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Abstract

We present a method that is capable of tracking and es-
timating pose of articulated objects in real-time. This is
achieved by using a bottom-up approach to detect instances
of the object in each frame, these detections are then linked
together using a high-level a priori motion model. Unlike
other approaches that rely on appearance, our method is
entirely dependent on motion; initial low-level part detec-
tion is based on how a region moves as opposed to its ap-
pearance. This work is best described as Pictorial Struc-
tures using motion. A sparse cloud of points extracted us-
ing a standard feature tracker are used as observational
data, this data contains noise that is not Gaussian in nature
but systematic due to tracking errors. Using a probabilistic
framework we are able to overcome both corrupt and miss-
ing data whilst still inferring new poses from a generative
model. Our approach requires no manual initialisation and
we show results for a number of complex scenes and differ-
ent classes of articulated object, this demonstrates both the
robustness and versatility of the presented technique.

1. Introduction
Psychophysical experiments using the moving light dis-

play (MLD) have long demonstrated that motion can be

used to extract high level information [11, 3]. These exper-

iments represent each of the main joints as a single point,

thus serving to degrade the appearance of a person to an

absolute minimum, ensuring that any recognition cannot be

based on appearance cues. It is currently unclear whether

human perception of the MLD is achieved by considering

all the moving lights as one entity (the change in config-

uration of this entity then represents motion) or whether

the trajectories of the points are considered independently

to determine whether their motion is gait-like and then the

structure of the points is considered. The first of these ap-

proaches could be described as top-down and the second

bottom-up. In this work we explore the latter; bottom-up

estimation of pose using motion.

Bottom-up approaches attempt to break a large problem

into smaller sub-problems, in the case of pose estimation

this corresponds to first detecting individual parts, then as-

sembling them into the most likely configuration. Current

approaches use appearance cues for low-level part detection

and then find the most likely configuration using techniques

such as Dynamic Programming [8], Loopy Belief Propaga-

tion [15] or non-parametric Belief Propagation [19]. Our

approach, rather than to use appearance, is to use motion

for low-level part detection. We learn motion models that

represent how we expect a feature to move if tracking a par-

ticular joint. These models are then used as low-level part

detectors, to detect candidate limb positions based on the

motion of a specific region. We then use Dynamic Program-

ming to find the most likely configuration.

Low-level motion has been exploited in action recogni-

tion using techniques such as motion templates [2], spatio-

temporal features [5, 17], XYT cubes [16] and probabilis-

tic models learnt from sparse motion features [20]. These

approaches use low-level motion to classify different ac-

tions using a discriminative model, this allows an action to

be recognised but doesn’t extract specific information as to

how that action was performed. Such a task requires a gen-

erative model. The work that comes closest to ours, in their

use of motion, is that by Fathi et al [6] where motion exem-

plars are used to match against new image sequences. Once

a match is found, the pose from the matched training exem-

plar can be fitted to the input image using Gibbs sampling.

Our approach, rather than using a number of exemplars, is

to learn statistical models to represent the expected motion

and structure of the articulated object.

Various techniques have been employed to accurately

track articulated objects including particle filters [4], opti-

cal flow [12] and action specific dynamic models [1, 22].

Whilst these approaches provide a framework to track an

object, they require manual initialisation and are prone to

accumulate tracking errors. Our method achieves accurate

tracking by detecting the most likely instance of the object

in each frame independently. This approach, tracking via

detection, has been proven to yield encouraging results [13].
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The principal objective of pose estimation is that ex-

tracted poses should be unique to the image sequence being

observed: this requires inference using a generative model.

As observations become increasingly corrupt, reliance on

priors increases and this task becomes more difficult. The

observational data used in this work consists of a sparse

cloud of features extracted from a sequence of images using

the Kanade-Lucas-Tomasi (KLT) feature tracker [18]. Dif-

ficulties with these features include non-Gaussian noise and

tracking failures, where a feature is completely lost. How-

ever, the biggest problem is the sparsity of the data, most

limbs will not be tracked for a complete gait cycle or even

tracked at all meaning approaches such as [21] would fail.

Our algorithm will need to overcome missing and corrupt

data in every frame. To achieve this we use a three stage

approach.

