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Abstract

We present an online, recursive filtering technique to

model linear dynamical systems that operate on the state

space of symmetric positive definite matrices (tensors) that

lie on a Riemannian manifold. The proposed approach de-

scribes a predict-and-update computational paradigm, sim-

ilar to a vector Kalman filter, to estimate the optimal ten-

sor state. We adapt the original Kalman filtering algorithm

to appropriately propagate the state over time and assimi-

late observations, while conforming to the geometry of the

manifold. We validate our algorithm with synthetic data ex-

periments and demonstrate its application to visual object

tracking using covariance features.

1. Introduction

Symmetric positive definite matrices (or tensors), in the

form of covariance matrices, are becoming a popular fea-

ture representation in various computer vision applications.

These feature spaces can be used to encode the principal dif-

fusion directions in Diffusion Tensor Imaging (DTI) [3, 7]

or model the appearance of objects for the task of visual

tracking [8, 9]. Outside the domain of computer vision,

symmetric positive definite tensors play an important role

in various branches of continuum physics (e.g., stress-strain

tensor) [6].

The space of symmetric positive definite (SPD) matri-

ces is not a vector space. Instead, it lies on a Riemannian

manifold that constitutes a convex half-cone in the vector

space of matrices. The lack of usual vector operations for

the SPD matrices (e.g., subtraction, mean) pose a challenge

for them to be used in many practical algorithms. Likewise,

it is also desirable in many applications to estimate the true

value of the SPD tensors from noisy measurements or to

model linear dynamical systems that operate on tensor state

spaces. The popular vector space algorithm, Kalman filter

(KF), is an efficient recursive technique to estimate the vec-

tor state of a system from noisy measurements. The typical

approach of applying the standard vector [5] or matrix [2]

Kalman filter to a SPD state will fail due to the geometric

structure of the underlying space. Applying regular vector

space operations will result in invalid state configurations

that do not lie on the SPD manifold (e.g., matrix difference

of two SPD tensors may not be SPD).

In this paper we present an optimal filtering strategy,

analogous to the vector space KF, which is applicable to

linear dynamical systems whose state is represented by SPD

tensors. The proposed algorithm provides an optimal esti-

mate of the system state in the least mean squared sense.

At each time instance, the state distribution is modeled as a

multivariate Gaussian on the Riemannian manifold of SPD

matrices. The algorithm predicts the new state of the sys-

tem according to the given model and appropriately propa-

gates the necessary information in time, conforming to the

differential-geometric properties of the manifold. Subse-

quently, the filter assimilates a new observation into the sys-

tem and updates the state estimate. This predict-and-update

cycle is repeated to propagate the system state over time and

assimilate observations during the estimation process.

The proposed filtering algorithm can be applied to a wide

range of problems that deal with estimation of SPD state

states like measurement of physical tensors, online model

update of covariance appearance features, etc. To demon-

strate the efficacy of our framework, we first apply it to the

problem of estimating the value of a constant tensor from

noisy measurements on a synthetically generated dataset.

Next, we describe an approach for object tracking using

covariance matrix of appearance features. We employ an

augmented SPD state space that simultaneously encodes the

position, velocity, and appearance of the object. The state

is propagated in time using a linear system that smoothes

the location and updates the appearance model in a unified

manner. Comparative tracking results with the baseline co-

variance tracking algorithm with mean update strategy [8]

are presented.

The remainder of the paper is organized as follows. We
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present the related work in Sect. 2. The proposed algorithm

is derived in Sect. 3 followed by the description of the ob-

ject tracking model in Sect. 4. Section 5 presents an exper-

imental evaluation of the proposed framework. Finally, we

summarize and give concluding remarks in Sect. 6.

2. Related Work

Kalman filtering, developed by Rudolf Kalman in

1960 [5], is an efficient recursive technique to estimate the

state of a dynamic system from a series of incomplete and

noisy measurements. In computer vision, KFs have been

widely used for object tracking. They assume that the un-

derlying process driving an object is linear and Gaussian

distributed. Typically, KF operates on vector spaces and

assume that the state is represented as either a vector or a

matrix [2]. Extended Kalman filters (EKFs) have also been

used, which allow the underlying process to be nonlinear.

