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Abstract

Tracking the left ventricle (LV) in 3D ultrasound data
is a challenging task because of the poor image quality
and speed requirements. Many previous algorithms applied
standard 2D tracking methods to tackle the 3D problem.
However, the performance is limited due to increased data
size, landmarks ambiguity, signal drop-out or non-rigid de-
formation. In this paper we present a robust, fast and ac-
curate 3D LV tracking algorithm. We propose a novel one-
step forward prediction to generate the motion prior using
motion manifold learning, and introduce two collaborative
trackers to achieve both temporal consistency and failure
recovery. Compared with tracking by detection and 3D op-
tical flow, our algorithm provides the best results and sub-
voxel accuracy. The new tracking algorithm is completely
automatic and computationally efficient. It requires less
than 1.5 seconds to process a 3D volume which contains
4,925,440 voxels.

1. Introduction
The 3D Echocardiography is one of the emerging diag-

nostic tools among modern imaging modalities for visual-
izing cardiac structure and diagnosing cardiovascular dis-
eases. Ultrasound imaging is real-time, noninvasive and
less expensive than CT and MR. However, ultrasound nor-
mally produces noisy images with poor object boundaries.

Recently, the problem of automatic detection, segmenta-
tion and tracking of heart chambers have received consid-
erable attentions [5, 10, 11, 13, 27]. Among these applica-
tions, segmentation and tracking of the left ventricle (LV)
have attracted particular interests. It provides clinical sig-
nificance for radiologists to evaluate disease, such as acute
myocardial infarction. Several difficulties exist compared
with traditional 2D tracking algorithms:

• The computation demand is much higher for 3D volu-
metric data.

• Feature point based tracking has difficulty for ultra-
sound images because they lack reliable landmarks.
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• In order to provide a practical diagnosis tool for radi-
ologists, a tracking algorithm should be able to recover
from failures.

The widely used 2D tracking algorithms [25] won’t pro-
vide good results if directly applied on 3D ultrasound track-
ing applications. In order to achieve robust tracking in
3D ultrasound which is characterized by low image quality,
learning based detector and boundary classifiers are used to
track the LV boundary in each frame. This tracking by de-
tection strategy can avoid accumulating errors and is proven
to be quite effective in recent literature [1, 15, 26]. However,
it still has several problems:

• The boundary classifiers are sensitive to initial posi-
tions [4] and good initializations have to be provided
because we can not exhaustively search all the possible
configurations in the whole 3D volume. Considering
the speed, the current search range is constrained on
the normal directions within ±12 mm.

• Tracking by detection applies an universal description
of the objects without considering any temporal re-
lationship, which leads to temporal inconsistence be-
tween adjacent frames.

In this paper, we propose a fast and novel automatic 3D
ultrasound tracking algorithm which address these difficul-
ties. The contributions of this paper are:

• We propose a novel one-step forward prediction using
motion manifold learning, which respects the geodesic
distances of both the shape and motion of the heart.
The motion priors can provide good initial positions
for the boundary classifiers.

• A collaborative 3D template tracker is applied to erase
the temporal inconsistence introduced by 3D detection
tracker.

• A rectangle filter is used to reject outliers and achieve
robust data fusion. Smooth boundary tracking is ob-
tained by projecting the tracking points in each frame
to the constrained shape boundary.

• The algorithm can process a 3D volume, e.g., 160 ×
144× 208 voxels, in less than 1.5 seconds and we ob-
tain subvoxel tracking accuracy.
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Figure 1. Manifold embedding for LV motion patterns. (a) Two LV boundary mesh sequences. (b) 11 sequences embedded in a 2D
subspace. Note: The end diastolic (ED) phase has larger volumes and represented as stars in (b), while the end systolic (ES) phase has
smaller volumes and represented as squares in (b).

Section 2 introduces the Bayesian tracking framework.
The learning methods and tracking algorithm are described
in Section 3 and Section 4. Section 5 provides the experi-
mental results and Section 6 concludes the paper.

