
Modeling and Generating Complex Motion Blur for Real-time Tracking

Christopher Mei and Ian Reid

Department of Engineering Science

University of Oxford

{cmei,ian}@robots.ox.ac.uk

Abstract

This article addresses the problem of real-time visual

tracking in presence of complex motion blur. Previous au-

thors have observed that efficient tracking can be obtained

by matching blurred images instead of applying the compu-

tationally expensive task of deblurring [11]. The study was

however limited to translational blur. In this work, we anal-

yse the problem of tracking in presence of spatially variant

motion blur generated by a planar template. We detail how

to model the blur formation and parallelise the blur gener-

ation, enabling a real-time GPU implementation. Through

the estimation of the camera exposure time, we discuss how

tracking initialisation can be improved. Our algorithm is

tested on challenging real data with complex motion blur

where simple models fail. The benefit of blur estimation is

shown for structure and motion.

1. Introduction

Visual tracking is a fundamental step in many computer

vision algorithms such as structure from motion and in

robotic applications such as visual servoing. The track-

ing approach studied in this article belongs to the family

of tracking methods that minimises a dissimilarity mea-

sure and more specifically a sum-of-squared-differences

(SSD) between a reference template and the current image

warped through a parametric transformation. This formu-

lation leads to a non-linear optimisation problem that can

be solved for small displacements (the type of movement

that would be expected in a scene at video rate). Paramet-

ric tracking has been applied previously with a translational

model [12], an affine model [15] or a more generic homog-

raphy including illumination changes such as in [10]. A

homography captures any motion induced by a planar re-

gion and so we also adopt this model. However our work is

distinguished from [10] in that we also explicitly consider

change in appearance induced by motion blur, the main

thrust of our article.

Motion blur occurs in images captured by a camera when

the camera or an observed object moves during the finite

exposure time when the camera shutter remains open (or

the CCD pixels remain exposed) to record the image. A

handheld sequence with jitter or an indoor sequence with

poor illumination are typical examples where motion blur

has to be taken into account during tracking.

Recently Jin et al. [11] proposed an approach for track-

ing in presence of motion blur. The key observation was that

instead of deblurring the image it is more efficient to match

blurred versions of the templates (due to the commutativity

of the blur kernels). The same idea is used in the work pre-

sented in this article. Our contribution is in the extension

of their work from translational blur to any complex blur

generated by constant velocity inter-frame motion between

a camera and plane while improving the overall computa-

tional complexity. In particular, we relax the assumption

of spatial invariance of the kernel enabling the modeling of

complex blur such as rotation and “zooming”. We also de-

tail how to generate motion blur efficiently and apply the

algorithm to real-time tracking. Other contributions con-

cern the minimisation process where we detail a novel hi-

erarchy of transformations (applicable to other problems in

computer vision) with gradual increase in complexity that

improves the overall tracking stability.

In the first section, we discuss the formulation of the

visual tracking problem. We detail the motion model, the

motion blur model and how to minimise the cost function.

For clarity, we did not include a robust cost function or ba-

sic photometric deformations as these could easily be added

using for example the approach in [10]. Section 3 describes

how to generate efficiently homography-based motion blur.

Finally we show results obtained on simulated and real im-

age sequences.

1.1. Related work

Several approaches can be considered to align blurred

images: feature-based and direct approaches.

Extracting features in blurred images is a difficult prob-

lem. In the general case, a blur kernel can be infinitely com-

plex and spatially variant. Some success has been achieved

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

however under certain simplifying assumptions. In [9], the

authors derive image moments invariant to blur and trans-

lation assuming the point spread function (PSF) is centrally

symmetric. This work was later extended in [8] to cope for

rotation and blur in an arbitrary number of dimensions. If

the assumptions are violated, these methods can still empir-

ically give usable results but the precision is often affected.

This is where direct approaches prove useful.

Direct approaches that evaluate the blur parameters can

be classified according to the following criteria: assump-

tions made on the kernel (arbitrary, only translation, spa-

tially invariant, ...), if the method requires deblurring at each

iteration step, if we assume only blur in one of the images

and the type of application: deblurring two images without

any relation between the blur and the inter-frame motion

(for example digital images of the same scene taken at dif-

ferent times) or if we are tracking in a video stream.