Also, recent research in computer vision has focused on

algorithms that exploit the underlying structure (e.g., mani-

folds) of the state spaces used for object detection, tracking,

learning, etc. The SPD covariance matrices are popular in

the area of medical imaging [3, 7] and object tracking [8, 9].

Several vector space algorithms such as averaging, interpo-

lation, principal component analysis, etc., have been suc-

cessfully extended to work on the SPD manifolds [3, 6, 7].

3. Theory

We begin with a brief overview of Riemannian geom-

etry on the space of SPD matrices. Interested readers are

referred to [1, 7] for more information. The details of mod-

eling a linear dynamical system with a SPD state space fol-

lowed by the derivation of the optimal filtering strategy in-

cluding the state and error propagation mechanism on the

Riemannian manifold are presented. Our proof is inspired

by the optimal derivation of the vector KF algorithm [5].

Henceforth, we will denote the elements of the vector space

by small boldface letters (e.g., v) and the elements of the

SPD manifold by capital boldface letters (e.g., X).

3.1. Riemannian Manifolds of SPD Matrices

Let X ∈ Sym+
n denote the 2−mode n×n SPD tensor.

Elements of Sym+
n lie on a connected Riemannian man-

ifold, M ∈ R
n×n. The derivative at a point X on this

manifold lies in the tangent space, TXM, which is a vector

space formed by symmetric matrices, Symn. The Sym+
n

manifold is endowed with an invariant Riemannian metric

<y, z>X= tr
(

X−1/2yX−1zX−1/2
)

, ∀y, z ∈ TXM, that

varies smoothly from point to point. The metric induces a

norm for the tangent vectors on the tangent space, such that,

||y||X =<y,y>X.

The minimum length curve joining two points on M is

called the geodesic. For any X ∈ M there is a unique

geodesic starting with the tangent vector v ∈ TXM. The

exponential and logarithmic maps associated with the Rie-

mannian metric are respectively given by,

expX(v) = X1/2 exp(X−1/2vX−1/2)X1/2 (1)

logX(Y) = X1/2 log(X−1/2YX−1/2)X1/2 (2)

where, manifold exponential operator, expX :TXM7→M,

(Eqn. 1) maps the tangent vector v to the location on the

manifold reached in a unit time by the geodesic starting

at X in the tangent direction. Its inverse, the logarith-

mic operator, logX : M 7→ TXM, (Eqn. 2) gives the vec-

tor in TXM (with the smallest norm) corresponding to the

geodesic from X to Y. The geodesic distance between X

and Y is given by

d2(X,Y)=|| logX(Y)||X = tr[log2(X−1/2YX−1/2)] (3)

Since the exponential map is a diffeomorphism (one-

to-one, onto, and continuously differentiable mapping in

both directions), the logarithm is uniquely defined at all the

points on the manifold of Sym+
n [7]. However, it should

be noted that the manifold operators are different from the

standard matrix exp and log operators, which are defined as

exp(A) = Udiag(exp(diag(D)))UT (4)

log(B) = Vdiag(log(diag(S)))VT (5)

where the eigen-decompositions of A ∈ Symn and B ∈
Sym+

n are given by A=UDUT and B=VSVT , respec-

tively.

Most of the usual vector space operations using addition

and subtraction can be reinterpreted on a Riemannian man-

ifold via the exponential and logarithm maps (Eqns. 1,2).

For instance the vector addition operation Y = X+
−−→
XY

is equivalent to Y = expX(
−−→
XY) when the tangent vec-

tor
−−→
XY ∈ TXM identifies the geodesic starting at X and

ending at Y. Similarly, the vector subtraction operation
−−→
XY=Y−X can be realized by

−−→
XY=logX(Y).

3.2. Linear Dynamical Systems on Sym+
n

Let X(t) ∈ Sym+
n represent the true state of a system at

time t. X(t) = Xij(t) is subscripted by two covariant in-

dices i, j ∈ [1 . . . n]. Furthermore, let G(t) be the 4−mode

state transition tensor of size n× n× n× n that character-

izes the process which transforms the current system state

X(t) to X(t + 1). G(t) = Gij
pq(t) is denoted by two co-

variant indices p, q, and two contravariant indices i, j. The

2−mode process noise is represented by w ∈ Symn. The

state update equation of the linear dynamical system on the

Sym+
n manifold is given by

X(t+ 1) = exp(G(t)X(t)) (w) (6)



