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Abstract

The ubiquitous application of eye tracking is precluded
by the requirement of dedicated and expensive hardware,
such as infrared high definition cameras. Therefore, sys-
tems based solely on appearance (i.e. not involving ac-
tive infrared illumination) are being proposed in literature.
However, although these systems are able to successfully
locate eyes, their accuracy is significantly lower than com-
mercial eye tracking devices. Our aim is to perform very
accurate eye center location and tracking, using a simple
web cam. By means of a novel relevance mechanism, the
proposed method makes use of isophote properties to gain
invariance to linear lighting changes (contrast and bright-
ness), to achieve rotational invariance and to keep low com-
putational costs. In this paper we test our approach for
accurate eye location and robustness to changes in illu-
mination and pose, using the BioID and the Yale Face B
databases, respectively. We demonstrate that our system
can achieve a considerable improvement in accuracy over
state of the art techniques.

1. Introduction

Eye location and tracking are important tasks in many
computer vision applications and research [7]. Some of the
most common examples are the application to face align-
ment, face recognition, user attention and gaze (e.g. driv-
ing and marketing), and control devices for disabled people.
Eye location/tracking techniques can be divided into three
distinct modalities [12]: (1) Electro oculography, which
records the electric potential differences of the skin sur-
rounding the ocular cavity; (2) scleral contact lens/search
coil, which uses a mechanical reference mounted on a con-
tact lens, and (3) photo/video oculography, which uses im-
age processing techniques to locate the center of the eye.
Unfortunately, the common problem of the above tech-
niques is the use of intrusive and expensive sensors [3].
While photo/video oculography is considered the least inva-
sive of the modalities, commercially available trackers still
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require the user to be either equipped with a head mounted
device, or to use a high resolution camera combined with a
chinrest to limit the allowed head movement. Furthermore,
daylight applications are precluded due to the common use
of active infrared (IR) illumination, used to obtain accurate
eye location through corneal reflection. Non infrared ap-
pearance based eye locators [1, 2, 5, 9, 10, 16, 15, 22, 25]
(Section 4.3) can successfully locate eye regions, yet are
unable to track eye movements accurately. Approaches that
fuse IR and appearance based modalities are also proposed
in literature [26], but dedicated hardware is still required.

The goal of this paper is to build an eye detector and
tracker that can quickly and accurately locate and track eye
centers in low resolution images and videos (i.e. coming
from a simple web cam). For this we made the following
contributions: (1) A novel eye location approach is pro-
posed, which is based on the observation that eyes are char-
acterized by radially symmetric brightness patterns. Con-
trary to other approaches using symmetry to accomplish the
same task [2], our method uses isophotes (Section 2) to in-
fer the center of (semi)circular patterns. (2) A novel cen-
ter voting mechanism (introduced in Section 3) which is
the key for the successful outcome of our approach. This
mechanism is used to increase and weight important votes
to reinforce the center estimates. In this paper we study
the accuracy and the robustness of the proposed approach
to lighting and pose changes, and compare the obtained re-
sults with the state of the art systems for eye location in low
resolution imagery (Section 4).

2. Isophotes Curvature Estimation
The isophotes of an image are curves connecting points

of equal intensity (one could think of isophotes as contour
lines obtained by slicing the intensity landscape with hori-
zontal planes). Since isophotes do not intersect each other,
an image can be fully described by its isophotes. Further-
more, the shape of the isophotes is independent to rotation
and linear lighting changes [19]. Due to these properties,
isophotes have been successfully used as features in object
detection and image segmentation [13, 17, 19]. To better il-
lustrate the well known isophote framework, it is opportune
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Figure 1. The original image (a), its isophote curvature at the edges
(b), and the 3D plot of the latter (c)

to introduce the notion of intrinsic geometry, i.e. geometry
with a locally defined coordinate system. In every point of
the image, a local coordinate frame is fixed in such a way
that it points in the direction of the maximal change of the
intensity, which corresponds to the direction of the gradi-
ent. This reference frame {v, w} is referred to as the gauge
coordinates. Its frame vectors ŵ and v̂ are defined as:

ŵ =
{Lx, Ly}√
L2

x + L2
y

; v̂ = ⊥ŵ; (1)

where Lx and Ly are the first-order derivatives of the lumi-
nance function L(x, y) in the x and y dimension, respec-
tively. In this setting, a derivative in the w direction is the
gradient itself, and the derivative in the v direction (perpen-
dicular to the gradient) is 0 (no intensity change along the
isophote).