A simple generic approach to registration would be to

first apply blind deconvolution to the images using for ex-

ample recent work such as [7]. However this would discard

the extra information available when jointly estimating the

different blur kernels and the motion and would also suffer

from deconvolution artifacts.

The recent work by Yuan et al. [16] is well adapted to

estimating the blur between two digital images taken with

different exposures. The authors formulate the problem of

registration in presence of blur as that of finding the sparsest

kernel blur. The advantage of the approach is the possibility

to evaluate arbitrary kernels. The flexibility of the approach

comes at a high computational cost as each parameter of the

kernel has to be estimated. The kernels are also assumed to

be spatially invariant.

Our work is more closely related to methods where sim-

plifying assumptions can be made on the blur kernel such

as in video streams leading to more efficient algorithms ap-

plicable to real-time applications. In [14], the authors regis-

ter blurred images by deblurring the input images assuming

translational blur. The work by Jin et al [11] improves over

the approach by using the commutativity of the blur kernels

to track between blurred versions of the input images thus

avoiding the expensive and ill-conditioned step of deblur-

ring. [6] extends this work by adding a segmentation step

and assuming different translational blurs for each region.

By restricting the blur kernel to a translation kernel, these

approaches cannot deal with simple rotational blurs caused

by camera rotation about the optical axis, or blurs induced

either by a zooming camera or looming motion. Our work

aims at removing these limitations by providing a way to

model more complex blur and generate blurs efficiently on

a GPU. Our main focus is improved tracking performance

with applications in structure from motion from video se-

quences rather than the deblurring (ie image reconstruction)

process itself. We can therefore readily make the assump-

tion that a non-blurred version of the template is available

from a previous observation.

2. Visual tracking

2.1. Motion model

Let I∗ be the reference image. We will call reference

template noted R a region I∗ corresponding to the projec-

tion of a planar region of the scene. Let It, t = 1..T be a

sequence of images. Tracking corresponds to finding the

projection of the pixels p ∈ R in the sequence of images.
The projection of a point belonging to a planar region

follows a planar homography notedH defined up to a scale

factor. Thus if the template has only undergone a geometric

transformation, tracking at time t will correspond to finding

the optimal homographyH such that:

∀p ∈ R, It(Π(Hp)) = I∗(Π(p)) (1)

with Π the standard perspective projection function

(Π(X,Y, Z) = (X
Z

, Y
Z
)). For clarity, we will drop the pro-

jection function except during the Jacobian calculations.

Written as an optimisation problem, knowing an initial

estimate Ĥ, we wish to find the optimal incrementH0 that

minimises the sum-of-squared differences:

H0 = argminHi

∑

p∈R

‖It(ĤHip) − I∗(p)‖2 (2)

In [2], the authors propose to fix the scale factor of H

by choosing det(H) = 1 or equivalently by imposing
H ∈ SL(3) (Special Linear Group) through the local pa-
rameterisation of the increment using the exponential map:

Hi = H(x) = exp




8∑

j=1

xjGj



 (3)

withG1, ...,G8, 8 generators of the Lie algebra sl(3).
What was not noted and is of interest for computational

efficiency and practical reasons is that affine transforma-

tions and translations can be written as connected Lie sub-

groups of SL(3). Affine transformations with 6 degrees of
freedom can be written in two different ways:

A=




a1 a2 t1
a3 a4 t2
0 0 1



or : A=




a1 a2 t1
a3 a4 t2
0 0 a5



 s.t. det(A)=1 (4)

The advantage of this second formulation is that we impose

A to be invertible. Furthermore, A can be parameterised

locally by the 6 first generators of the SL(3) Lie group and
this automatically imposes the condition det(A) = 1. Sim-
ilarly translations can be expressed usingG1 andG2. This

formulation has the practical advantage of generating a hi-

erarchy of transformations similar to [3] but in a generic

framework. The complexity of tracking is O(m2p) with m

the number of parameters and p the number of pixels [1].

