 

In surveillance systems, a predefined path is commonly 
encountered.  It is also preferred that a frontal view can be 
achieved sometime while pedestrians are walking along this 
path.  An example is the entrance areas where a frontal view 
of the pedestrian is preferred when he or she enters the gate.  
We use the tangential direction of the middle line of the path 
as the average direction of the pedestrian’s motion.  Let the 
kth point on the middle line be kP ,0  and its tangential 
direction kPV , .  The frontal view measure observed by the jth 
camera (placed at TC,j) at point kiP ,'  along the line 
perpendicular to kPV , is given by: 

( )
|||||||| ,,',

,,',
'

kPkijC

kP
T

kijC
ji VPT

VPT
FV

−
−

= . (14) 

Based on jiFV ' , we define a matrix A5 with 1',5 =jia if 

0' ≥jiFV and 0',5 =jia otherwise.  Let 0,5 =ija for grid 
points outside the path.  Finally the frontal view or path 
constraint is incorporated into the objective function by: 

)0'()1'(

)2'()0'(

,5,5,33

,22,11

>+>−

=+>=

iii

iii

cwcw

cwcwc
, (15) 

where xc 55' A= . Note that although the resolution and 
frontal view constraints are addressed separately, it is 
straightforward to combine these two terms.  The only 
modification is to simply add the corresponding 
components.  The adaptive weight approach is especially 
attractive because of its concise expression and speed of 
convergence. 

5. Experimental results 
In this section, we first examine the soundness of the 

newly developed OM for perspective cameras and then 
introduce our experimental methodology. Our experimental 
results using two typical office floor plans are presented and 
compared with the reference algorithm proposed by Erdem 
and Sclaroff [9].  For clear presentation, the reference 
algorithm is denoted as T1C and T2C for Type1 and Type 2 
problems, where C stands for coverage.  Our sensor planning 
methods discussed in Section 4.1 are denoted as T1H and 
T2H, where H stands for handoff.  When the frontal view or 
path constraint is included, we refer to our methods 
described in Section 4.2 as T1P and T2P, where P stands for 
the path constraint.  Comparing the T1C (T2C) method with 
the T1H (T2H) method, an improved handoff success rate is 
expected.  The major difference between the T1H and T1P 
(T2H and T2P) methods lies in that the frontal view 
component is added in the T1P and T2P methods.  Therefore 
an improved frontal view percentage is expected from the 
T1P and T2P methods.   

5.1. Experiments on observation measure 
A perspective camera is placed at TC=[0 0 3m]T  looking 

down towards the ground plane at a tilt angle of -30°.  Its pan 
angle is set to zero.  The image size is 640×480.  The 
camera’s focal length is 21.0mm.  Points are uniformly 
sampled on the ground plane (Z=0) with X in the range of 
-8m to 8m and Y in the range of 3m to 10m.  Figure 6 shows 
the corresponding OM values for the perspective camera.  
The best observation area with the maximum OM values is 
in the proximity of  [0 5m 0]T.  As the object moves away 
from this area, the OM value decreases.  A higher penalty is 
given to the motion along the X direction, the direction 
across the camera’s FOV.  The proposed OM gives a 
quantified measure of the tracking and observation 
suitability, which agrees with our intuition and visual 
inspection.  Three disjoint regions are also depicted in the 
ground plane separated by the failure and trigger thresholds.   
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Figure 5.  The objective function with varying ∆X and different 
choices of w1, the weight assigned to the coverage term in (9).  D=1, 
d=0.6, h=0.8, η=0.6, w2=2, w3=5. 
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Figure 6. Graphical illustration of the observation measure and 
handoff safety margin of a perspective camera placed at [0 0 3m]. 



   
 
 

5.2. Experimental methodology 
The floor plans under test are shown in Figures 1(a) and 7. 

The floor plan in Figure 1(a) represents two types of 
environments encountered in practical surveillance: space 
with obstacles (region A illustrated in yellow) and open 
space where pedestrian can move freely (region B illustrated 
in green).  Region B is deliberately included because it 
imposes more challenges on camera placement when 
considering handoff success rate.  Camera handoff is 
relatively easier when there is a predefined path compared 
with the scenarios where subjects are assumed to move 
freely, since camera handoff may be triggered at any point in 
the camera’s FOV.  Figure 7 illustrates an environment with 
a predefined path where workers proceed in a predefined 
sequence.  In the following experiments, we will refer to the 
two floor plans as plan A and B.  In our experiments, 
perspective cameras are free to be placed along the walls of 
the environment.   

