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Abstract 
This paper presents a fluid flow estimation method for 

ocean/river waves, clouds, and smoke based on the 
physical properties of waves. Most of the previous optical 
flow methods based on fluid dynamics/mechanics estimate 
a smooth flow using a continuity equation and/or div-curl 
velocity constraint. However, abrupt or inhomogeneous 
image motion changes in such fluid-like images are  not 
estimated well. In this paper, we assume that many 
fluid-like motion changes are due to wave phenomena that 
lead to a brightness change. Thus, a wave generation 
equation is applied with a two-step optimization. A novel 
constraint based on the velocity-frequency relationship 
equation and a wave statistical property are used. The 
results of experiments on synthetic and real image 
sequences show the validity of our method. 

1. Introduction 
  Methods of detecting the apparent motion of fluid-like 
motion in a video of, for example, clouds, ocean/river 
waves, and smoke have been one of the intensive research 
topics in computer vision [1-10]. A number of optical flow 
models based on fluid dynamics have been reported [1-5, 7], 
where a continuity equation is used to follow a certain 
property of the fluid [2-4], and a smoothness velocity 
constraint is used based on the first derivative of a velocity 
[3, 11] or the divergence-curl (div-curl) equation [2, 7]. 
However, the previous methods fail to achieve local 
detection of an abrupt motion change in a fluid image 
sequence. Almost all complicated motion and shape 
changes in a fluid-like image come from at least two 
factors: first, natural phenomena can change dynamically in 
an irregular manner, and second, a flow can move in 
multiple directions rather than a single direction. For 
example, the activities of clouds [2], smoke [22], and ocean 
waves [19] can be caused by complicated wind changes 
which play an essential role in changing image brightness. 
The resulting images show inhomogeneous texture over 
time ranging from smooth and discontinuous motion. Thus, 
we assume that these fluid-based phenomena are governed 
by a wind-induced waves’ physical property. In ocean 
engineering [18, 19], irregular and multidirectional 
properties of a wave have been extensively simulated. 
Because of the wave model, both the smoothness and 
discontinuity in image brightness are likely to be correlated 
with the change in a wave. In this paper, we present a wave 

phenomenon-based optical flow framework for a fluid-like 
image. A wave generation equation from ocean 
engineering [19] is used to model an image brightness 
change intergrated with the [10]’s basic model. To 
constrain the estimated velocity, a velocity-frequency 
relation equation [14, 15, 19] and a statistical property of 
the wave phenomenon [18, 19] are applied. Optical flow 
and wave related parameters are obtained by a two-step 
optimization algorithm using two consecutive images. In 
experiments, using synthetic and real image sequences, it is 
shown that our model surpasses a previous simple 
sinusoidal wave equation model [8] and two previous 
fluid-based optical flow models [2, 3]. The smooth and 
discontinuous motion in the inhomogeneous image 
brightness of clouds, for example, as estimated by our 
method is estimated visually plausible, whereas the 
previous methods estimate only smooth and uniform 
motion, thus validating the effectiveness of our method for 
fluid-like images.  