In this coordinate system, an isophote is defined as
L(v, w(v)) = constant and its curvature is defined as the
change w′′ of the tangent vector w′. By implicit differenti-
ation with respect to v of the isophote definition, we have:

Lv + Lww′ = 0; w′ = − Lv

Lw
. (2)

Since we know from the gauge condition that Lv = 0, we
have w′ = 0. Differentiating again with respect to v, yields

Lvv + 2Lvww′ + Lwww′2 + Lww′′ = 0. (3)

Solving for κ = w′′ (the isophote curvature) and knowing
that w′ = 0, the isophote curvature is obtained as

κ = −Lvv

Lw
. (4)

In Cartesian coordinates, this becomes [11, 23]

κ = −Lvv

Lw
= −

L2
yLxx − 2LxLxyLy + L2

xLyy

(L2
x + L2

y)3/2
. (5)

The isophote curvature of a toy image is shown in Fig-
ure 1(b). For presentation purposes, the shown curvature
belongs to the isophote under the edges found in the image
using a Canny operator. The crown-like shape of the values
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Figure 2. The direction of the gradient under the image’s edges (a),
the displacement vectors pointing to the isophote centers (b), and
the centermap (c)

in the 3D representation (Figure 1(c)) is generated by the
aliasing effects on the circle. By scaling1 the original image
this effect is reduced, but at higher scales the isophotes cur-
vature might degenerate with the inherent effect of losing
important structures in the image.

3. Isophote Centers
Since the curvature is the reciprocal of the radius, we can

reverse Eq. (5) to obtain the radius of the circle that gen-
erated the curvature of the isophote. The radius is mean-
ingless if it is not combined with orientation and direc-
tion. The orientation can be estimated from the gradient
(Figure 2(a)), but its direction will always point towards
the highest change in the luminance. However, the sign of
the isophote curvature depends on the intensity of the outer
side of the curve (for a brighter outer side the sign is posi-
tive). Thus, by multiplying the gradient with the inverse of
the isophote curvature, the duality of the isophote curvature
helps in disambiguating the direction of the center. Since
the gradient can be written as {Lx,Ly}

Lw
, we have

D(x, y) =
{Lx, Ly}

Lw

(
− Lw

Lvv

)
= −{Lx, Ly}

Lvv

= −
{Lx, Ly}(L2

x + L2
y)

L2
yLxx − 2LxLxyLy + L2

xLyy
. (6)

where D(x, y) are the displacement vectors to the estimated
position of the centers, which can be mapped into an accu-
mulator, hereinafter “centermap”. The set of vectors point-
ing to the estimated centers are shown in Figure 2(b). Note
that two smaller centers are generated by the concavities
of the shape. Figure 2(c) represents the cumulative vote of
the vectors for their center estimate (i.e. the accumulator).
Since every vector gives a rough estimate of the center, we
can convolve the accumulator with a Gaussian kernel so that
each cluster of votes will form a single center estimate. The
contribution of each vector can be weighted according to a
relevance mechanism, discussed in the following section.

1Scale in this context represents the standard deviation of the Gaussian
kernel or its derivatives with which we convolve the image. See [11, 18]
for more details.
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Figure 3. The isophotes of a sphere image (a), the curvedness value
of the same image (b), the displacement vectors obtained by the
isophotes with high curvedness in the toy image (c)

3.1. Center Voting

So far we have used an edge-based approach and a toy
example to ease the explanations. In this specific case, we
can assume that there are only three isophotes in the image:
two describing the shape of the objects and one describ-
ing the background. By convolving the toy image with a
Gaussian kernel, it can be observed that: (1) the number of
isophotes increases around the edges; (2) besides some cre-
ations and annihilations, every new isophote can be consid-
ered as a scaled instance of the isophote that was describing
the object. Based on these observations we can safely con-
sider every new isophote as a new edge, which can be used
to reinforce the voting of a center. The main idea is that
by collecting and averaging local evidence of curvature, the
discretization problems in a digital image could be lessened
and accurate center estimation could be achieved.

Contrary to the used toy example, in real world environ-
ments we have no guarantee that the boundaries of an object
are of the same intensity, i.e. that there is a sole isophote un-
der the object’s edges. In this case, allowing every isophote
to vote for a center will produce meaningless results, since
the shape of the isophotes differs from the shape of the ob-
ject (Figure 3(a)). In order to cope with this drawback, only
the parts of the isophotes which are meaningful for our pur-
poses should be used, that is, the ones that follow the edges
of an object. This selection can be performed by using an
operator that yields more information about the relation be-
tween the isophotes and the boundaries of an object.