By adapting the number of parameters to the tracked tem-

plate and motion, tracking efficiency and stability can be

improved.

To summarise, withH(x) ∈ SL(3) representing a trans-
lation, affine transformation or homography according to

the number of generators chosen, (2) can be written:

x0 = argminx

∑

p∈R

‖It(ĤH(x)p) − I∗(p)‖2 (5)

Let p=[x y 1]⊤, JHx
will be needed when minimising (5):

JHx
=

∂Π(H(x)p)

∂x

∣∣∣∣
0

=

[
1 0 y 0 x −x −x2 −xy

0 1 0 x −y −2y −xy y2

]
(6)

With Matlab notations, the Jacobians for the translation and

affine cases are JHx
(:, 1:2) and JHx

(:, 1:6) respectively.
JHx
is asymmetric and depends on the choice of generators.

2.2. Motion blur

In [11], the authors make the observation that the com-

mutativity of the blur kernel enables tracking in presence

of motion blur to be formulated as a minimisation problem

over the blurred templates. This avoids the ill-conditioned

and expensive operation of deblurring. We will follow the

same idea but only assume that the current image is blurred.

Therefore, we will be blurring the reference template for the

tracking. If I is a blurred image, we denote its un-blurred
version by Iu.

In [11], a translational Gaussian kernel with parameter

v = [vxvy] is chosen as a blur model:

Iv(p) =
1√
2π

∫ +∞

−∞

e−
t
2

2 Iu(p − vt)dt (7)

This choice of convolution is somewhat surprising as it does

not correspond to the standard process of motion blur gen-

eration. In most cameras, the shutter speed can be con-

sidered as instantaneous so there is no Gaussian temporal

blurring. We thus choose the more standard model, dubbed

directional blur:

Iv(p) =

∫ 1

0

Iu(p − vt)dt (8)

A more general model, valid for any blur generated by a

planar template with constant velocity motion, can be writ-

ten in homogeneous coordinates (withH(x) the sum of the
generators of SL(3)):

IH(x)(p) =

∫ 1

0

Iu(e−tH(x)p)dt (9)

It should be clear that this model encompasses equation (8).

Let T be the Lie representation of a translation. T is nilpo-

tent of index 2 so: e−tT p = (I − tT)p = p − T (:, 3)t.
Adding the motion blur model, with (H,H(x)) the val-

ues at the solution, we have the following identities:

It,H(x)(p)=

∫ 1

0

Iu
t (e−tH(x)p)dt, Iu

t (Hp)=I∗(p) (10)

This leads to the relation:

It(Hp) =
∫ 1

0
Iu

t

(
H(H

−1
e−tH(x)H)p

)
dt

=
∫ 1

0
I∗(H

−1
e−tH(x)Hp)dt

≈
∫ 1

0
I∗(e−tH(y)p)dt

(11)

In general y is a function ofH and higher orders of t. This

approximation is valid for small blur kernels. It proved effi-

cient in practice. An alternative to avoid this approximation

is to minimise in the current frame by warping the reference

image (Iu
t (p) = I∗(H

−1
p)). In practice, we found that

warping the current template lead to more stable tracking.

In [11], the authors claim that it is better to estimate the

motion blur direction separately from the inter-frame mo-

tion. We will now detail the cost functions corresponding to

the case of independent blur estimation and blur estimation

linked to motion. The methods are compared in section 4.

We will use the following notation to incorporate prior

knowledge Ĥ of the blur parameters:

I bH,H(x)(p) =

∫ 1

0

Iu(e−t bHe−tH(x)p)dt (12)

Different blur directions (+8 unknowns)
(
x0

y0

)
= min

x,y

∑

p∈R

‖ It(ĤH(x)p) − I∗

dHb,H(y)
(p)

︸ ︷︷ ︸
f(x,y)

‖2 (13)

Ĥ corresponds to the estimate of the motion obtained for

the entire image sequence whereas Ĥb is the current accu-

mulated Lie algebra representation of the motion blur esti-

mation for time t.