2. Related work 
   In recent years, a number of methods of estimating an 
optical flow from a fluid-like image sequence [1] have been 
widely reported. A fluid-like image such as cloud can 
change its shape and brightness over time in a much more 
complicated way than a rigid or elastic object. Thus, most 
of the previous methods utilize the fluid dynamics model. 
Corpetti et al. [2] applied a continuity equation [3] to 
estimate a satellite image of clouds with a div-curl velocity 
constraint. The continuity equation in fluid dynamics 
stands for the mass conservation law in a region and this 
equation links the density and velocity of a fluid parcel. 
The volumic mass is identified as an image intensity. 
Nakajima et al. [4] used the Navier-Stokes (NS) equation 
and a continuity equation as a velocity constraint. These 
previous methods are based on an image brightness 
constancy assumption. Zhou et al. [5] approximated the 
velocity of cloud motion by using an Affine motion model. 
They applied it to an infrared image to recover the height of 
the cloud using the NS and continuity equation. For an 
infrared cloud image, Bereziat et al. [6] modeled a total 
image brightness invariance of an object. This model is 
needed to segment object regions where the total brightness 
invariance principle is applicable. Otsuka et al. [20] used a 
spatiotemporal image for a nearly uniform flow with at 
least 15 frames and their nonphysical method [20] can not 
detect a locally abrupt image intensity change in fluid-like 
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images, i.e., rotation. Arnaud et al. [7] improved the 
accuracy of optical flow estimation using a Schlieren image 
sequence. However, this method is likely to be effective 
only in the specific image experiment system. A water 
surface [18] and image sequence over time show 
development and decay with a shape and brightness change 
in a much shorter period than in a cloud image sequence as 
explained above. Thus, river and ocean wave image 
sequences are very challenging objects for stable 
estimation of dense optical flow. Using a harmonic 
oscillation equation, Sun et al. [16] estimated one 
component of ocean wave motion in a video indirectly from 
a unidirectionally swaying yacht in a harbor with a manual 
setting. Thus,  flow waves with various orientations were 
ignored. Holland [14] and Spencer et al. [15] analyzed 
many basic wave properties, such as the wave frequency 
and wavelength from a wave video of a seashore/the ocean 
in sunlight. In their methods, a dispersion relationship, 
which we also use, played a central role in deriving 
wave-related physical parameters. This relationship is a 
function of velocity and frequency but they did not detect 
optical flow from a video. In an experimental room, Jahne 
et al. [13] estimated the orientation of wave motion and 
their methods were high effective at utilizing image 
intensity to estimate wave activity. Murase [8] used a 
simple sinusoidal wave equation with pattern matching to 
estimate a regular wave change in a wave. However, an 
object on the tank bottom can be viewed from the water 
surface. Thus, his model was very specific to an indoor 
regular wave. Doretto et al. [22] synthesized a temporal/ 
dynamic texture based on the ARMA model using number 
of image. However, the model learns a periodical change 
without optical flow. In computer graphics, a great number 
of wave animation methods have been presented using a 
wave generation model [17]. However, many wave-related 
parameters such as frequency must be manually defined 
with random numbers. No optical flow models from a wave 
video have been used. 

3. Wave Phenomenon Model 

3.1. Wave physical properties of fluid-like image 
  As mentioned above, in optical flow modeling, previous 
fluid-dynamics-based equations and velocity constraints 
are obviously insufficient to represent all necessary 
properties such as wave physical properties in a fluid-like 
image, i.e., a discontinuity. Thus, we will discuss a wave 
generation model as shown in Figure 1. Three examples of 
fluid-like  phenomena, hurricane (cloud) [2], smoke [22], 
and wave are shown (a). Cross-section profiles between 
two dotted lines corresponding to image intensity in each of 
the three real images are shown in (b). The respective 
image intensity changes over time at three points selected 

from between the dotted lines of (a) are shown in (c). The 
characteristics of the three phenomena are as follows: First, 
a satellite radar cloud/infrared image changes over time 
with the development and decay process, which is caused 
by a convective wind flow. Thus, the local brightness in an 
image response to a rotating flow in both vertical and 
horizontal directions. Second, in rising and diffusing 
smoke, blowing wind plays a central role in organizing a 
wavy pattern. On the surface of smoke [22], the image 
brightness changes over time due to an inhomogeneous 
wind flow. Third, in an ocean/river image, apparently, the 
water surface, for example, shows an elevated 
displacement, which creates a trough and crest over time. 
This phenomenon is activated by wind [19]. As a result, the 
shape and texture of a water surface can change over time. 
As mentioned above, most of the fluid-like phenomena in 
an image are likely to show a locally wavy change as well 
as a change in brightness. In order to model this, we refer to 
a wave generation theory (model) [18, 19] and in this paper, 
we extend this model to make it suitable for estimating the 
optical flow of cloud and smoke as well as water waves. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Wave-like activities of fluid-like images: (a) Images 
of three fluid-like phenomena: hurricane, smoke, and waves. 
(b) Illustration of wave patterns created by wind. (c) Intensity 
change in a wave-like image at three points in the respective 
three images.  