To obtain a statistically valid estimation of handoff 
success rate and frontal view percentage, simulations are 
carried out to enable a large amount of tests under various 
conditions.  A pedestrian behavior simulator [11, 12] is 
implemented so that we could have a close resemblance to 
the experiments in real environments and in turn an accurate 
estimation of the handoff success rate.  To save space, 
interested readers can refer to the original papers for details. 
In our experiments, the arrival of the pedestrian follows a 
Poisson distribution with an average arrival rate of 0.1 
(person/second).  The average walking speed is 0.5 
(meters/second).  Several points of interest are generated 
randomly to form a pedestrian trace.  Figures 1(a) and 7 
depict some randomly generated pedestrian traces.  System 
performances are evaluated using coverage (C), handoff 
success rate (HSR), and frontal view percentage (FVP).  
HSR and FVP are obtained from simulations of 300 
randomly generated pedestrian traces. 

5.3. Experiments on sensor planning 
For both floor plans we require a visible distance of 10m 

and a height of 3m.  The same pair of tilt angle and focal 
length can be used with mmf 0.21= and 30−=Tθ .  The 
importance weights w1, w2, and w3 are set to 1, 2, and 5.  
w5=5 if the path constraint is imposed. The failure and 
trigger thresholds are 0 and 0.4, respectively 

Figure 8 illustrates the experimental results using floor 
plan A to solve the Type 1 problem. Our T1H approach 
chooses a camera positioning scheme with a slightly 
decreased coverage from 81.6% to 74.7% compared with the 
T1C method.  However, the averaged HSR is improved 
substantially from 23.2% to 87.4%.  An example trace is also 
shown in Figure 8(c) and (d).  As expected, if only coverage 
is considered, insufficient overlapped areas are kept between 
the adjacent cameras, leading to two handoff failures as 
observed in Figure 8(c).  In Figure 8(d), the target is tracked 
continuously with three successful handoffs.   

Figure 9 shows and compares sample frames from two 
cameras with and without sufficient handoff margins.  If 
only coverage is taken into account as shown in Figure 9(a), 
the object of interest is lost before the left camera is able to 
identify the subject and cooperate with the right camera.  
With sufficient handoff margins as shown in Figure 9(b), the 
object of interest can be detected and labeled correctly 
before it becomes unidentifiable in the right camera. 

As expected, a considerably improved HSR is also 
achieved for floor plan B, as shown in Figure 10.  In 
addition, we add the frontal view criterion and test the T1P 
method. The averaged FVP is elevated from 28.7% to 
93.5%.  From Figures 10(b) and (c), we could see that the 
cameras are turned towards the direction of the predefined 
path after introducing the frontal view constraint. 
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Figure 7.  Illustration of an office floor plan with predefined path 
which the workers’ movements are restricted to. 

Areas covered by   
0    1    2
cameras

Camera position

 

Areas covered by
0     1     2     3

cameras
Camera position

 
(a) (b) 

Areas covered by   
0    1    2
cameras

Camera position

Handoff 
failure

 

Areas covered by
0     1     2     3

cameras
Camera position

 
(c) (d) 

Figure 8. Optimal camera positioning for floor plan A and Type 1 
problem (a) T1C (C: 81.6 %, HSR: 23.2%) and (b) T1H (C: 74.7%, 
HSR: 87.4%).  An example trace: two handoff failures in (c) and 
three successful handoffs in (d). 



   
 
 

The Type 2 problem imposes additional requirements on 
the overall coverage, which leaves less freedom in the 
optimization process to maximize the HSR.  As Figure 11 
demonstrates, the overall coverage is constrained to be 
above 80%, which results in a decrease in HSR from 87.4% 
obtained by the T1H method to 68.5%.  However, with a 
similar coverage (81.5% vs. 81.6%), our T2H algorithm is 
still able to achieve a much higher HSR (68.5%) than the 
conventional T1C approach (23.2%).  Similar observations 
apply to the experiments using floor plan B as shown in 
Figure 12. 

5.4. Performance comparison 
Table 1 summarizes the performance comparison 

between our algorithms and the reference algorithm 
proposed by Erdem and Sclaroff [9]. Consistent 
observations are obtained from experiments using two floor 
plans.  Compared with the reference algorithm, our 
algorithms produce considerably improved HSR and FVP at 
the cost of slightly decreased coverage.  This amount of 
decrease in coverage is inevitable so as to maintain 
overlapped areas between adjacent cameras required by 
persistent and automated tracking for a fixed number of 
cameras.   