The first stage is to use low-level motion models to cal-

culate the likelihood that an observed feature is tracking a

specific limb in a particular phase of gait. Once these like-

lihoods have been calculated for all points in all frames, a

HMM can be used to estimate the most probable gait phase

at each frame. By knowing the phase at each frame we can

constrain our search space by having phase dependent prior

models. The suitability of HMMs for this task have previ-

ously been demonstrated [13, 10].

The second stage is to use a priori spatial models to

search for the most likely pose in each frame. This is per-

formed using the gait phase estimate and likelihoods calcu-

lated in the previous stage. Our spatial model is based on the

pictorial structures representation [9] and efficient searches

can be performed over these models using Dynamic Pro-

gramming [8].

Given the previous pose estimates for each frame the

third stage is to perform a temporal search over all frames.

This is achieved using high-level motion models that de-

scribe how the articulated object should deform over time.

This search is also performed via Dynamic Programming.

Methods such as Loopy Belief Propagation (LBP) present a

framework such that the second and third stage could be in-

tegrated as has been previously demonstrated [14]. We opt

not to do this since we find that the temporal search can be

performed in a smaller search space than the spatial search.

This makes two separate searches more computationally ef-

ficient than one search using LBP.

In summary, the first stage detects parts and provides an

estimation of gait phase. The second stage uses this infor-

mation to estimate the most likely pose for each frame. The

third stage links together individual detections so that they

are temporally coherent. Each layer of the algorithm oper-

ates on the results of the previous layer.

To the best of our knowledge, this work presents the

first method that estimates pose of articulated objects using

only motion cues in a bottom-up manner, this work is bi-

ologically inspired by the psychophysical experiments ref-

erenced above. However, the interest in using motion for

pose estimation is not purely academic. Our approach has a

significant advantage over others as no training is ever per-

formed on descriptors derived from an image or sequence

of images. The result of this is that models could be learnt

from MoCap data and applied directly to an image sequence

without using any additional training data. No current ap-

proach can achieve this and this highlights the real potential

of our approach and why using only motion deserves further

exploration in the computer vision community.

2. Part Detection and Gait Phase Estimation
Our observational data used for part detection consists of

tracked features extracted from a sequence of images using

the KLT feature tracker.

Given the motion of a feature, we wish to calculate the

likelihood that it is tracking a specific joint in a particular

phase. As we also know the positions of the features we

can use this information to build sparse probability maps,

this will give us spatial information about where a particular

joint may be located in the image. In addition to this, we

can use the likelihoods to estimate the gait phase for each

frame, this information can then be used to guide our spatial

and temporal search as these models are both designed to be

dependent on phase.

We represent low-level motion as the motion a feature

would make if it was tracking a particular joint. This is

defined as a vector measuring the relative change in position

over consecutive frames.

Consider we have a different motion model for each joint

{Θ1, ..,Θn}, where n is the number of joints. Each model

is defined by Θ = {r,Σ} where r = {r1, .., rm} are vec-

tors that represent the expected motion between consecutive

frames, Σ = {Σ1, ..,Σm} are the corresponding covariance

matrices that model the variance in that motion and m is the

number of phases. The model is then represented by a chain

of vectors as shown in Figure 1.
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Figure 1. Chain used to represent a motion trajectory. r is the

average vector; Σ is the covariance matrix.

Given that we now observe the motion of a feature, vt,

we calculate the probability of that feature tracking the ith
joint in the jth phase as p(vt|Θi

j) = N (vt, r
i
j ,Σ

i
j). Given

that we have tracked a feature over a number of frames the

negative log likelihood is calculated as

L(vt|Θi
j) =

1
λ

(
l(vt|Θi

j) + L(vt−1|Θi
j−1)(λ − 1)

)
(1)



where l(vt|Θi
j) = − log

(
p(vt|Θi

j)
)

and L(vt−1|Θi
j−1)

is the likelihood of being in the previous phase in the previ-

ous frame. λ is a constant that effectively determines how

large a temporal window to integrate over.

We calculate this likelihood for each feature at every

joint and every phase in the model. A background model is

learnt by applying RANSAC to the motion of the features.

Each feature is then compared to this model, if a feature is

classed as being part of the background it is eliminated from

further use.