2. Bayesian Tracking Framework
Define xt as the true position of each 3D boundary point

of the left ventricle (LV) at time t and let zt to represent the
measurement. The tracking problem can be formulated as
an estimation of A posterior probability p(xt|z1:t), where
z1:t = {z1, ...zt} represents the past t measurements. Se-
quential Bayesian tracking based on Markovian assumption
is performed recursively in a prediction

p(xt|z1:t−1) =
∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (1)

and updating step

p(xt|z1:t) ∝ p(zt|xt)p(xt|z1:t−1). (2)

Bayesian tracking assumes that the following densities
are known. The p(x0) denotes the distribution of the 3D
LV surface points in the first frame. In our algorithm p(x0)
is automatically calculated using the trained detector and
boundary classifiers. The p(xt|xt−1) represents the motion
prior (state model) and is predicted for the next frame. The
p(zt|xt) represents the measurement density.

If all the densities in (1) and (2) are Gaussian, Bayesian
tracking can be formulated as the Kalman filter, otherwise a
particle filter can be applied. The CONDENSATION algo-
rithm [12] can be used to sample the posterior probability
for single object, and Markov Chain Monte Carlo (MCMC)
[14] sampling can be used for multiple objects tracking.

Both Kalman filtering and particle filter assume a Markov
model, which only considers the previous state xt−1 to esti-
mate the density of current state xt. The p(xt|xt−1, z1:t−1)
is therefore equal to p(xt|xt−1) in (1) and is often modeled
using a predetermined distribution.

In real tracking problems, the motion prior (state model)
p(xt|xt−1, z1:t−1) may not follow a Markovian assumption
and it could be of any form. In our algorithm, we model
the p(xt|xt−1, z1:t−1) to be dependent on both xt−1 and
z1:t−1. One-step forward prediction using motion manifold
learning is applied to estimate this motion prior.

For the measurement densities p(zt|xt), we select two
collaborative trackers: the detection tracker and the tem-
plate tracker, which can mutually benefit each other. The
detection tracker can discriminate the 3D target from
background in low image quality and noisy environment.
The template tracker respects the local image information
and preserves the temporal consistence between adjacent
frames. The trackers are modeled as rk, k = 1 for detection
tracker and k = 2 for template tracker, then

p(zt|xt) = p(zt|xt, r1)p(r1) + p(zt|xt, r2)p(r2). (3)

Substituting (3) in (2) and replacing p(xt|xt−1) with
p(xt|xt−1, z1:t−1) in (1), the final posterior probability
p(xt|z1:t) is obtained from the robust data fusion and the
xt = arg maxxt p(xt|z1:t).

3. Motion Learning and Classifiers Training
Each training sequence contains a heart motion cycle

which starts from the end-diastolic (ED) phase, passes
through the end-systolic (ES) phase and comes back to ED.
The training procedure is in a batch mode where all the an-
notated sequences are used at the same time. It contains



three steps. First the motion modes are learned using man-
ifold learning and hierarchical K-means. Next, an ED de-
tector is trained to locate the position of the object in the
first frame. Finally, two boundary classifiers (one for ED
and one for ES) are trained using the annotated sequences
to delineate the boundary.

3.1. Learning the Motion Modes

Motion Alignment Using 4D Generalized Procrustes
Analysis. Our training sequences contain 11-25 time
frames and 16 frames are chosen to resample each motion
sequence. In this way we generate 4D motion vectors con-
taining the same dimensionality d, where d = Nf × 3× 16,
Nf = 289 is the number of boundary points and three rep-
resents x, y and z dimensions.

Generalized procrustes analysis (GPA) is used to align
all resampled motion vectors to remove the translation, ro-
tation and scaling [7, ch. 5]. However, the shape differences
and motion patterns are still preserved. After the 4D GPA,
these aligned motion vectors are decomposed into separated
3D shapes. All the following learning steps are performed
on the aligned 3D shape vectors.