Similarly, the observation model H(t) = Hij
pq(t) is a

4−mode tensor indexed by the two covariant and two con-

travariant subscripts, similar toGij
pq(t). The 2−mode obser-

vation noise is denoted by v∈Symn. Therefore, at time t a

measurement Z(t) of the true state X(t) is made according

to

Z(t) = exp(H(t)X(t)) (v) (7)

Both the state and system noise tensors are assumed to

be drawn from zero mean multivariate normal distributions,

w∼N (0,Ω) and v∼N (0,Ψ), with the 4−mode covari-

ance tensors, Ω=E[wwT ] and Ψ=E[vvT ], respectively.

The reader is reminded of the tensor contraction opera-

tion used in the aforementioned system description and rest

of the document. A tensor contraction is performed when

one or more contravariant indices are same as the covariant

indices. For example,

G(t)X(t) = Gij
pq(t)xij(t) =

n
∑

i=1

n
∑

j=1

Gij
pq(t)xij(t) (8)

3.3. Optimal Filter for Sym+
n Manifold

As discussed in Sect. 3.1, logX can be used to realize the

vector space subtraction operation on the Riemannian man-

ifold. Moreover, since logX : M 7→ TXM, and TXM is a

vector space, we can also interpret logX as a function that

assigns unique vector space coordinates (w.r.t. X) to any

point on M. A vector space is closed under finite vector ad-

dition and scalar multiplication, along with the existence of

an additive inverse. This allows operations such as addition

and subtraction of vectors in TXM. However, an important

point to remember is that all vector coordinates (in TXM)

for points on M are dependent on the base point X, and

hence do not remain constant as the base point is changed.

Let X(t), X̃(t), and, X̂(t), denote the true, predicted,

and corrected states of a linear system at time t, respec-

tively. The predicted state X̃(t) is the a priori estimate of

the state at t, given the knowledge of the process before t,
and the corrected state X̂(t) is the a posteriori state estimate

at t, given measurement Z(t). In the following sections we

will drop the temporal index (t) on all elements whenever

it is possible without ambiguity. Also, we will proceed with

the following derivation by centering all quantities in the

tangent plane at a known location, Xb ∈ M, on the man-

ifold. At a given time instance, the predicted and the cor-

rected state errors (w.r.t. the true state) are given by

ẽ = logXb
(X) − logXb

(X̃) (9)

ê = logXb
(X) − logXb

(X̂) (10)

and the corresponding estimates of the error covariances

(before and after observation assimilation) are given by

Γ̃ = E[ẽẽT ] (11)

Γ̂ = E[êêT ] (12)

Analogous to the derivation of the vector KF, we assume

that the a posteriori state estimate X̂ is a linear combination

of the a priori state estimate X̃ and the weighted difference

between an actual measurement Z and the predicted mea-

surement HX̃. We can define X̂ in the vector space of the

tangent plane at Xb, and finally bring it back to the mani-

fold (using expXb
), as shown below,

X̂ = expXb

[

logXb
(X̃) + K(∆Z)

]

(13)

∆Z = logXb
(Z) − logXb

(HX̃) (14)

= logXb
(HX) + v − logXb

(HX̃) (15)

where K is the 4−mode weighting tensor (equivalent to the

Kalman gain matrix) and ∆Z is the innovation. Intuitively,

Eqn. 13 realizes the aforementioned linear combination by

adding the scaled (by K) innovation vector ∆Z to the vec-

tor coordinates of X̃ in the coordinate system centered at

Xb. Since the vector operations are performed in TXb
M,

all quantities should be first converted to the appropriate co-

ordinate system via the logXb
operator. Similarly, Eqn. 15

interprets the vector coordinates of the noisy observation

Z (in TXb
M) as the vector addition operation of the vec-

tor coordinates of the ideal observation HX at TXb
M and

the measurement noise vector v. Importantly, Eqns. 13-15

assume that the observation space (Z) is same as the state

space (X), and, we further restrict H to be an identity ten-

sor, thus assuming that we can measure all components of

the state space. This simplifies eqn. 13 to become

X̂ = expXb
[(I−K) logXb

(X̃)+K logXb
(X)+Kv] (16)