To estimate gait phase over the entire sequence of im-

ages, we classify a feature to a specific limb and phase by

minimising eq. (1) over i and j and allow each feature to

vote for the phase it has been classed as. This vote space

is representative of the states of a HMM where each phase

represents a different state.

A HMM is defined by three probability measures, A, B
and π, where A represents the state transitional probabil-

ity matrix, B is the observational probability distribution,

which is dependent on the number of votes a particular state

received, and π is the initial state probability distribution.

We allow only three types of state transition, to remain in

the current state, move to the next consecutive state, or skip

a state. These probabilities are set as {0.1, 0.8, 0.1} respec-

tively. We use a flat prior π since all phases are equally

likely. The optimal sequence of phases can then be calcu-

lated using the Viterbi algorithm.

3. Estimating Pose

Our objective in this section is to estimate pose in each

frame independently given the likelihoods and optimal se-

quence of gait phases calculated in Section 2. As we know

the position of each tracked feature we know the likelihood

of a specific joint being at that position in the image, this al-

lows us to construct a probability map for each joint. How-

ever, the tracked features are very sparse meaning that the

likelihoods at most of the pixels in the image are missing.

To avoid limiting our search over image locations where

features are present we need to infer likelihoods between

features to construct a dense probability map.

To achieve this consider a set of locations on a grid

l ∈ G, where the grid represents the image pixels. The

observed features lie on a subset of the grid B ⊂ G, at

these locations is the calculated likelihood of that feature

tracking the joint in which we are interested m(l). As you

move to a location (li) further away from an observed fea-

ture (lj ∈ B) the probability should decrease to reflect

the increased uncertainty in that observation at your cur-

rent position. This is represented by a zero mean gaussian

p(li, lj) = N (li − lj , 0, σ). The inferred likelihood at each

location li of the grid is calculated as

P(li) = min
lj∈B

(m(lj) − log(p(li, lj))) (2)

Since p(li, lj) is defined as a zero mean Gaussian, eq. (2)

can be efficiently calculated as a distance transform using

the techniques described in [7]. An example of a calculated

probability map with the features overlaid is shown in Fig-

ure 2. Regions with a higher likelihood are represented by

darker colours, this is as the probability maps actually rep-

resent the negative log of the probability. There is a local

minima around every feature point, this makes it preferable

for a limb to be located in the neighbourhood of a pixel con-

taining a feature.

Figure 2. Example of a likelihood map for the hip location with

KLT features overlaid. Darker regions represent areas with a

higher likelihood.

We construct a probability map for each limb P =
{P1, ..,Pn} over which we can perform our spatial search.

To define our articulated object we follow the notation from

[8] and we refer the reader to this work for a full description.

Consider the graph G = (V,E), where V = {v1, .., vn}
defines the set of n vertices (or nodes), and (vi, vj) ∈ E
define the set of edges connecting the vertices. The ver-

tices represent the joints of the articulated object and the

edges represent the dependence between connected joints.

A particular configuration of this graph can be described by

L = {l1, .., ln}, where li specifies the image location of vi.

There is an associated cost of placing vi at li which is de-

fined as mi(li). The set of edges represent the dependence

between connected vertices, where dij(li, lj) is the defor-

mation cost of placing vi at li and vj at lj . The quality of a

specific configuration is calculated as

Q =
n∑

i=1

mi(li) +
∑

(vi,vj)∈E

dij(li, lj) (3)

Finding the best configuration L∗ is found by minimising

eq. (3). Provided that the graph G = (V,E) has no loops

this can be solved using Dynamic Programming (DP). This

is achieved by starting at the leaf nodes of the graph and it-

eratively working towards the root, calculating at each node



Bj(li) = min
lj

(mj(lj) + dij(li, lj) +
∑

vc∈Cj

Bc(lj)) (4)

where vc ∈ Cj are the children of vj . The cost function

for the root node is then calculated as:

Br(lr) = mr(lr) +
∑

vc∈Cr

Bc(lr) (5)

Finding the best root position l∗r is found by minimis-

ing eq. (5) over lr. Given a set of observations O =
{O1, ..,On} it can be shown that minimising eq. (3) is

equivalent to maximising the posterior distribution p(L|O)
given by Bayes rule

p(L|O) ∝ p(O|L)p(L) (6)

where

mj(lj) = − log (p(Oj |lj)) (7)

dij(li, lj) = − log (p(li, lj |c)) (8)

and c represents a connection parameter between li and

lj .