The ratio between the increase in HSR and the decrease in 
coverage |C|HSR ∆∆ describes the advantage of our 
algorithms.   For the Type 1 problem, every 1% decrease in 
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Figure 9. Illustration of sufficient safety margin for automated 
camera handoff.  Sample frames from two cameras (a) when only 
coverage is considered and (b) when both coverage and handoff 
success rate are considered.  The object of interest is visible in the 
right camera at to.  In (a), the object of interest is lost in the right 
camera as it moves and becomes visible in the left camera at to+∆t. 
There is no sufficient margin for a successful handoff.  In (b), the 
object of interest remains visible in the right camera at to+∆t, which 
ensures a successful handoff. 
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Figure 10. Optimal camera positioning for floor plan B and Type 1 
problem: (a) T1C (C: 84.8%, HSR: 6.0%, FVP: 67.7 %), (b) T1H 
(C: 74.7%, HSR: 56.9 %, FVP: 28.7%), and (c) T1P (C: 72.1%, 
HSR: 58.0%, FVP: 93.5%).   
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Figure 11.  Optimal camera positioning for floor plan A and Type 2 
problem (C≥80%).  (a) T2H (C: 81.5%, HSR: 68.5%).  (b) An 
example trace with one handoff failure and two successful handoffs. 
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Figure 12.  Optimal camera positioning for floor plan B and Type 2 
problem (C≥80%):  (a) T2H (C: 81.3%, HSR: 43.7%, FVP: 41.0%) 
and (b) T2P (C: 81.6 %, HSR: 47.1 %, FVP: 69.0%). 



   
 
 

coverage results in a 4% to 10% increase in HSR.  An even 
higher improvement rate can be achieved for the Type 2 
problem.  The efficiency of the proposed algorithms in 
balancing the overall coverage and sufficient overlapped 
FOVs becomes evident.  Furthermore, our algorithms can 
handle additional constraints, such as the frontal view 
requirement.  The resulting T1P and T2P algorithms are able 
to maintain a similar improvement rate in HSR as the 
general methods (T1H and T2H) with further improved 
FVP. 

Conventional sensor planning methods produce a camera 
placement with a maximized coverage.  In such a system, 
although a target can be seen, it cannot be automatically and 
consistently labeled or recognized as the same target across 
different cameras because of handoff failures resulted from 
insufficient overlapped FOVs.  The resulting camera 
placement cannot support automated and persistent 
surveillance systems since the tracked or identified target 
trajectories are disjointed at the junction areas of adjacent 
cameras.  In contrast, our sensor placement ensures a 
continuous and consistently labeled trajectory.  The 
decreased coverage can be easily compensated for by adding 
an additional camera.  The cost of an extra camera is 
acceptable in comparison with a system with inherent 
disability of maintaining persistent and continuous tracking.   

6. Conclusions 
In this paper, we proposed a general sensor planning 

algorithm in the context of persistent and automated tracking 
and improved existing algorithms by incorporating handoff 
rate analysis with coverage and visibility analysis.  Direct 
constraint and adaptive weight approaches were derived 
from the general method to solve the resolution and frontal 
view constraints.  Significantly improved handoff success 
rate and frontal view percentage were reported via 
experiments and comparisons with a reference algorithm 
using typical office floor plans.  This indicates the efficiency 
of the proposed algorithm in balancing the overall coverage 
and sufficient overlapped FOVs.  With considerably 

improved handoff success rate and frontal view percentage, 
the proposed algorithm produces robust and enhanced 
performance compared with the reference algorithm 
presented in [9] when applied to automated tracking 
systems. 
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Table 1. System performance comparison. C: coverage, HSR: 
handoff success rate, and FVP: frontal view percentage. 

 

Floor plan A 
Method C (%) HSR(%) |C|HSR ∆∆  

T1C/T2C 81.6 23.2  
T1H 74.7 87.4 9.3 
T2H (80%) 81.5 68.5 453 

Floor plan B 
Method C (%) HSR(%) |C|HSR ∆∆  FVP(%) 

T1C/T2C 84.8 6.0  67.7 
T1H 74.7 56.9 5.0 28.7 
T1P 72.1 58.0 4.1 93.5 
T2H (80%) 81.3 43.7 10.8 41.0 
T2P 81.6 47.1 12.8 69.0 