3.2. Basic wave equation 
  From a linear wave generation theory [19], a multi- 
directionality irregularity (MI) model is known. Regular 
motion means a periodical change while irregular motion 
means nonstationarity. The MI model is represented as 
shown in (1). In this paper, ( , , )H x y t  represents the image 
intensity (brightness) at pixel coordinates (x, y), at time t. 
 

,    (1) 
where * * * *, ( , ) , , , andyxa k k fm m m m m mθ ε are amplitude, 

wavenumber components, frequency, orientation, and 
noise, respectively. The performance of this equation has 
been verified by many wave experiments. This equation 
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includes two important properties: first, a wave moves not 
in a single direction but in almost all directions. A principle 
(strongest) wave flow exists along with subordinate weak 
flows. Second, it has a wide spectrum of frequency, 
amplitude, wavenumber, wavelength, height, and 
orientation. As a result, a wave shows an irregular height 
change as shown in Figures 2 in the examples in two 
dimensions (a) and one dimension (b). Here, (a) was 
simulated using (1), which combines a number of cosine 
functions up to M (~150). The wave-like image intensity 
change in Figure 1(c) shows a visually similar trend to the 
plot in Figure 2(b). Based on the characteristics of (1), we 
assume that the wave activity in an image sequence follows 
the MI model. Thus, since the image brightness change is 
modeled as (1), the accuracy of optical flow estimation will 
be enhanced. 
 
 
 
 
 
 
                      (a)                                                 (b) 
Figure 2: Example of a simulated irregular wave profile: (a) 
Two-dimensional waves using (1). (b) Time series versus the 
height of one-dimensional three plots at three points in (a). 

3.3. Modified wave generation model 
  Normally, when (1) is used, the order of M must be 
empirically set to over 100 to randomly approximate a 
wave frequency up to a higher frequency term. However, 
this is too large for our purpose. To reduce this order, we 
use one of the physical properties of waves [19]. It is 
known that the more the frequency and height a wave 
increases, the smaller the wavenumber becomes. Thus, we 
aim to treat a higher frequency property by a smaller order 
M term as follows. Based on the above property, the 
simplest modification to (1) is to multiply the amplitude by 
1/m and the wavenumber, frequency, and orientation by m 
as shown in (2), where m is an integer and m>0. For 
example, when the orientation θ becomes mθ, both the 
cosine and the sine functions have a higher frequency. For 
our parameter estimation purpose, the noise term can be 
ignored. 

             ( , , ) cos( cos sin 2 )
1

M yxH x y t a xk yk f tm m m m m m
m

θ θ π∑= + −
=

.      (2) 

where 
and                     

3.4. Optical flow model 
  In a video, we assume that image brightness changes over 
time according to (2). In order to integrate (2) into the 
optical flow framework, we apply the model of  Haussecker 
et al. [10]. As shown in (3), an image brightness variation 

model can be described. On the left, ∇ , w , and I  are the 
first spatial derivative, velocity (optical flow), and image 
intensity (brightness), respectively and It  is the first 
temporal derivative. If the right side is zero, this shows the 
image brightness constancy. Otherwise, the image 
brightness will change according to the physical 
phenomenon of wave. Haussecker et al. [10] used such as a 
heat diffusion model with no velocity constraint. In this 
paper, we apply (2) to the term on the right side of (3). As a 
result, (2) is transformed into (4), in which the optical flow 
components, ( , )u v= =w  
( / , / )dx dt dy dt . Pyramidal image processing when the size 
of an image over 20 x 20 pixels is used to cope with a large 
displacement in a video. 

( )d physics
I It dt

∇ ⋅ + =w ,                           (3) 

where                     ,                             ,                             , 
1

( ) /
, ,

I
t

n n
I I t
i j i j

≡
+

− Δ ,                     

                    ( ) ( ( , , )d physics d H x y t
dt dt

= .                  (4)                 

3.5. Velocity constraint 
  When we are solving (3) and (4), a velocity constraint will 
enhance the estimation accuracy and stability. We use two 
velocity constraints: a smoothness constraint and a 
(modified) dispersion relationship constraint. The first one 
is used because of the nature of fluidity and the second one 
is a novel constraint in computer vision. From a wave 
theory [19], the relationship between the wavenumber and 
angular frequency [15, 19] is defined as shown in (5).  