Upon substituting Eqn. 16 into Eqns. 10 and 12, and per-

forming some trivial manipulations, we obtain the a poste-

riori state estimation error and the error covariance as,

ê = (I − K)ẽ − Kv (17)

Γ̂ = (I − K)Γ̃(I − K)T + KΨKT (18)

To obtain a filter that is a least mean-square error es-

timator, we seek to minimize the expected value of the a

posteriori state estimate (Eqns. 10, 17). This is equivalent

to minimizing the trace of the a posterior error covariance

matrix Γ̂ (Eqns. 12, 18). We can find the optimal value of

K by minimizing the error function J = tr[Γ̂]. The mini-

mization is done by taking the partial derivative of J with

respect to K, and equating it to zero, i.e.,

∂J

∂K
=

∂

∂K
tr

[

(I − K)Γ̃(I − K)T + KΨKT
]

(19)

= −2(I − K)Γ̃ + 2KΨ = 0 (20)

therefore, solving for the optimal value of K to be

K = Γ̃(Ψ + Γ̃)−1 (21)



and further simplifying the expression for error covariance

by substituting Eqn. 21 in Eqn. 18 to get

Γ̂ = (I − K)Γ̃ (22)

The weighting or the blending factor K can be inter-

preted as follows. As the measurement error covariance

Ψ → 0, the blending factor K → I, therefore giving a

higher weight to the innovation, or in other words, having a

stronger belief in the observation Z as opposed to the pre-

dicted measurement HX̃. On the other hand, if the a priori

estimate of error covariance Γ̃→0, the weight K→0 and

the actual measurement is weighted less than the predicted

measurement HX̃, implying a higher belief in the process.

3.4. State and Error Propagation

Once the current estimate of the state gets updated by as-

similating the observation, we need to provide a mechanism

to propagate the estimate of the current state and the error

covariance to obtain the a priori estimates for the next time

step. The equivalent step is trivial in case of the vector KF

since the vectors are free to translate in a Euclidean space,

unlike on a manifold where the tangent vectors are tied to

a base point. On a Riemannian manifold, we can still com-

pare things locally, by using parallel transport, but not any-

more globally. Since in our case, the Riemannian manifold

of SPD matrices is afforded with an invariant metric, we can

use some of its properties to obtain the desired mechanism

for state/error propagation over time.

The a priori estimate of the state at t+1 can be obtained

as X̃(t+1) = G(t)X̂(t). In order to obtain a recursive so-

lution for the error propagation to the next time step, we

make some design choices in our linear dynamical model.

Firstly, we restrict our state transfer tensor G to a special

kind such that it can be decomposed as G=A ⊗ A, where

⊗ denotes the Kronecker tensor product and A∈GLn(R)
is any real invertible n×n matrix. This allows us to rewrite

the expression GX=AXAT . Such a restriction on G still

allows us to model a wide range of linear systems, an exam-

ple of which is shown in Sect. 4. Secondly, at each time we

also propagate the base point Xb(t) according to the sys-

tem transfer function, such that, Xb(t+1) = G(t)Xb(t).
Therefore, the a priori estimate of the state error and the

error covariance at t+ 1 is given by (see Appendix A),

ẽ(t+1) = logXb(t+1)(X(t+1))−logXb(t+1)(X̃(t+1))

= logA(t)Xb(t)A(t)T (A(t)X(t)A(t)T ) + w −

logA(t)Xb(t)A(t)T (A(t)X̂(t)A(t)T ) (23)

ẽ(t+1) = A(t)ê(t)A(t)T + w (24)

Γ̃(t+1) = G(t)Γ̂(t)G(t)T + Ω (25)

where Eqn. 23 represents the new true state X(t+ 1) as the

previous state X(t) transformed by G(t) and corrupted by

the noise vector w.