The curvedness, indicating how curved a shape is, was
introduced by [18] as:

curvedness =
√

L2
xx + 2L2

xy + L2
yy. (7)

We note that the curvedness has low response on flat sur-
faces and edges, whereas it yields high response in places
where the isophote density is maximal (Figure 3(b)). As ob-
served before, the isophote density is maximal around the
edges of an object, meaning that by selecting the parts of
the isophotes where the curvedness is maximal, they will
likely follow an object boundary and locally agree on the
same center. Figures 3(a) and 3(b) show the relation be-
tween the curvedness and the image isophotes. It is clear

Figure 4. The obtained centermap, the edges that contributed to
the vote, and an example of radius clustering

that the curvedness is higher where the isophotes are equally
distributed. Figure 3(c) shows the displacement vectors ob-
tained from every selected isophote in the toy image. Note
the difference between Figures 2(b) and 3(c): in the former
the centers are determined by a single isophote (sampled
on the edges), while in the latter all relevant parts of the
isophotes (selected through the curvedness) participate in
the center voting. The advantage of the proposed approach
over a pure edge based method is that, by using the curved-
ness as the voting scheme for the importance of the vote,
every pixel in the image may contribute to a decision. By
summing the votes, we obtain high response on isocentric
isophotes patterns which respect the constraint of being near
edges. We call these high responses “isocenters”, or ICs.

3.2. Eye Center Location

Recalling that the sign of the isophote curvature depends
on the intensity of the outer side of the curve, we observe
that a negative sign indicates a change in the direction of
the gradient (i.e. from brighter to darker areas). Therefore,
it is possible to discriminate between dark and bright cen-
ters by analyzing the sign of the curvature. Regarding the
specific task of cornea and iris location, it can be assumed
that the sclera is brighter than the cornea and the iris, so we
should ignore the votes in which the curvature is positive,
that is, where it agrees with the direction of the gradient.
As a consequence, the maximum isocenter (MIC) obtained
will represent the estimated center of the eye.

If one is interested in the most relevant radii (i.e. the
cornea and the iris), the pixels that generated the MIC can
be back projected to obtain a distribution of radius candi-
dates, on which we can perform clustering. Figure 4 shows
the results of the procedure applied on two high resolution
eye images. Note from the back-projected edges that our
method is able to cope with strong highlights (since bright
votes are discarded) and blurred images (due to less alias-
ing). In general, however, we expect certain lighting con-
ditions and occlusions from the eyelids to result in a wrong
MIC. To cope with this problem, we propose two enhance-



Figure 5. Sample of success and failures (last row) on the BioID face database; a white dot represents the estimated center.

ments to the basic approach, the first using mean shift for
density estimation and the second using machine learning
for classification.

Mean shift (MS) usually operates on back-projected im-
ages in which probabilities are assigned to pixels based on
the color probability distribution of a target, weighted by a
spatial kernel over pixel locations. It then finds the local
maximum of this distribution by gradient ascent [6]. Here,
the mean shift procedure is directly applied to the centermap
resulting from our method, under the assumption that the
most relevant isocenter should have higher density of votes,
and that wrong MICs are not so distant from the correct one
(e.g. on an eye corner). A mean shift search window is ini-
tialized on the centermap, centered on the found MIC. The
algorithm then iterates to converge to a region with maxi-
mal distribution. After some iteration, the isocenter closest
to the center of the search window is selected as the new eye
center estimate.

Machine Learning: instead of focusing on a single
MIC, the idea is to consider the n most relevant ones and
to discriminate between them using a classification frame-
work. Therefore, a window is cropped around each candi-
date isocenter (the size depends on the size of the detected
face) and is scaled to a reference size. A SIFT [20] based
descriptor (it differs from the SIFT as it does not search for
scale invariant features, since we already know where the
feature is) is computed at the center of the window (sup-
posedly, the center of the eye). The resulting descriptor is
then compared to a library of descriptors obtained from a
training set, using a simple KNN classifier (experimentally
this classifier achieved the best results). In the following
section we will see how the proposed extensions compare
to the basic approach.