2 tanh( )gk khω = ,                                (5) 
where 2 fω π= , k , h , and g  are angular frequency, 
wave number, water depth, and gravity acceleration, 
respectively. The other basic variables are the period, 

1/T f= , wavelength, 2 /L kπ= , and velocity, 
2 2 1/ 2| | ( )c u v= = +w , where / /c L T kω= = . From (5), we 

obtain a new velocity constraint as shown in (6): (For 
details, see appendix A).  

12 2 2| | ,c fγ∝ − where 
2

3
16

g
h

γ
π

= .    (6) 

3.6. Objective function 
  We define the objective function E (7) to estimate two 
optical flow components along with five wave-related 
parameters which are the two wavenumber components, 
frequency, amplitude, and orientation. α  was set to 0.001. 

 
 

(7) 

** */ , , ,y yx xa a m k k m k k mm m m m m m← ← ⋅ ← ⋅ * ,f f mm m← ⋅
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where                                            ,                                 , 
 
                            ,                                    ,    
On the right hand side of (7), the first term represents the 

variation in image brightness in an MI model (2). The 
second and third terms show the wave constraint of (6) and 
smoothness constraint imposed by the first spatial 
derivative, respectively. (7) can be solved by a 
least-squares method. To avoid the influence of outliers 
[12] in an image, we apply the Lorentzian robust function 
ρ . Two consecutive images are input and computed in a 
two-dimensional region 2RΩ ∈ . To minimize (7), the 
Conjugate Gradient method is applied, where numerical 
differencing is used to obtain the first derivative of E (7) 
with respect to seven variables.  
 
 
 
 
 
 
 
(a) 
 
 
 
 
 
 
(b) 
Figure 3: Algorithm for estimating optical flow and wave- 
related parameters using the physical properties of wave. (a) 
Overview of a two-step optimization for estimation. (b) 
Second step of the optimization based on a histogram of 
frequency in each subblock and an averaged frequency 
profile. 

3.7. Two-step optimization 
  When minimizing (7), we must define three parameters of 
an order M, γ , and the subblock size of an image, 2RΩ ∈  
in advance. Figure 3(a) shows our algorithm for estimating 
optical flow and wave-related parameters in a two-step 
optimization. An image is divided into several subblocks 
(b), the size of which is related to the motion speed per 
frame. The order M (2) is related to the range of high 
frequency bandwidth. The γ  influences the magnitude of a 
discontinuity in motion. The first optimization is locally 
performed in each subblock where three parameters of a 
subblock size, an order M, and γ  are provided with 
respective initial values. Since the optimal combination of 
these three parameters is estimated locally, consistency of 
flow is needed among neighboring subblocks. Thus, we 
introduce a global optimization as the second optimization 

estimating three parameters such as M. For this, we rely on 
a theoretical property of wave [19]. We utilize the 
Bredtschneider energy spectrum equation (8).  
 
                                                                                     .   (8) 
Here, 1 3 1 3and H T  are defined as the significant wave 

height and the significant frequency, respectively. This 
profile has one peak as shown in Figure 10(a), where the 
horizontal and vertical axes show a non-dimensional 
frequency and energy spectrum, respectively. This unique 
profile was obtained experimentally when wind blew over 
a water surface. Since it has a non-dimensional frequency 
and Figure 1(c) shows a wave-like change caused by the 
wind, we assume that this profile holds true for smoke and 
hurricane image sequences as well. To obtain the 
relationship between a non-dimensional frequency and 
energy, as shown in Figure 3(b), we assume that the 
number of pixel in frequency is proportional to the 
magnitude of the energy spectrum. Multiple profiles shown 
in (b) can be obtained ranging over six orders, M = 3~8 
when γ  and the subblock size are fixed. In order to choose 
one profile from six, we can find the closest profile to the 
Bredtschneider profile (8) when we obtain the minimum 
error for using (9). In (9), a function of an Est(f) is 
computed by summing the histograms of all subblocks in 
an image when M and γ  are fixed. The other unknown 
parameters of subblock size and γ  are also interchanged as 
in (a). Thus, all unknown parameters are optimized through 
the two-step optimization process. Note that a subblock in 
an image is shifted per pixel. 
( , , ) | ( ) ( ) |, ,