Input: a posteriori estimates X̂(t) and Γ̂(t),
observation Z(t), base point Xb(t)

Output: Filtered estimates X̂(t+ 1) and Γ̂(t+ 1)
STEP 1: Prediction (for next time step)

X̃(t+ 1) = G(t)X̂(t)

Xb(t+ 1) = G(t)Xb(t)

Γ̃(t+ 1) = G(t)Γ̂(t)GT (t) + Ω

STEP 2: Update time-step (t = t+ 1)

STEP 3: Assimilate observation and update

K = Γ̃(Ψ + Γ̃)−1

X̂ = expXb
[(I − K) logXb

(X̃) + K logXb
(Z)]

Γ̂ = (I − K)Γ̃

Algorithm 1: Recursive filtering on Sym+
n Manifolds

3.5. Implementation Details

The prediction and update steps for one iteration of the

filtering algorithm on the Riemannian manifold of SPD ma-

trices are given in Algorithm 1. The initial values of the base

point Xb(0), state estimate X̂(0), error covariance Γ̂(0),
and noise covariances Ω and Ψ, are provided by the user.

Two important things to keep in mind are (a) the con-

version between the n×n matrix representation and m =
n(n+1)/2−dimensional vector representation of the Sym+

n

and Symn matrices, and (b) the conversion between the full

and compact representation of the 4−mode covariance ma-

trices such as Γ̂, Γ̃, Ω, Ψ. For conversion (a) we form a vec-

tor from the lower triangular part of the symmetric matrix,

and vice versa. The conversion mentioned in (b) is required

due to the fact that the n×n×n×n−dimensional 4−mode

covariance tensor of a 2−mode n×n symmetric matrix will

be singular due to the linear dependency of the symmetric

elements of the 2−mode tensor. Therefore an equivalent,

compact, non-singular, m×m−dimensional representation

of the 4−mode tensor can be obtained by removing the lin-

early dependent coefficients due to the symmetric elements

of the 2−mode tensor. A conversion in the other direction is

also possible by repeating the redundant components from

the compact representation. We do not present the details of

the aforementioned conversion in interest of space, but the

reader is referred to literature on cartesian tensors [4] for

similar transformations. These conversions have been used

to derive Eqns. 18, 21, 25, etc.

4. Object Tracking With Covariance Features

Recent research has advocated the use of a covariance

matrix of image features for tracking objects [8, 9] instead

of the conventional histogram object representation models

used in popular algorithms. The covariance features enable

a compact representation of both the spatial and statistical



properties of an image patch. The covariance tracker in [8]

finds the object location by comparing (using Eqn. 3) the

covariance matrix at different image locations to the known

object model. The appearance model is updated by find-

ing the mean of the covariance matrices on the Riemannian

manifold over a fixed time window.

Even though [8] provides a mechanism for tracking ob-

jects and updating the appearance model, and one can ad-

ditionally use a standard vector KF to smooth the track-

ing outputs, a better approach, instead, would be to have a

framework that can track objects, smooth the obtained tra-

jectories, and update the appearance features in a unified

manner. Moreover, the strategy of averaging over a fixed

window is susceptible to failure during drastic changes of

appearance and the quality of results depend on the win-

dows size used for model update.

In this paper we present an application of our proposed

filtering approach (Sect. 3) to the task of object tracking us-

ing covariance features. We will construct an augmented

SPD state space that contains information regarding the

object position, velocity, and the covariance matrix of its

appearance features. The online filtering process on the

Riemannian manifold will be used to recursively obtain

the smoothed object location and the updated appearance

model simultaneously. The recursive procedure will not re-

quire the system to maintain an explicit history of appear-

ance features over a time window, and hence is expected to

be robust to drastic appearance changes.

The state matrix characterizing the joint spatial-

covariance state space used for tracking is given by

S(t) =













x(t) 0 0 0 0T
n

0 y(t) 0 0 0T
n

0 0 δx(t) 0 0T
n

0 0 0 δy(t) 0T
n

0n 0n 0n 0n C(t)













(26)

where, C is the n × n covariance matrix of features corre-

sponding to the image patch centered at {px, py} (see Ap-

pendix B), having vx and vy as the x− and y−components

of object velocity, respectively. Elements x, y, δx, δy ∈
(0, 1], are the normalized position and velocity coordinates

of the object, respectively. The coordinates are normalized

by the number of rows, r, and columns, c, in the image

to get x = px/c, y = py/r, δx = 0.5(vx + c)/c, and

δy = 0.5(vy + r)/r. Since C ∈ Sym+
n , and the diagonal

elements x, y, δx, δy > 0, the state matrix S(t) ∈ Sym+
n+4

is assured to be SPD.

We consider a time varying state transition function

G(t) = A(t)⊗A(t) and a fixed observation model H = I.