Motion Manifold Learning. Because the actual number
of constraints that control the LV motion are much less than
its original dimensionality, the aligned 3D shape vectors lie
on a low-dimensional manifold. Given the whole set of 3D
training shape vectors, M = {m0, ...,mi, ...,mn} where
mi ∈ Rd, there exists a mapping z which represents mi in
the low-dimensions as

mi = z(vi) + ui i = 1, 2, ..., n (4)

where ui ∈ Rd is the sampling noise and vi ∈ Rq denotes
the original i-th shape mi in the low-dimensional subspace.
We set q = 2 because the higher dimensions did not pro-
vide additional accuracy in our experiments. The nonlinear
mapping z is the transformation from the low-dimensional
subspace to the original space.

We apply ISOMAP [21] to embed the nonlinear mani-
fold into a low-dimensional subspace. We start by finding
the seven closest neighbors (seven was found to be the best)
of each point mi in the original space Rd and connect the
neighbors to form a weighted graph G. The weights are
calculated based on the Euclidean distance between each
connected pair of vectors. We then calculate the shortest
distance dG(i, j) between any pair of points mi and mj in
the graph G. The final step is to apply the standard multiple
dimensional scaling (MDS) to the matrix of graph distance
{dG(i, j)}. In this way, the ISOMAP applies a linear MDS
on the local patch but preserve the geometric distance glob-
ally using the shortest path in the weighted graph G.

Figure 1a shows two annotated LV motion sequences.
Figure 1b shows several LV motion representations in a
low-dimensional subspace. An interesting but expected ob-

servation is illustrated in Figure 1b. The LV motion is al-
most periodic because one cycle of heart beat starts from
ED and returns to ED. In total we applied manifold learn-
ing on 36 annotated LV motion sequences. In order to make
the figure readable, we only show 11 sequences in Figure
1b.

Hierarchical K-means Clustering. Given all the mo-
tion cycles shown on the embedded subspace, we applied a
hierarchical K-means to learn the motion modes. First, we
apply K-means on all the training ED shapes and K is taken
as four. (Four was chosen using a pilot experiment.) Af-
ter this step, we align all motion sequences in one group by
moving their ED vectors to their cluster center. In this way
we cancel the translation among the shapes in one subgroup,
but focus on the difference in motion patterns. Each aligned
sequence is transformed to a 2 × 16 dimensional vector,
where two represents the reduced dimensionality and 16
represents the number of frames. K-means is applied again
within each group and the cluster center in the 32 dimen-
sional space corresponds to a motion mode. In this step the
K is decided by evaluating the difference between the clus-
ter center and each vector within the group. Each motion
mode is a weighted sum of all sequences that are clustered
into the same group. The weights are proportional to their
Euclidean distance from the cluster center. The geodesic
distance in the original manifold is modeled by Euclidean
distance in the embedded low-dimensional subspace.

3.2. Learning the ED Detector

In this step we train a 3D detector to locate the pose
of LV in the motion sequence. We first calculate a mean
shape by averaging all the LV in the ED frames of the an-
notated training sequences. A principal component analysis
(PCA) shape space is calculated for all the ED shapes at the
same time. In order to automatically initialize the tracker,
we need to find the similarity transformation from the mean
shape to the LV in the ED frame for each sequence. Dis-
criminative learning based approaches have proven to be
efficient and robust for 2D object detection [24]. The ob-
ject is found by scanning the classifier over an exhaustive
range of possible locations, orientations and scales in an
image. However, it is challenging to extend them to 3D ob-
jection detection problems since the number of hypotheses
increases exponentially with respect to the dimensionality
of the parameter space. As the posterior distribution is of-
ten clustered in a small region, it is not necessary to search
the parameter space exhaustively.