, ,
M subblock arg min B f Est fopt M subblock

fM subblock
γ γ

γ
∑= − .    (9) 

4. Experiment on Synthetic Images 
  To show the validity of our model, we conducted several 
experiments all of which used two consecutive images. For 
a fluid-like real image sequence, it is difficult to quantize 
estimated data. Therefore, we first synthesized a test image 
sequence with ground truth flow data. In this simulation, 
we wanted to create a wavy image sequence. To do this, we 
use two fluid-dynamics-based numerical models : the 
advection (AD) equation and the Navier- Stokes (NS) 
equation [21]. The AD equation can update an image 
intensity over time along with a given velocity vector field 
and the NS equation can update a velocity vector field. 
Therefore, what we need is to provide a complicated 
velocity field using [21]. Thus, a wavy fluid-like 
synthesized image sequence can be simulated. Using one 
real wave image at time t (Fig. 4(a)), we generated a 
deformed image at time t+1 (b). The original image was 
borrowed from Figure 8 (b). In Figure 4, a complicated 
velocity field with two large vortexes, one 

( ) 0.257
2 5 4( ) exp{ 1.03( ) }1/ 3 1/ 3 1/ 3 1/ 3B f H T T f T f=

− −−

0
He I I u I vt x y t−∂= + + ∂

2 2 2 2 1/ 2| ( ) |1 v me u fα γ+= − − 2 2 2 2| |.2 v vx y x ye u u+ + +=

( )( )2( , ) log 1 0.5 /z zρ σ σ= + 2 2/ 2 /(2 )e e eρ σ∂ ∂ = +
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counterclockwise and the other clockwise wise, and wavy 
flows (c) were defined and the AD equation was then 
applied with (a) and (c) to generate (b). The flow sketch in 
(d) clarifies what flow was used. Note that many 
discontinuous flow changes around each vortex have been 
defined. The ground truth of the velocity field was 
compared with the flow fields estimated by our method and 
by three previous methods [2], [3], and [8] (details given in 
Appendix B). [2] is based on a div-curl velocity constraint 
(DC model), and [3] is also based on a continuity equation 
model (WS model) with a smooth velocity constraint. A 
simple sinusoidal wave equation from [8] was also used 
(SIN model) in place of the MI based equation (2).  

      

 
 
 
(a)                                             (b) 
 
 
 
 
(c)                                             (d) 
 
 
 
 
 
(e)                                              (f) 
 
 
  
 
(g)                                             (h) 
Figure 4: Synthesitc test image sequence at time t (a) and, at 
time t+1 (b). (c) The given flow. (d) Flow sketch. (e) DC model. 
(f) WS model. (g) SIN model. (h) Our MI model. 
 
 
 
 
 
 
 
Figure 5: Comparison of three methods for synthesized 
images with additive noise. 
 
The results show that the DC model optical flow (e) gave 

many expanded flow fields but no vortex. Note that all flow 
vectors are presented with different intervals and lengths 
due to the nonlinear magnitude of each model. The WS 
model (f) estimated the most uniform flow among all 
models. The optical flow of the SIN model (g) shows an 
underestimated flow with a very rough flow. Our model (h) 
estimated two distinct vortexes with a laminar flow: M = 6, 
γ =1.6, subblock size =15x15. 

Next, in order to verify the robustness of each model, we 
added Gaussian noise to (a) and (b). The average angular 
error [11] between the ground truth and four estimated 
results was quantified. The results of analysis are 
summarized in Figure 5, where the horizontal and vertical 
axes represent the standard deviation of additive noise from 
3 to 18 per 3 and the angular error, respectively. Noise 0 
corresponds to the results of Figure 4 (e - h). The WS model 
shows the worst result among four models. Our method (M 
= 6, γ =2.0, subblock size =15x15) was the best, achieving 
a 50% improvement over the SIN model.  