4. Evaluation

So far we used high resolution images of eyes as exam-
ples. In this section we test the proposed method on the
more challenging task of locating eye centers on low res-
olutions face images, e.g. coming from a web cam. Ad-
ditionally, we test the method for robustness in changes in
pose and illumination, and for robust eye center tracking.

4.1. Eye Center Location: Accuracy

The used test set is the BioID database [4]. The dataset
consists of 1521 grayscale images of 23 different subjects
and has been taken in different locations and at different
times of the day (i.e. uncontrolled illumination). Besides
changes in illumination, the position of the subjects changes
both in scale and pose. Furthermore, in many samples of
the dataset the subjects are wearing glasses. In some in-
stances the eyes are closed, turned away from the camera,
or completely hidden by strong highlights on the glasses.
Due to these conditions, the BioID dataset is often consid-
ered a “difficult” dataset. The size of each image is 384x288
pixels. A ground truth of the left and right eye centers is
provided with the dataset.

For each subject, the face position is estimated by using
the boosted cascade face detector proposed by Viola and
Jones [24]. The rough positions of the left and right eye
regions are then estimated using anthropometric relations.
The proposed procedure is then applied to the cropped eye
regions (approximately 40x30 pixels) in order to accurately
locate the center of the eye.

The normalized error, indicating the error obtained by
the worse eye estimation, is used as the accuracy measure
for the found eye locations. This measure was proposed by
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Figure 6. Accuracy vs. minimum (best eye) and maximum (worse eye) normalized error obtained with the proposed methods. “All”
indicates the average.

Jesorsky et al. [16] and is defined as:

e =
max(dleft, dright)

w
, (8)

where dleft and dright is the Euclidean distance between
the located eyes and the ones in the ground truth, and w
is the Euclidean distance between the eyes in the ground
truth. In this measure, e ≤ 0.25 (a quarter of the interocular
distance) roughly corresponds to the distance between the
eye center and the eye corners, e ≤ 0.1 corresponds to the
range of the iris, and e ≤ 0.05 corresponds the range of the
cornea. In order to give upper and lower bounds to the ac-
curacy, in our graphs (Figure 6) we also show the minimum
normalized error, obtained by considering the best eye es-
timation only, and an average between the best and worse
estimation (indicated by “All”).

Figure 5 shows the results obtained on different subjects
of the BioID database. We observe that the method success-
fully deals with slight changes in pose, scale, and presence
of glasses (second row). By analyzing the failures (last row)
it can be observed that the system is prone to errors when
presented with closed eyes, very bright eyes, or strong high-
lights on the glasses. When these cases occur, the iris and
cornea do not contribute enough to the center voting, so the
eyebrows or the eye corners assume a position of maximum
relevance.

The graph in Figure 6(a) shows the accuracy of our
method for different e. While it is clear that most of the re-
sults are nearly optimal, there is a saddle on the normalized
error around the value of 0.15. This cluster of errors is con-
sistent with the previous observations: small errors occur
between the real eye centers and the eye corners/eyebrows.
The improvement obtained by using the mean shift proce-
dure for maximum density can be seen by comparing the
graphs in Figures 6(a) and (b). Without any additional con-
straint, the results improved with ≈ 2.5% over the basic
approach, and the variance between the best and worse eye
location is considerably reduced. The graph in Figure 6(c)
shows the accuracy obtained by using the KNN classifier to

discriminate between the top MICs, which achieved better
results than both the basic and the mean shift approaches.
However, note that by using classification the successful
outcome of the system will inherently depend on the con-
ditions it was trained with.

4.2. Illumination and Pose: Robustness

To systematically evaluate the robustness of the proposed
eye locator to lighting and pose changes, two subsets of the
Yale Face Database B [14] are used. The full database con-
tains 5760 grayscale images of 10 subjects each seen under
576 viewing conditions (9 poses x 64 illuminations). The
size of each image is 640x480 pixels. To independently
evaluate the robustness to illumination and pose, we test
the system on frontal faces under changing illumination (10
subjects x 64 illuminations) and on changing pose under
ambient illumination (10 subjects x 9 poses).

Figure 7 shows a qualitative sample of the results ob-
tained for one subject in the illumination subset. By an-
alyzing the results, we note that the system is able to deal
with light source directions varying from±35◦ azimuth and
from ±40◦ elevation with respect to the camera axis. The
results obtained under these conditions are shown in Ta-
ble 1. For higher angles, we note that the method is of-
ten successful for the less illuminated eye and sporadically
for the most illuminated one: if the eye is uniformly illu-
minated, its center is correctly located, even for very low
intensity images; if, on the other hand, the illumination in-
fluences only parts of the eye (some instances in the second
row in Figure 7), the shape of the isophotes is influenced by
shadows, resulting in an unreliable MIC.