Blur linked to motion (+1 unknown) By assuming the

motion and motion blur directions are linked, only the mo-

tion blur magnitude, λ, needs to be estimated:
(
x0

λ0

)
=min

x,λ

∑

p∈R

‖ It(ĤH(x)p)−I∗

(bλ+λ)(cHt,H(x))
(p)

︸ ︷︷ ︸
g(x,λ)

‖2

(14)

Ĥ corresponds to the estimate of the motion obtained for

the entire image sequence whereas Ĥt is the current accu-

mulated Lie algebra motion estimation for time t and λ̂ is

the current accumulated blur magnitude for time t. With e

the exposure time, e = λfr with fr the frame rate.

2.3. Minimisation and Jacobians

The standard approach, called forward-compositional

[12, 10], for minimising SSD cost functions is to use a first-

order Taylor expansion around the identity transformations,

ie use the current Jacobians. For (13) and (14), we obtain:

f(x,y) = f(0, 0) +
[

∂f
∂x

∣∣∣
0

∂f
∂y

∣∣∣
0

] [
x

y

]
(15)

With IW
t the current image warped through Ĥ :

∂f

∂x

∣∣∣∣
0

= [∇qIW
t]pJHx

(16)

∂f

∂y

∣∣∣∣
0

=

[
∇q

∫ 1

0

tI∗(e−tHbq)dt

]

p

JHx
(17)

This last expression corresponds to a convolution

weighted by time and can thus be calculated in the same

way as the motion blur (Section 3).

g(x, λ) = g(0, 0) +
[

∂g
∂x

∣∣∣
0

∂g
∂λ

∣∣∣
0

] [
x

λ

]
(18)

∂g

∂x

∣∣∣∣
0

=

(
[∇qIW

t]p + λ̂

[
∇q

∫ 1

0

tI∗(e−tbλHtq)dt

]

p

)
JHx

(19)

∂g

∂λ

∣∣∣∣
0

=

[
∇q

∫ 1

0

tI∗(e−tbλHtq)dt

]

p

JΠHtp (20)

The Jacobian calculations are different from those in [11];

we first apply a convolution to the reference image and then

differentiate instead of convolving the image Jacobian. This

subtle difference makes it possible to write a generic Jaco-

bian (valid for any sub-group of SL(3)) without having to
compute the Jacobian of the exponential.

From here we obtain the following first-order local min-

imisers (with + indicating the pseudo-inverse):

[
x̂ ŷ

]⊤
= − ([∇x,yf]x=0,y=0)

+
f(0) (21)

[
x̂ λ̂

]⊤
= − ([∇x,λg]x=0,λ=0)

+
g(0) (22)

In practice, this first-order approximation is improved by

iterating the algorithm with further expansions around the

previous solution.

2.4. Tracking initialisation

SSD-based tracking is well-adapted for obtaining pre-

cise sub-pixel estimates but its region of convergence rarely

exceeds image displacements of more than a few pixels.

At video-rate this is often sufficient except when large

inter-frame motion occurs. To cope for these cases, SSD-

methods are often initialised with feature matching ap-

proaches or by correlation search. Feature matching is dif-

ficult in presence of blur and correlation is also sensitive

to blurring. By estimating the blur parameters, correlation

scores can be improved by simply blurring the template dur-

ing the search.

3. Motion blur generation

Generating motion blur has been extensively studied in

particular in the field of computer graphics [13, 4]:

• Fast Fourier transform (FFT): this approach was used
in [11, 16] and is only valid for spatially invariant ker-

nels. The blur convolution becomes a product in the

Fourier domain. The complexity is O(log(N)N) for
N pixels and is independent of the blur magnitude,

• sampling by warping: the image is warped for differ-
ent values of etλG and the values are accumulated to

generate the desired blur. This “naive” method is easy

to implement and parallelise. However it is not very

efficient as the sampling rate should match the longest

line integral to avoid aliasing effects which results in a

complexity ofO(kmaxN), with kmax the length of the

longest line integral,

• line integral convolution [5]. This approach is used to
visualise vector fields in physics. A simplified version

has been used successfully in [4]. This approach is

however computationally expensive and does not make

use of the ease of evaluation of the vector field in dif-

ferent regions of the image.