5. Experiment on Real Images 
  Four real wavy image sequences of a hurricane, smoke, a 
weak wave, and a strong wave were used to compare 
optical flow among the three previous methods and our 
method: see the supplementary material. 
Hurricane: Figure 6 shows the results of optical flow for 
the hurricane (a) at time t and a flow sketch (b) at time t+1. 
The DC model (c) overestimated the flow and so did the 
WC model (d). The location of the vortex was not clearly 
detected. The SIN model (e) only estimated laminar flow in 
the left upper region with no vortex. Our model (f) (M = 6, 
γ =2.0, subblock size =20x20) succeeded in estimating a 
large vortex and discontinuous flow (see in the dotted 
ellipse) around it. 
 
 
 
 
 
  (a)                                           (b) 
 
 
 
 
  (c)                                           (d)                    
 
 
 
 
(e)                                                   (f) 

 
Figure. 6. Comparison of optical flow methods for a hurricane  
image sequence: 192x128 pixels: (a) Original image. (b) Flow 
sketch. (c) DC model. (d) WS model. (e) SIN model. (f) Our 
MI model. 
 
Smoke: Using Figures 7(a) and (b), four results (c-f) of 
optical flow are shown. The DC model (c) and the SIN 
model (e) gave similar flows. An expanding and 
contracting flow appears in the DC model (c). The WS 
model (d) only detected a translated flow. In the SIN model 
(e), an underestimated flow was detected everywhere with 
a strong rightward flow. Our model (f) (M = 3, γ =1.2, 
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subblock size =10x10) estimated a strong upward flow at 
the bottom of the image and its expansion at the top with a 
discontinuous flow: see in the dotted ellipse.  
  
 
 
 
     (a)                                        (b) 
 
 
 
 
     (c)                                        (d) 
 
 
 
 
 

(e)                                        (f) 
Figure. 7. Comparison of optical flow methods applied to a 
smoke image sequence: 172x120 pixels: (a) Original image*. 
(b) Flow sketch. (c) DC model. (d) WS model. (e) SIN model. 
(f) Our MI model. * by courtesy of MIT. 
 

 
 
 
 

(a) Weak wave               (b) Strong wave 
 
 
 
 
 

(c) DC model 
 
 
 
 
 

(d) WS model 
 
 
 
 
 
                                    (e) SIN model 
 
 
 
 
 

(f) Our MI model 
Figure 8: Comparison of optical flow methods for weak and 
strong* real wave image sequences: 172x115 pixels: * by 
courtesy of MIT. 
Wave: Two different wave activities, i.e., weak and strong, 
in a video were used as shown in Figures 8(a), (b). The 
results show that two previous methods of the DC (c) and 
the WS (d) models estimated oversmoothed flows. On the 

other hand, (e) estimated a wavy flow from a strong wave 
only underestimated smooth flow from a weak wave. Thus, 
in all previous methods, roughness or discontinuous 
displacements in waves can not be estimated well and no 
details of the complexity of the wave surface can be found. 
On the other hand, our MI model (f) estimated a 
complicated flow that corresponds to the changes in the 
wave. In particular, a discontinuity in flow was well 
estimated due to inhomogeneous image intensity and 
motion. In the second optimization, the Bredtschneider 
energy spectrum was used via Figures (8) and (9). When 
the order M = 3~8 was changed for the strong wave image 
(Fig. 8(b)), the profile estimated frequency distribution was 
as shown in Figure 10(b). The most similar profile (Fig. 
10(b)) comparing with Figure 10(a) was selected. In our 
model, M = 3/8, γ =1.0/2.0, and subblock size =5x5/20x20 
(weak wave/strong wave) were estimated, respectively.. 
 
 

 
 
 
 

(a) No velocity constraint     (b) Velocity constraint (γ=2.0)  
Figure 9: Effectiveness of the velocity constraint: magnified 
view of the red rectangle in Figure. 8(b). 