The spatial model is represented as a set of joints, where

the position of a joint with respect to it’s parent is defined

by an angle measured relative to the horizontal φ(li, lj)
and a fixed distance Lij . In current approaches the rela-

tive angle between two limbs (three joints) is typically used,

this allows the conditional dependance between them to be

modeled and stops unlikely poses being inferred. However,

we learn a different spatial model for each gait phase, this

means our model is well enough constrained so that unlikely

poses do not occur. This assumption allows us to reduce our

search space as we are not concerned with the orientation of

a parent joint, only it’s position.

The prior for each joint’s configuration p(li, lj |c) is de-

fined by a Von-Mises distribution:

M(φ(li, lj), μ, κ) ∝ eκ cos(φ(li,lj)−μ) (9)

where μ represents the mean angle of the distribution and

κ defines how constrained the joint is. Learning a different

prior for each phase consists of estimating different values

for the parameters μ and κ for each limb.

Given the set of probability maps P = {P1, ..,Pn} the

best configuration L∗ for the model is calculated through

eq. (4) where mj(lj) = Pj(lj) and

dij(li, lj) =
{ − log p(li, lj |c) if lj ∈ li + Tij(θ)

∞ otherwise
(10)

θ = {θ1, .., θk} represents a set of k angles and Tij(θ)
is a function that calculates possible positions of lj given

the angle set θ. This function is defined since limb lengths

are fixed in our model. Given a location li there are only

a small number of possible locations for lj . In practice we

minimise eq. (4) over lj through the parameter θ. In general

k is much smaller than the number of locations in the image,

the result is that the complexity of finding the minimum of

eq. (3) increases linearly with the number of grid locations.

Calculating L∗ corresponds to calculating the Maximum

A Posterior (MAP) estimate of the probability distribution

p(L|O). The MAP estimate is just one example of how

to evaluate a posterior distribution, a more robust measure

is the expectation value 〈L〉. To calculate the expectation

value we needed to have calculated the full posterior dis-

tribution p(L|O). Through DP we have maximised the

posterior but this was achieved without having to actually

calculate it. However, we can use the approximation that

Br(lr) ≈ − log(p(lr|O)) to calculate the expectation value

for the root location 〈lr〉. The location of the other nodes

in the graph can then be extracted using the MAP estimate

conditioned on the root position 〈lr〉.
One of the difficulties with calculating an expectation

value is that if the posterior distribution is sharply peaked

then 〈lr〉 = l∗r . A solution to this is to smooth the posterior

using techniques from simulated annealing [4] where

p′(lr|O) = p(lr|O)
1
γ (11)

The value of γ affects how smooth the resultant posterior

will be. Whilst γ would normally be set to a constant we

define it by

γ =
log(p(lr|O)max) − log(p(lr|O)min)

ρ
(12)

where ρ is a constant that specifies the order of mag-

nitude between the lowest probability and the highest.

This makes our approach more robust since the degree of

smoothing γ is calculated for each frame depending on

the quality of the current observational data. The resultant

probability distribution for the hip location is shown in Fig-

ure 3 (a). The distribution is very broad, this is expected

as we have a large uncertainty in the exact position of the

root node because our observational data was very sparse.

The two horizontal lines in Figure 3 (a) are because if the

root node was located on either of these lines the outermost

joints of the object could not be placed in the image, this

has a zero probability.

Using the techniques described, pose is estimated for

each frame in the sequence independently. We learn a dif-

ferent a priori model for each phase of the gait cycle so that

the search is performed using the prior model for the current

gait phase estimated in Section 2.



(a) (b)

Figure 3. The expectation value is shown as a red dot. (a) Resultant

probability distribution for the root node (hip), lighter regions have

a higher probability. (b) Corresponding image with KLT features

overlaid.