Marginal space learning (MSL) [2, 27] is used to learn an
ED detector to locate LV in the first frame efficiently. The
idea for MSL is to incrementally learn classifiers on pro-
jected marginal spaces. We split the estimation into position
detection, position-orientation detection and full similarity
transformation detection. The MSL reduces the number of
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Figure 2. The positive (a), (c) and negative samples (b), (d) used
for training. (a) and (b) Training samples for the detector. (c) and
(d) Training samples for the the boundary classifiers.

testing hypotheses by six orders of magnitude in our appli-
cations, which makes the directly training of the detector on
3D volumetric data a feasible procedure.

3.3. Learning the Boundary Classifiers

After we obtain the pose of the LV in the ED frame,
we need to segment its boundary to automatically start the
trackers. Active shape models (ASM) [4] is used to de-
form an initial estimate of a nonrigid shape. The non-
learning boundary classifier using gradients in the original
ASM does not work in our application due to the complex
background and weak edges in 3D ultrasound. Learning
based methods can exploit image evidences to achieve ro-
bust boundary detection. Boundaries with different orien-
tation are usually detected on prerotated images [6]. Since
3D volume rotation is very time consuming, we use steer-
able features for boundary detection and avoid rotating the
3D volume. For each boundary point (289 in total), we sam-
ple several points from the volume around it under a special
pattern, which embed the orientation information into the
distribution of the sampling. A few local features for each
sampling point, such as voxel intensity and gradients, etc.,
are calculated. The advantages of steerable features are that
they combine the advantages of both local and global fea-
tures.

Two boundary classifiers, one for LV motion close to
the ED phase and the other for LV motion close to ES, are
trained using probabilistic boosting tree (PBT) [22]. The
PBT ensembles many strong classifiers into a tree structure.
The widely used cascade boosting [24] can be treated as a
special case in PBT. The learned boundary classifiers are
used to automatically segment the boundary of LV, to ini-
tialize the trackers, and also used as the detection tracker
for the following frame. In Figure 2 we show some posi-

Figure 3. The four canonical view and 3D representations of the
segmentation result (automatic tracking initialization) of LV.

tive and negative training samples used for training both the
detector and the boundary classifiers.

4. Tracking Procedure
The tracking procedure on a testing sequence contains

four steps. The p(x0) is initialized using the learned ED de-
tector and the ED boundary classifier. At time t − 1, regis-
tration based reverse mapping and one-step forward predic-
tion are used to estimate the next state p(xt|xt−1, z1:t−1).
We then apply two collaborative trackers and robust data
fusion to estimate the measurement density p(zt|xt). In or-
der to obtain smooth tracking of LV, each boundary point
is mapped to a shape constrained 3D boundary. The final
results are obtained by maximizing the posterior probabil-
ity in (2). These prediction (1) and updating (2) steps are
performed recursively for each frame in one sequence.

4.1. Initialization of Tracking

In order to initialize the boundary tracking of LV in an
automatic manner, we need to automatically detect and seg-
ment LV in the ED frame of a testing sequence. Given
the ED frame, all positions are scanned by the trained po-
sition detector. The top 100 candidates (xi, yi, zi), i =
1, 2, ..., 100 are kept. Each candidate is then expanded
using 1000 hypothesis on orientations (ψij , φij , θij), j =
1, 2, ..., 1000. The trained position-orientation detector
is applied for each candidate and the best 50 are kept.
These 50 candidates are scaled using 1000 hypothesis
(sxkl, sykl, szkl), k = 1, 2, ..., 50, l = 1, 2, ..., 1000. Evalu-
ated by the position-orientation-scale detector, the best 100
candidates are averaged to produce the final similarity trans-
formation estimation.

After the similarity transformation is calculated, the LV
mean shape is registered and superimposed on the ED frame



of the testing sequence as the initial position. For each
boundary point we search ±12 mm range on the normal di-
rections of the boundary. (The value ±12 mm was set con-
sidering both speed and accuracy.) The learned boundary
classifier is used to move each boundary point to its optimal
position where the estimated boundary probability is maxi-
mized. Figure 3 shows the tracking initialization result.