6. Discussion 
(Evaluation of optical flow) From Figures 4~8, we 
conclude that our method was more effective than previous 
methods. We will discuss the differences among Figures 
4-8 as follows: Of the results for the DC and WS models, 
uniform and smoothed optical flows were commonly 
estimated for the hurricane (Figs. 6(c), (d)) and wave 
images (Figs. 8(c), (d)). The flow difference between these 
two methods can be found in Figures 4(e), (f) and Figures 
7(c), (d). In both methods, a local salient flow such as a 
vortex was either weakly detected or not detected. In the 
result of smoke (Fig. 7), a more expanding flow in the DC 
model (c) was detected than in the WS model (d). This 
suggests that a continuity equation can not locally capture a 
nonlinear flow. A div-curl velocity constraint played a role 
mainly in the effects of expansion [7] but the other 
important flow compared with (f) was detected less. Thus, 
two of the previous fluid-based models failed to capture not 
only a wave activity but also dynamic image intensity over 
time. On the other hand, in Figures. 4(g) and 7(e), the SIN 
model estimated a more local change in an image than the 
DC model and WS models. The SIN model estimated a 
clearer vortex in Figure 4(g) than in Figure 6(e), which can 
be explained by fact that the image intensity of the 
hurricane image changed more than that of the synthetic 
image. This is also comparable to the image intensity 
change of the smoke (Fig. 7(e)) where a large region of 
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weak flow is estimated in the smoke image. In the wave 
image (Fig. 8), three models, DC, WC, and SIN gave nearly 
the same results, which all failed to detect a discontinuous 
change due to troughs and crests of the wave phenomenon. 
In our MI method, all flows were estimated as a visually 
plausible change of a vortex, trough, and crest. The 
difference between our model (2) and the SIN model (B.2) 
arises from two properties of the wave generation equation. 
The first one is that the SIN model does not include a wave 
orientation parameter. This means that the SIN model is for 
a single orientation flow but our model is more effective for 
a multiple orientation flow. The second one is that our 
model (2) can include a higher spatial frequency as in 
Figure 8(f) while the SIN model does not mathematically 
include this. This related to how a discontinuity appears in 
the estimated flow. Another factor of this discontinuity was 
due to the velocity constraint (7), the value of γ . For our 
model, Figure 9 shows the difference between γ  = 0 and 
γ  = 2.0. This image corresponds to the red boxed region in 
Figure 8(b). Note that, in the SIN model, no discontinuity 
was verified for any value of γ  even when the setting was 
done manually, which shows a limitation of the SIN model.  
For a discontinuous flow detection, Black et al. [12] has 
shown discontinuous flow detection in a rigid object with a 
static background; our model however, estimated 
discontinuous flows in fluid-like image sequences as seen 
in Figures 6(f), 7(f), and 8(f). These results can not be 
obtained without the effectiveness of a robust function as in 
[12]. The MI model with a novel velocity constraint was 
more important than the use of the robust function. 

 
  
 
 
 
 

(a) Theoretical profile              (b) Estimated profile 
Figure 10: (a) The Bretschneider energy spectrum profile 

and (b) Estimated profiles of a strong wave for M = 3~8 
estimated by our method. 
 
 
 
 
 
 
 
Figure 11: Five wave-related properties estimated by our 
method for a strong wave (Fig. 8(b)). 
 
(Evaluation of the other properties) In all experiments, 
our model estimated five wave-related physical properties. 
However, due to space limitations, we have shown only the 
results for Figure 8(b) in Figure 11. A quantitative 
evaluation for these is more difficult than for optical flow 

since their units are divided by a frame, i.e., [Hz/frame] in 
frequency, and the height scales in the five plots are very 
small. We performed the visual analysis using a video and 
these five plots. The height variation in Figure 8(b) was 
similar to an amplitude plot in Figure. 11. A higher 
frequency was detected overall which corresponds to a 
strong wave property and both the orientation and the two 
wavenumber components show a stronger region in the 
right half than in the left half. Although the SIN model also 
estimated wave-related  parameters, each showed a uniform 
and nearly flat plot like optical flow. Thus, our MI model 
was validated for a fluid-like image sequence where 
inhomogeneous changes in image intensity occurs.  
 