The 2−mode tensor A has the following form

A(t) =





λx(t) 0 0T
n+2

0 λy(t) 0T
n+2

0n+2 0n+2 In+2



 (27)

where, Ik is a k × k identity matrix. After each iteration,

t, we calculate λx(t + 1) =
√

(px(t) + vx(t))/px(t) and

λy(t + 1) =
√

(py(t) + vy(t))/py(t). The state transition

function described above propagates the system state from

t to t+ 1 and predicts the new object location based on the

object dynamics (velocity). The state matrix coefficients

corresponding to the object velocity and the appearance fea-

tures are assumed to be stationary and only get updated due

to observation assimilation and the model noise.

Lastly, we generate the measurement Z(t + 1) for the

filtering process at each frame as follows. We find the ob-

ject location in the new frame by scanning the neighbor-

hood of the previous object location {px(t), py(t)} and se-

lecting the location at which the covariance feature matrix

has the smallest distance (Eqn. 3) to the current (filtered)

object model C(t). Object velocity is calculated as a vec-

tor difference between the current and the previous object

location. Both, the object position and velocity, are normal-

ized between 0 and 1 (analogous to the coefficients in S(t)).
The covariance feature matrix corresponding to the new lo-

cation becomes the right-lower sub-matrix of the 2−mode

observation tensor Z(t+ 1).

5. Experiments

In this section, we first present results on a synthetic

dataset to estimate a constant tensor valued random vari-

able by filtering noisy measurements. Next, we show the

results of the tracking framework developed in Sect. 4.

5.1. Estimating a Constant Tensor

We conducted experiments with synthetic data on the

space of Sym+
3 manifold. A set of noisy tensor measure-

ments was generated by adding white Gaussian noise to a

constant tensor, M. A random Gaussian tensor can be gen-

erated as follows: First, a m=3(3+1)/2=6−dimensional

vector of independent and normalized real Gaussian sam-

ples is obtained. This vector is multiplied by the square root

of the desired (compact, m×m−dimensional) covariance

matrix. The Gaussian sample is converted back to the equiv-

alent 3×3 matrix in the tangent space Sym3, and brought

back to the manifold using the expM operator.

For this experiment, we set the system transfer function

to G = I3 ⊗ I3, base point Xb = I3, and initialized the

error matrices to Ω = ωI6, Ψ = ψI6, Γ̂(0) = γI6. The

parameters ω = 0.0001 and γ = 1 were fixed in all cases,

whereas, ψ was assigned the values {0.01, 0.1, 1.0} for dif-

ferent experiments. To evaluate the performance of the pro-

posed filtering approach, we compared the distance of the

true state, M, to the smoothed estimate, MN , of the state

matrix after assimilating N observations. The distance,

d2(M,MN ), was calculated using the Riemannian distance

metric in Eqn. 3. The entire experiment was repeated mul-



N 5 10 15 20 25 50 100 250 500

ψ = 0.01
d2(M,MN ) 0.0357 0.0157 0.0127 0.0133 0.0051 0.0072 0.0074 0.0068 0.0076

tr(Γ̂(N)) 0.0155 0.0081 0.0065 0.0060 0.0058 0.0057 0.0057 0.0057 0.0057

ψ = 0.1
d2(M,MN ) 0.3525 0.1706 0.1130 0.1025 0.0308 0.0407 0.0261 0.0223 0.0274

tr(Γ̂(N)) 0.1502 0.0681 0.0453 0.0350 0.0293 0.0205 0.0187 0.0187 0.0187

ψ = 1.0
d2(M,MN ) 3.4498 1.9052 1.1225 1.1890 0.3600 0.3945 0.2468 0.1383 0.1819

tr(Γ̂(N)) 1.4640 0.6609 0.4281 0.3177 0.2535 0.1316 0.0789 0.0605 0.0597

Table 1. Distance between the true state and the filtered output, d2(M,MN ), and the trace of estimated error covariance, tr(Γ̂(N)), after

filtering N observations. For this experiment the initial conditions were set to ω = 0.0001 and γ = 1.

tiple times and the averaged results are presented.