4. Temporal Search
The high-level motion model is represented by the

change in angle between adjacent joints’ position. As this is

measured relative to just the parent node’s position we can

perform temporal searches separately for each joint. The

purpose of the temporal search is to refine pose estimates

from the previous section by making limb movements tem-

porally coherent over the sequence of frames. We are not

interested in the position of the root node as this was ro-

bustly estimated in the previous section. A simple low-pass

filter is adequate to make the motion of the root node tem-

porally coherent.

Since the root node’s position is already predetermined

the temporal search is carried out over the possible angles

a joint may be relative to it’s parent’s position. This search

space is much smaller than that used in Section 3 and can

be performed more efficiently in comparison.

There is a high-level motion model for each joint except

the root joint. This describes how a joint will move relative

to it’s parent as a function of phase, each model is defined by

a set of angles that represent the expected motion between

frames φ = (φ1, .., φm), where m is the number of phases

in the model.

The temporal search is also performed via Dynamic Pro-

gramming and as such can be defined using the notation

introduced in Section 3. The graph used for the temporal

search consists of n vertices, where each vertex represents

a frame of the sequence. The possible locations for a vertex

now correspond to different angles. The observational data

used for a joint O = {O1, ..,On} is the angle of that joint

estimated in the previous section for each frame. We also

make use of the estimated gait phase from Section 2 defined

as S = {S1, ..Sn}. The temporal search is performed over

the entire sequence using eq. (4), once we have defined

p(li, lj |c) = M(li, lj + φsj , κsj ) (13)

and

p(Oj |lj) = M(lj ,Oj , ακsj ) (14)

The deformation term makes it most probable to move

through the angle φsj
across consecutive frames. The ob-

servational likelihood is defined so that the probability of a

particular location lj is lower the further it is away from the

observed angle Oj . α is a constant that defines the weight-

ing between observations and model. For a low value of α
the model will dominate and a high value the observations

will dominate. In our experiments we set α = 0.5. The

results using different values of α are shown in Figure 4.

When α = 0.5 the motion model acts as a template which

is deformed to fit the observations, notice in particular that

the amplitude of the observed gait is maintained.
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Figure 4. Results of temporal search for knee joint using different

values of α. (a) α = 0.001, motion model dominates. (b) α =
1000, observations dominate. (c) α = 0.5, the model is deformed

to the observations.

The temporal search is performed for each limb over ev-

ery frame. Whilst assuming an independent search can be

performed for each limb may seem a somewhat crude ap-

proximation, our model is well enough constrained such

that unlikely poses will not occur.

5. Experimental Results
We tested our method on two classes of articulated ob-

ject; people and quadrupeds. Ground truth data for both

classes consisted of the hand labeled positions of the main



joints over a sequence of images, we also label the start and

end frame of each gait cycle. The structure of how the joints

are assembled was manually defined.

The ground truth was preprocessed in the following way

before models could be learnt. Firstly the sequence of

ground truth data was cut into individual gait cycles, then

a cubic spline was fitted to each gait cycle and they were re-

sampled so that all individual examples had the same tem-

poral length (in frames). Once the ground truth was in this

form all model parameters can be learnt directly from this

data.

The grid that we performed the spatial search over

was reduced to 180 by 144 locations. The angular range

searched over for each joint was set as π/6 radians. This

search was represented as 10 discrete angles centered on

the average angle for that joint in the given phase.

For the temporal search we used a space spanning 2π
radians represented as 180 discrete values. The image se-

quences were reduced to a size of 360 by 288 pixels before

the KLT feature tracker was applied. For all experiments λ
was set as 3.0 and ρ was set to 40, both these values were

determined empirically to yield satisfactory results.

The model representing a human was learnt from a per-

son walking on a treadmill side on to the camera for about

13 complete gait cycles. The hip was defined as the root

node. The learnt model consisted of 32 phases, a different

spatial prior was learnt for each phase.

As the motion models were learnt from a person walking

on a treadmill, when applying the models to people in real

world scenes we have to compensate for their translational

motion. We achieved this by using a bounding box propa-

gated using a particle filter to track the dominant object, rep-

resented by the largest cluster of foreground features. From

this we could calculate the foreground objects motion over

consecutive frames.

We tested our method on a number of different scenes.