 
 
                                      
  (a)                                              (b) 
 
 
 
(c)                                              (d)                    

 
 
 

                                           
(e)                                              (f) 

Figure 12: Comparison of optical flow for a real wave image 
sequence with known motion: 180x120 pixels: (a) Original 
image*. (b) Flow sketch. (c) DC model. (d) WS model. (e) SIN 
model. (f) Our MI model. * by courtesy of Independent 
Administrative Institution, Port and Airport Research Institute, Japan 
 
(Additional experiment) We performed an additional 
wave experiment and limited the verification to one 
physical property, i.e., orientation. Note that the magnitude 
of a wave velocity was not used for evaluation. As shown 
in Figure 12, a one-directional regular wave pattern was 
mechanically generated in a pool (a). Although the wave 
was not generated by wind force, the nature of the viscous 
and the inertial force influenced the wave activities similar 
to ocean/river waves. A wave train approached the wall of a 
line (b) and then overflowed like the arrows in the sketch. 
Part of the wave crossed the wall perpendicular to the line 
(b) and a reflection wave moved in the opposite direction. 
We used these wave orientations as the ground truth for 
evaluating optical flow. The results showed that two 
previous methods (c) and (d) estimated a smooth flow in 
the upper right region with no reflecting wave. The SIN 
model (e) showed similar results to those of our model (f), 
but the overflowing and reflecting flows moved differently 
from the ground truth. These results can be a strong smooth 
constraint to the estimated flow. Among all methods tested, 
our method (f) gave the most visually plausible flows with 
M = 6, γ =1.6, and subblock size =15x15. Using an 

frequencyamplitude orientation

wavenumber (x) wavenumber (y)
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infrared image sequence could remove the uncertainty of 
the temparature of the water surface. However, such a 
system is expensive to use and produces blurred images. In 
all results, three parameters such as M have been estimated 
so that each parameter becomes large (small) when 
inhomogenity in an image shows large (small). 

7. Conclusion 
 This paper presents a wave-physical-property-based 
optical flow method in a fluid-like image sequence where 
both a smooth and discontinuous flow exist. A novel 
velocity constraint and the statistical property of waves are 
also used. Our method surpasses three previous fluid-based 
models. In future, we will enhance it by modeling changes 
in the shadows and illumination on the water surface. 
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Appendix A 
  To begin with, a dispersion relationship between the velocity and 
frequency is used to derive the novel velocity constraint in this paper.  

  
                                                                                             (A.1) 

where c is a velocity (optical flow). A Taylor expansion series of tanh( )x  
shows the following. 

1 2 173 5 7tanh( )
3 15 315

x x x x x= − + − + . 

Using this, (A.1) becomes 
 
 
            , where         .            (A.2)  
With respect to velocity c , this can be transformed as follows: 

44 2 2 3 2 0
3

c ghc gh fπ− + =                                                       (A.3) 

For a real solution, 2c  must satisfy the following condition: 
16 32 2 3 2 2( )

23 16

ggh gh f f
h

π
π

≥ ∴ ≤              (A.4) 

When we select a positive solution, the relationship between a frequency 
f  and velocity c  is given by  

( )1/ 4162 2 2 3 2 2 2( ) 3 /(16 )
3

c gh gh f c g hfπ π∝ − ⇒∴ ∝    

Finally, we obtain a new velocity constraint for wave motion.           

2 2 1/ 2| | .c fγ∝ −  where 3
216

g

h
γ

π
= .                  (A.5) 

Appendix B 
 Here, we give a brief description of two of the previous methods. First, a 
fluid-based optical flow model applies a continuity equation and a div-curl 
velocity constraint [2] as shown in (B.1). 
 
 
 
  

                              
(B.1) 

where two empirically determined control parameters are 6103λ = , 

6104λ
−= . The first term on the right hand side of (B.1) is used in [3] with 

a smooth velocity constraint. Second, the simplest wave equation (B.2) is 
used from [8]. Here, we have amplitude aq , order Q, wavenumber 

( , )x yk kq q , and image intensity ( , , )sinH x y t . We apply (B.3) to (4) with 

no velocity constraints. 
 

                         (B.2) 
                                                                   (B.3) 
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