Table 1 shows the geodesic distance between the

smoothed state estimate and the true state for different val-

ues of N . We present the results for different values of the

measurement noise ψ. The table also shows the trace of

the corresponding error covariance obtained at the end of

N th iteration. The results show that the distance between

the filtered output and the true state converges to a small

value (e.g., ∼ 0.007 for the case of ψ = 0.01) after around

25 iterations. The trace of the error covariance matrix also

stabilizes around the same time. Therefore, our algorithm

converges quickly in terms of both the state and the error

covariance estimation, resulting in an accurate estimation

of the underlying constant SPD matrix. Furthermore, we

computed the distances between all noisy measurements

and the true state for the case of ψ = 0.01. The average

distance of the noisy measurements from the true state was

0.1534. Most observations (498 out of 500) were at a dis-

tance greater than the convergence distance of 0.0076 in the

given experiment. This further demonstrates the ability of

the proposed system to filter out the noise and obtain an ac-

curate estimate of the true SPD state.

Moreover, we can also see the effect of system and mea-

surement noise on the accuracy of convergence. A higher

measurement to system noise ratio (e.g., ψ=1.0, ω=0.0001)

takes longer time to converge and is slower to respond to

the measurements as compared to the case where the ratio

of the two noise values is small (e.g., ψ=0.01, ω=0.0001).

Also, the trace of the error covariance matrix converges to

a higher value in the former case, implying a higher predic-

tion uncertainty due to large measurement noise.

Lastly, we experimented with different values of the base

point Xb and obtained similar results, independent of its

choice. This further ascertains the correctness of our deriva-

tion, especially, the formulation of the error terms in Eqns. 9

and 10 (that accurately captures the difference between X,

X̃, and X̂, on the manifold), and specification of the a pos-

teriori state estimate X̂ centered at TXb
M (Eqn. 16).

5.2. Tracking Objects With Appearance Update

We compare the performance of the proposed tracking

approach (Sect. 4) with four other trackers formed by com-

bination of some existing approaches. We refer to the base-

line approach of [8] (without model update) as the “Cov”

tracker. The baseline tracker along with the model update

strategy based on averaging on Riemannian manifolds [8]

is called “Cov+Mean” tracker. Algorithms obtained after

smoothing the results of the aforementioned trackers by

a standard vector KF are denoted as the “Cov+KF” and

“Cov+Mean+KF” trackers, respectively.

An important advantage of the proposed tracking algo-

rithm is its ability to simultaneously filter the position esti-

mate and the appearance model of the object being tracked.

The online filtering approach does not require one to keep

a history of appearance models over a fixed time window.

When averaging is done over a fixed temporal window, in

the competing methods, the quality of the updated model

can be affected by an improper choice of the window size.

Instead, our algorithm dynamically weights the observa-

tions at each frame (using the weighting function K) and

hence can dynamically adapt to both gradual and drastic

appearance changes. In other cases where the appearance

changes are not drastic and other model update strategies

perform equally well, our algorithm in addition to provid-

ing a smooth estimate of the state space can handle situa-

tions of occlusion and data corruption (in either position or

appearance) without requiring additional modules.

Figure 1 shows tracking results of the various algorithms

on four different sequences (one in each row). Images in

each row correspond to different snapshots of the track-

ing results from each sequence. The red tracks correspond

to the proposed approach. The green, yellow, blue, and

cyan colored tracks correspond to the results of the Cov,

Cov+KF, Cov+Mean, and Cov+Mean+KF algorithms, re-

spectively. Appearance models for all algorithms were

identically initialized at locations where the target was com-

pletely visible. The noise parameters for filtering tech-

niques were identical in all sequences.

In the first two sequences there are drastic changes in

the appearance of the object, either due to changes in orien-

tation (e.g., target turns around) or physical characteristics

(e.g., target removes the jacket). The second sequence is

also complicated by the presence of another person that dis-

tracts the trackers due to similar appearance, additionally,

occluding the target (partially) for a few frames. All algo-

rithms, except the proposed filtering approach, fail to update



Figure 1. Tracking results of various algorithms on different sequences (one in each row). Trajectories are shown in color.

the covariance feature model in presence of drastic changes

in the object’s appearance, and therefore are unable to track

the target for the entire duration. The addition of vector KF

to the covariance algorithms only smoothes the trajectory

generated by the corresponding algorithms, but is unable to

improve the tracking performance.