4.2. One-Step Forward Prediction

In this step we calculate the motion prior (state model)
p(xt|xt−1, z1:t−1) using the learned motion modes. At time
t−1,we first transform the current 3D shape p(xt−1|z1:t−1)
to the corresponding frame of each motion mode in the 4D
GPA coordinate system. Thin plate spline (TPS) transfor-
mation [16] is applied to perform this mapping. The TPS is
a nonrigid transformation between two 3D point sets. The
transformation T contains an affine mapping plus a wrap-
ping coefficient matrix. We used 72 uniformly sampled
points from 289 boundary points to estimate the TPS trans-
formation T by minimizing

ETPS(T ) =
72∑

i=1

‖wi − T (bi)‖2 + λf(T ) (5)

where wi denote the 3D mesh point on the learned mo-
tion modes and bi denote the points on the testing object’s
boundary. The f(T ) is a function containing a kernel which
represents the internal structure relationship of the point set.
The regularization parameter λ is chosen as 1.5. We refer
the readers to [16] for more details.

The prediction is applied on the motion mode which
minimizes the previous 1 to t − 1 accumulated TPS reg-
istration errors

I = arg min
i

t−1∑
j=0

min
T
ETPS(xj ,qi,j , T ) (6)

where i = 1, ..., Q represents the number of motion modes.
The qi,j is the i-th motion mode in the j-th frame and the
ETPS(xj ,qi,j , T ) is the registration error.

After we found the correct motion mode qI,t using (6),
the final prediction result in the real world coordinate sys-
tem of the p(xt|xt−1, z1:t−1) is obtained using the reverse
mapping T−1. A motion mode generated by reverse map-
ping using TPS is shown in Figure 4.

There could be motion mode changes during the predic-
tion when the prediction starts from one motion mode and
jumps to another mode during tracking. This corresponds
to the LV motion which starts from an ED shape in one
learned motion mode, but has a motion trajectory close to
another mode. This is the reason we apply the accumulated
TPS registration error based one-step forward prediction.
The algorithm provides accurate motion prior for boundary
tracking.

Figure 4. The LV boundaries in 3D world coordinates of a motion
mode. The results are calculated using TPS reverse mapping and
superimposed in the two-dimensional reduced subspace.

4.3. Collaborative Trackers

Given the motion prior p(xt|xt−1, z1:t−1) learned using
one-step forward prediction on the motion manifold, for
each boundary point the learned boundary classifiers are
used to search in its ±12 mm range on the normal direction.
The optimal position is found by maximizing the boundary
probability. The ED boundary classifier is used when the
frame index is close to ED and the ES boundary classifier is
used when it is close to ES. The final position using detec-
tion tracker is obtained by maximizing p(zt|xt, r1) in (3).

In order to compensate the disadvantages of detection
tracking mentioned in the introduction, a 3D template
tracker is also applied. Given xt a 3D boundary point and
its neighborhood N(xt), let G(xt, µ) denotes the transfor-
mation of the template. (The neighborhood was chosen to
be a 13×13×13 cube based on experiments.) The goal is to
search the best transformation parameters which minimize
the error between N(xt) and G(xt, µ).