Figure 8 shows the results of the eye locator applied to
the pose subset of the Yale Face Database B. Also here we
can see the robustness of our approach: due to the higher
resolution and the absence of occlusions and glasses, every
method obtained an accuracy of 100.00% for e ≤ 0.05.
The first errors are actually obtained considering e ≤ 0.03,
where the system achieves an accuracy of 93.18%.



Figure 7. Results changing the illumination on a subject of the Yale Face Database B.

Figure 8. Sample of results on the Yale Face Database B (ambient illumination, changing pose).

Method Accuracy Accuracy Accuracy
(e ≤ 0.05) (e ≤ 0.10) (e ≤ 0.25)

MIC 74.01% 82.57% 87.77%
MIC+MS 77.06% 85.63% 90.21%
MICs+SIFT 77.98% 86.85% 89.60%

Table 1. Accuracy vs. normalized error for illumination changes.

4.3. Comparison with the State of the Art

We compare our results with state of the art methods in
the literature which use the BioID database and the same
accuracy measure. The method used by Asteriadis et al. [1]
assigns a vector to every pixel in the edge map of the eye
area, which points to the closest edge pixel. The length
and the slope information of these vectors is consequently
used to detect and localize the eyes by matching them with a
training set. Jesorsky et al. [16] use a face matching method
based on the Hausdorff distance followed by a Multi-Layer
Perceptron (MLP) eye finder. Cristinacce et al. [10, 9] use
a multistage approach to detect facial features (among them
the eye centers) using a face detector, Pairwise Reinforce-
ment of Feature Responses (PRFR), and a final refinement
by using Active Appearance Model (AAM) [8]. Türkan et
al. [22] use edge projection (GPF) [25] and support vec-

tor machines (SVM) to classify estimates of eye centers.
Bai et al. [2] use an enhanced version of Reisfeld’s general-
ized symmetry transform [21]) for the task of eye location.
Hamouz et al. [15] search for ten features using Gabor fil-
ters, use features triplets to generate face hypothesis, regis-
ter them for affine transformations and verify the remaining
configurations using two SVM classifiers. Finally, Cam-
padelli et al. [5] use an eye detector to validate the presence
of a face and to initialize an eye locator, which in turn re-
fines the position of the eye using SVM on optimally se-
lected Haar wavelet coefficients.

Table 2 shows the comparison between our methods and
the methods mentioned above for an allowed normalized er-
ror smaller than 0.05, 0.1 and 0.25, respectively. Where in-
explicitly reported by the authors, the results are estimated
from their normalized error graphs, safely rounded up to the
next unit. It can be seen that, for an allowed normalized er-
ror smaller than 0.25, we achieved accuracy comparable to
the best methods. For iris location (e ≤ 0.1), our method
achieved superior accuracy with respect to the other meth-
ods, except for the one used by Cristinacce et al. [10]. This
can be justified by the fact that the method used by Cristi-
nacce uses other facial features to estimate and adjust the



Method Accuracy Accuracy Accuracy
(e ≤ 0.05) (e ≤ 0.10) (e ≤ 0.25)

MIC 77.15% 82.11% 96.35%
MIC+MS 79.56% 85.27% 97.45%
MICs+SIFT 84.10% 90.85% 98.49%
Asteriadis [1] 74.00%* 81.70% 97.40%
Jesorsky [16] 40.00% 79.00% 91.80%
Cristinacce [10] 56.00%* 96.00% 98.00%
Türkan [22] 19.00%* 73.68% 99.46%
Bai [2] 37.00%* 64.00% 96.00%
Campadelli [5] 62.00% 85.20% 96.10%
Hamouz [15] 59.00% 77.00% 93.00%

Table 2. Accuracy vs. normalized error for different methods.
*=value estimated from author’s graphs

position of the eyes (i.e. the eye center is in between the
eye corners) which works extremely well for correct iris lo-
cation, but does not have enough information to locate the
exact eye center. However, our approach excels for accurate
eye center location (e ≤ 0.05), even when using the basic
approach.