The rough height of the person being tracked was manu-

ally set before pose estimation commenced. Some sample

frames of a scene and the calculated poses that we tested our

approach on are shown in Figure 5 (a) - (d). The calculated

poses are very similar to that of the person being tracked.

In Figure 5 (e) - (h) the features used are shown with

the corresponding estimated poses. The features are very

sparse making estimating pose from just these data points

alone impossible unless strong priors are used.

Another problem with learning gait from a person walk-

ing on a treadmill is that people walk differently on a tread-

mill to how they would normally. Particularly noticeable is

their stride length, people tend to have a much smaller stride

when walking on a treadmill. The effect of this can be seen

in Figure 5 (d) where the observed person is at full stride, in

the absence of well tracked features the spatial prior is re-

lied on which does not reflect the actual pose of the person

being observed. In Figure 5 (a) the observed person is again

at full stride, here as a feature is accurately tracking the foot

the model is allowed to deform to fit this observation.

We also show results for another sequence, obtained

from Michael Black, in Figure 6. Again the results show

that pose is estimated accurately apart from in Figure 6 (b)

where both legs are trying to deform to the same feature.

Whilst the prior tries to prevent this the resultant pose is not

very probable.

In both Figure 5 and Figure 6 the arm pose is poorly es-

timated. This is largely because the person used as ground

truth did not move their arms whilst walking. The conse-

quences of this is that there will be a high deformation cost

associated with extending the arm beyond the body and also

that the motion model for the hand would expect small mo-

tions, if a large motion is being made this motion will be

deemed unlikely to be the motion of a hand.

To quantify the accuracy of the presented method we

tested our approach on 8 sequences of a person walking on

a treadmill. For each sequence ground truth was hand la-

beled and our approach was tested over 50 frames. Table 1

presents the average error and operating speed for two dif-

ferent grid sizes. Notice that the operating speed is linearly

dependent on the number of grid locations. These results

also demonstrate the trade-off between speed and accuracy,

using a smaller grid results in larger errors due to the reduc-

tion in resolution.

In Table 1 we also compare our results to those using

motion exemplars from [6]. Whilst direct comparison is dif-

ficult as the two sets of results were obtained using different

data sets, both consisted of a treadmill viewed from the side-

on and the walkers are a similar height in pixels. The gait

length of the walkers from our data set ranged between 29

and 34 frames and the average height was 400 pixels. The

results show that our technique presents an overall improve-

ment, particulary when using a high resolution grid. A fur-

ther advantage of our approach is that no learning was ever

performed using descriptors derived from image sequences,

meaning that a model can be applied to an object with a

different shape and appearance, provided the structure and

motion of the object is similar.

To further demonstrate this we learnt a model of a

quadruped from 6 complete gait cycles of a cheetah walking

side on. The model was then applied to a lion, without any

further learning or tuning of parameters, as shown in Figure

7. The lion’s appearance and shape is significantly differ-

ent to that of a cheetah. This sequence is also challenging

since there is also a lot of clutter present, such as moving

grass, and the colour of the lion is also similar to that of the

background. However, our method is able to overcome all

of these problems.



(a) (c) (d)(b)

(e) (g) (h)(f)

Figure 5. Resultant estimated pose. (a) - (d) sample frames from sequence with pose plotted. (e) - (h) shows the corresponding observational

data from which pose was estimated.

(a) (c) (d)(b)

Figure 6. Sample frames from sequence with estimated pose shown. The features used are also plotted. Sequence courtesy of Michael

Black.

6. Conclusions

We have presented a method that uses only motion to es-

timate pose using a bottom-up approach. We have demon-

strated our approach on different classes of articulated ob-

ject in challenging scenes. In the presence of sparse and

noisy data we have still been able to extract new poses us-

ing our generative model learnt using a small amount of

ground truth data. The presented method currently oper-

ates at real-time, this has been achieved as part detection

is computationally cheap and we have assumed there is no

probabilistic dependency between the orientation of adja-

cent joints. Our model is currently constrained to the view-

point from which models were learnt, future work will focus

on integrating models learnt from different viewpoints and

developing more general representations of motion. This

work has demonstrated the potential of using only motion

for pose estimation and the end goal is an approach where

3D models can be learnt from MoCap data and applied di-

rectly to image sequences with no additional training data.
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