Furthermore, even in cases where averaging based model

update algorithm (Cov+Mean) is able keep up with the ob-

jects appearance (gradual changes), the tracking output pro-

duced by our algorithm is much smoother as compared to

other approaches (e.g., the third sequence in Fig. 1). Lastly,

the fourth sequence shown in Fig. 1 is an extremely chal-

lenging example of the rapidly changing appearance model.

All the competing algorithms fail to track the target since ei-

ther they do not update the appearance model or they need

to average over a time window for model update. The ap-

pearance of the target changes too quickly for these meth-

ods to update their models. Whereas, the proposed tracker

adapts to the bimodal appearance of the target since the be-

ginning of the sequence, tracking it successfully over time.

We further compare the model update strategies used

by various algorithms. Figure 2 presents the geodesic dis-

tances (Eqn. 3) of the object models used by different algo-

rithms to the ground truth object model at each frame for

the first sequence used in Fig. 1. We do not show the re-

sults for the Cov+KF tracker as they are identical to that of

the Cov tracker (since both algorithms do not update the

appearance models). In the original sequence the object

appearance changes from black to white between frames

60−100. As shown in the plot, the appearance models em-

ployed by the different trackers start to become unreliable

during this transition. The Cov (and Cov+KF) tracker is

unable to follow the target object after ∼ 80 frames due to

the lack of model update mechanism. The Cov+Mean and

the Cov+Mean+KF algorithms attempt to track the object

for few more frames after which they are unable to handle

the drastic changes in the object’s appearance and fail to

track the object. On the other hand, the proposed tracking

algorithm, based on the online filtering approach for SPD

manifolds, is able to dynamically adapt to the appearance

changes by recursively assimilating observations (that in-

clude the covariance features) generated by the system.
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Figure 2. Distances between the appearance models used by dif-

ferent tracking algorithms to the ground truth appearance model of

the object at each frame. Results correspond to the first sequence

shown in Fig. 1.

6. Summary and Conclusion

We presented a recursive solution for optimal filtering of

a symmetric positive definite state space, modeled as a lin-

ear dynamical process on Riemannian manifolds. The pro-

posed framework is applicable to various domains such as

control theory, continuum mechanics, medical imaging, and

computer vision, that employ SPD matrices to represent in-

formation. The filter equations are derived in accordance

with the differential-geometric properties of the Rieman-

nian manifold of SPD matrices, and an iterative, predict-

and-update style computational framework is described to

obtain the smooth estimate of the state. Finally, we pre-

sented experimental results to demonstrate two applications

of the proposed framework, namely the task of state estima-

tion and visual tracking using covariance features.
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A. Tangent Vector Transformation Under

Action of Linear Groups

Consider the tangent vector γ = logX(Y) at X, corre-

sponding to the geodesic ending at Y. Also recall the prop-

erty of matrix logarithm log(C−1BC)=C−1 log(B)C for

any invertible matrix C. By rearranging the terms of Eqn. 2

and using the above property we get γ=X log(X−1Y).
Consider the action of the general linear group A ∈ GL

that transforms the points X and Y to AXAT and AYAT ,

respectively. The tangent vector at AXAT corresponding

to the geodesic from AXAT to AYAT is given by

η = logAXAT (AYAT ) (28)

= (AXAT ) log
(

(AXAT )−1AYAT
)

(29)

= AXAT A−T log(X−1A−1AY)AT (30)

= AγAT (31)

Therefore, Eqn. 31 describes the transformation of the

tangent vector due to the aforementioned group action.

B. Covariance Appearance Features

Let the feature vector fk at pixel location (x, y), having

the color triple (r, g, b), be denoted as fk=[x y r g b]. For a

W×H patch centered at pixel r= (x0, y0), the covariance

matrix of its features fk, k = 1 . . .WH , is given by

Fr =
1

WH

WH
∑

i=1

(fi − µr)(fi − µr)
T (32)

where µr is the mean feature vector for the pixels in the

given image patch. We can normalize the (i, j)th element of

Fr by the product of the standard deviations of the ith and

the jth feature dimension to obtain Cr (i.e., the matrix of

correlation coefficients). Matrix Cr still lies on the Sym+
n

manifold and has the additional advantage that all values in

the matrix ∈ [−1, 1]. In this paper, we employ normalized

covariance matrices for tracking objects.