µ = arg min
µ

∑
xt∈N(xt)

[G(xt, µ)−N(xt)]
2
. (7)

Because there is only a small change of parameter µ be-
tween adjacent frame, the minimization of (7) can be solved
by linearizing the expression

G(xt, µ) = G(xt) +
∂G(xt, µ)

∂µ
dµ. (8)

At the end the result p(zt|xt, r2) is obtained.
Although the template matching algorithm is not robust

and only works under the assumption of small inter-frame
motions, it preserves temporal consistence and its disadvan-
tages can be compensated by the one-step forward predic-
tion and the detection tracker. Template updating is a key
issue in template tracking. If we update the template in
each frame only based on the previous template tracking
result, the error will be inevitably accumulated and finally



Figure 5. The prior p(r1) for detection tracker (red solid line) and
p(r2) for template tracker (blue dotted line). The ED phase has
frame index zero and ES phase is around frame six.

results in the template drifting mentioned in [3, 17]. Gen-
erally it is difficult for template tracking to recover from
drifting without special processing. In our method we up-
date the template using the previous collaborative tracking
result. Because the learned motion prior is enforced and de-
tection is used, this updating scheme can help the template
tracker to recover from the template drifting. As shown
in [20, 23, 28], learned motion prior is quite effective to
help tracking to recover from failures. Collaborative kernel
trackers are also successfully used in [9].

4.4. Data Fusion

Fusion of the collaborative tracking is obtained by defin-
ing prior distribution p(r1), p(r2) in (3). Based on domain
expert’s knowledge, both priors were designed as the expo-
nential functions of t, which is illustrated in Figure 5. We
show only one heart beat cycle which contains 17 frames.
In order to reject outliers and achieve robustness, we apply a
rectangle filter of [−12 12]3 mm on the final data fusion re-
sults to erase the motion replacements which are larger than
this size between adjacent frames. The corresponding posi-
tion of the eliminated boundary point is recalculated based
on the bicubic interpolation of its neighbors. After this step
we obtained the p(zt|xt).

4.5. Postprocessing and Projection

Due to speed considerations, the detection tracker is de-
signed to search on the normal direction of the boundary,
and the template tracker is searching along the direction of
the gradients. Both of them can not provide smooth tracking
results. Let Bf denotes the 3D boundary point-set after the
data fusion step. We project Bf onto the PCA shape space
calculated from the training stage, and obtain a smooth
boundary point set Bs. A surface of the smooth boundary
Bs is constructed using the 3D triangulation. Each bound-
ary point P on Bf is projected onto the smooth surface by
finding the triangle S ∈ T = {all triangles of Bs} which
minimize the square distance

dist(s, t) = [S(s, t)− P ]2 (9)

Table 1. The point-to-mesh (PTM) errors measured in millimeters
using three tracking algorithms.

Mean Variance Median
3D optical flow 2.68 1.28 2.39

Tracking by detection 1.61 1.24 1.31
Collaborative trackers 1.28 1.11 1.03

Min Max 80%

3D optical flow 0.94 10.38 3.23
Tracking by detection 0.59 9.89 1.89
Collaborative trackers 0.38 9.80 1.47

where S(s, t) = b + se0 + te1 with (s, t) ∈ D = {(s, t) :
s ∈ [0 1], t ∈ [0 1], s + t ≤ 1}. The b is one vertex in the
triangle and e0 and e1 represent two edges. In this way, we
keep the tracking results and achieve smooth motion track-
ing of the LV.

5. Experimental Results

We collected 67 annotated 3D ultrasound LV motion se-
quences. The 4D (x, y, z, t) motion sequences contain from
11 to 25 3D frames. In total we have 1143 ultrasound volu-
metric data. Our dataset is much larger than those reported
in the literature, e.g., 29 cases with 482 3D frames in [13],
21 cases with about 400 3D frames in [19] and 22 cases with
328 3D frames in [29].

The imaging protocols are heterogeneous with different
capture ranges and resolutions along each dimension. The
dimensionality of 27 sequences is 160 × 144 × 208 and
the other 40 sequences is 160× 144× 128. The x, y and z
resolution ranges are [1.24 1.42], [1.34 1.42] and [0.85 0.90]
mm. In our experiments, we randomly select 36 sequences
for training and the rest are used for testing.