4.4. Eye Center Tracking

Even if the best accuracy is obtained by the MICs+SIFT
method, applying it to video images thirty times per sec-
ond will necessarily result in unstable estimates. However,
the MIC+MS method scales perfectly to use temporal in-
formation: the converged position of the MS window can
be used as initialization for the next frame, and the eye
locator can be used to reinitialize the tracking procedure
when it is found to be invalid (i.e. when the current MIC
falls outside the mean shift window). This synergy be-
tween the two components allows the tracking system to
be fully autonomous and user independent. The tracking
performances are evaluated by using image sequences col-
lected in an uncontrolled environment. The videos were
obtained using a low-resolution web cam and ten different
subjects were asked to test the system by performing fast
movements, pose, and scale variation. For each sequence,
we consider a track to be valid if it ends inside the iris re-
gion (e ≤ 0.1). Without considering the frames in which
a face was not detected due to motion blur or extreme side
poses, the MIC+MS tracker achieved an overall accuracy of
97.33%, while the frame-based MIC and MICs+SIFT ap-
proaches scored a lower 85.33% and 91.15%, respectively.
Figure 9 qualitatively shows the tracking results obtained
using the MIC+MS tracker. The white square indicates the
search window for the mean shift tracker, while the green
line indicates the tracking path in the last 20 frames. To
better understand the robustness of the tracker, note that
in most of the screenshots the green track is a dot, while
in the last image a fast head movement produces two R-
shaped tracks. On the second row it is also possible to see

Figure 9. Sample of tracking results

the failure of the tracker when applied to a subject wearing
glasses in the presence of strong highlights and the success
on the same subject when the highlights do not appear on
the glasses.

4.5. Discussion

An additional advantage of the proposed approach is
its low computational complexity: since the basic system
(without classification) only requires the computation of
image derivatives which is linear in the size of the image
and the scale (O(σN)), it allows for a real-time implemen-
tation. On a 2.4GHz Intel Core 2 Duo, using a single core
implementation, the system was able to process≈ 2500 eye
regions per second on a 320x240 image. Including the face
detector and the mean shift procedure, the algorithm takes
11ms per frame, which roughly corresponds to 90 frames
per second, therefore the final frame rate is only limited by
the web cam’s frame rate. Due to the high accuracy and
low computational requirements of the proposed method,
we believe that it can be successfully used as a preprocess-
ing step to some of the other systems. In particular, systems
using classifiers (e.g. [5, 16, 22]) should benefit from the re-
duction in the search and learning phases and can focus on
how to discriminate between few candidates. Furthermore,
note that our system does not use any heuristics or prior
knowledge to discriminate between candidates. We there-
fore suggest that it is possible to achieve superior accuracy
by integrating the discussed method into systems using con-
textual information (e.g. [10, 15]).

However, even if the proposed method compares and up-
dates the state of the art, it has certain limitations: the ac-
curacy of the system is in fact conditioned by the presence
of a symmetrical circular feature (e.g. the eye). If the eye
is closed, occluded by highlight or wrongly illuminated, the
algorithm will not be able to correctly locate an isocenter
where the eye is supposed to be. To understand what the
maximum accuracy achievable by our method is, we com-
puted the normalized error obtained by selecting the isocen-
ter closest to the ground truth. The graph in Figure 10 shows
the comparison between the basic method and the proposed



Figure 10. A summary of the obtained results, in comparison with
the upper bound curve for our method

extensions, and an additional curve which represents the
found upper bound on the BioID database. We can see that
the extensions helped to increase the bending point of the
curve, while the rest of the curve is similar in all the cases.
This means that the extensions reduced the number of times
an eye corner or an eyebrow is detected as the MIC, moving
the results closer to the upper bound. Note that the SIFT
extension almost follows the upper bound for e ≤ 0.05.

5. Conclusions

In this paper, we proposed a new method to infer eye
center location using circular symmetry based on isophote
properties. For every pixel, the center of the osculating cir-
cle of the isophote is computed from smoothed derivatives
of the image brightness, so that each pixel can provide a
vote for its own center. The use of isophotes yields low
computational cost (which allows for real-time processing)
and robustness to rotation and linear illumination changes.

An extensive evaluation of the proposed approach was
performed, testing it for robustness to illumination and pose
changes, for accurate eye location in low resolution images
and for eye tracking in low resolution videos. The com-
parison with the state of the art suggested that our method
is able to achieve highest accuracy, but this is somewhat
bounded by the presence of the eye pattern in the image. We
suggest the integration of our approach into existing contex-
tual systems to combine their strengths.
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