The accuracy is measured by the point-to-mesh (PTM)
error. All 3D points on each frame of the testing sequence
are projected onto the corresponding annotated boundary
of the test set. The projection distance from the point to
boundary is recorded as the PTM error, eptm. For a per-
fect tracking, the eptm should be equal to zero for each 3D
frame. In Table 1, we compared the quantitative eptm using
our proposed algorithm, with tracking by 3D optical flow
[8] and tracking by detection [26].

The 80% column in Table 1 represents the sorted 80%
smallest error of all eptm, and is commonly used by doctors
to evaluate the usability of the system. For example, if the
doctor can tolerate an error of 1.5 mm, they normally expect
80% of the errors to be smaller than this number. The mean
eptm we obtained is 1.28 mm with a 80% error below 1.47
mm. These are the best results in the literature as far as we
know (mean error 1.45 mm in [29], 2.5 mm in [18] and 2.7
mm in [19]). Considering the range of resolution in the test
set, we actually obtained subvoxel tracking accuracy on the



mean eptm.
The systolic-diastolic function is the volume-time curve

which represents continuous LV volume change over the
time t. It is an important diagnosis term to evaluate the
health condition of the heart. In Figure 6, we illustrate one
heart cycle of two systolic-diastolic functions. The curves
for all three tracking algorithms and the ground-truth anno-
tation are shown. Our algorithm (Tr. collab.) provides the
most similar functions to the ground truth curves.

Two types of errors are frequent in tracking LV in 3D ul-
trasound. The first type is the leakage error, eleakage, which
happens on the mitral valve region. This is introduced by
the similar appearance of the mitral valve to the LV bound-
ary. A good LV boundary tracking algorithm should not
follow the motion of the leaflets of the mitral valve. Track-
ing by detection failed on frame 8 (row 3, columns 3 and 4
in Figure 7b) because it always searches for what it learned
in the training stage, but ignores all the local image infor-
mation and temporal consistency.

The second type is the shrinkage error, eshrink, which
happens on the apex region. The 3D optical flow failed on
the frame 6 (row 2, columns 5 and 6 in Figure 7c) because of
the low image quality around the apex region. This proves
that motion prior is necessary to obtain enough shrinkage
for LV tracking in the 3D echocardiography because of the
low quality of ultrasound imaging.

Using our algorithm, shown in Figure 7a, none of the
errors are observed. We also provided two additional com-
parative sequences and seven tracking demos using the pro-
posed algorithm in the supplementary materials of this pa-
per.

The most important practical consideration for 3D track-
ing is computational complexity. One of the major rea-
sons to propose marginal space learning, steerable fea-
tures, registration based reverse mapping and one-step for-
ward prediction is the speed. Our currently C++ imple-
mentation requires 1 − 1.5 seconds per frame containing
160×148×208 = 4, 925, 440 voxels and about 20 seconds
for the whole sequence. Our implementation is at least two
times faster than the slice-cut algorithm presented in [11],
even if they are not working on 3D volumetric data directly,
and about hundreds of times faster than [18] which reported
using a MATLAB implementation.

6. Conclusions
In this paper, we presented a robust, fast and accurate LV

tracking algorithm for 3D echocardiography. Our algorithm
can process each 3D volume in less than 1.5 seconds and
provides subvoxel accuracy. According to our knowledge,
this is the first study reporting fast and reliable 3D ultra-
sound tracking of the left ventricle on a very large dataset.
We demonstrated that collaborative trackers increase the
tracking accuracy dramatically. The final accurate results

Figure 6. Two volume-time curves demonstrate the whole cardiac
cycle, which includes the systole stage and the diastole stage.

are also achieved by applying the motion priors using one-
step forward prediction. The robustness to complex back-
ground and weak edges is obtained from the learned dis-
criminative detector and boundary classifiers. The temporal
consistency is preserved by the template tracker. Instead of
building specific models for the heart, all the major steps
in our algorithm are based on learning. Our proposed al-
gorithm is therefore general enough to be extended to other
3D medical tracking problems.
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