Our approach for generating motion blur is similar to line

integral convolution but we make explicit use of the struc-

ture of the problem to enable efficient calculation and par-

allelisation. The proposed algorithm has a complexity in

O(k̂N), with k̂ the average line integral length.

3.1. Homography­based blur

The proposed approach for the fast generation of

homography-based blur is based on the recursive division

of the integration domain. Let it be an integration step and

pk the coordinates of a pixel in the image; with:

{
p0 = p

pk = e−itHpk−1
(23)

the following recursive formulation enables the calculation

of the curvilinear integral (trapezium or trapezoid rule):

∫ 1

0

I∗(e−tHp)dt =

1

it
−1∑

k=0

∫ (k+1)it

kit

I∗(e−tHp)dt (24)

=

1

it
−1∑

k=0

∫ it

0

I∗(e−tHpk)dt (25)

≈ (
∑

it)

1

it
−1∑

k=0

I∗(pk) + I∗(pk+1)

2
(26)

In practice, we can account for occlusion or pixels out-

side the image by only taking a partial sum, in this case∑
it 6= 1. This approach makes it possible to calculate the

values sequentially. However the step value it is not known

before the calculation and must be evaluated. The choice

of it should ensure that each pixel on the streamline is vis-

ited to take into account high frequencies. For efficiency,

we also wish to avoid numerous evaluations of the matrix

exponential. To enable the precalculation of e−itH, we can

choose it as a power of 2, it = 1
2nt
. An it with the required

properties can be found in the following way:

‖p1 − p0‖ < 1 ⇔ ‖e− 1

2
nt

Hp0 − p0‖<1 (27)

and when it → 0, (27) becomes:

‖(I− 1

2nt

H)p0−p0‖<1 ⇐ nt = ⌈log2(‖Hp0‖)⌉ (28)

During the iterative calculation of the integral, nt can be

modified to take into account the possible change in curva-

ture along the streamline.

Figure 1 shows a streamline generated by the proposed

approach, we can see that each pixel along the streamline is

visited by the algorithm. Figure 2 shows an example of a

generated blur.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

7

8

9

10

11

12

13

14

15

16

17

18

19

Figure 1. Example of a streamline with visited pixels

3.2. Parallelising the motion blur algorithm

The possibility of parallelising computer vision algo-

rithms is becoming increasingly important as multi-core

Figure 2. Example of a “zoom in” type of blur applied to an image

processors and easily programmable graphics processor

units (GPUs) become common in desktop computers.

The proposed algorithm is readily parallelisable. We

could imagine allocating a thread per streamline. However

efficient parallelisation is a bit more subtle. SIMD (Single

Instruction, Multiple Data) requires the computational load

to be similar for the threads belonging to a same SIMD unit

to avoid lost cycles. In the case of generating a rotational

motion blur for example, if a thread A was allocated to the

center of the rotation and a thread B furthest to the center

and if A and B belonged to the same SIMD unit, A would

have to wait for B to finish and this would require the same

computational time as warping the entire image based on

the longest streamline which is what we wish to avoid.

The key idea is that the smoothness of SL(3) means that
locally the blur streamlines have similar lengths. Efficient

blur generation can thus be obtained by simply dividing the

image into local blocks, calculating the integral steps it for

each block through equation (28) and starting threads be-

longing to the same SIMD unit on the same blocks.

The motivation for programming the current algorithm

on a GPU is to show the possibility of video frame rate

tracking (∼30-100 Hz) using off the shelf hardware mak-
ing tracking more robust with applications in structure from

motion, visual servoing or augmented reality.

Figure 3 compares the time needed to generate a ro-

tational blur of 10 deg. on a CPU (using one core at

2.40GHz), on a GPU using the naive approach and with the

proposed method (GeForce 8800 GTX). There is a factor of

2 between the two GPU implementations. Blurring a patch

of size 100 × 100 takes 12 ms, 0.89 ms and 0.44 ms re-
spectively. For comparison, one iteration for a homography

update takes 0.6 ms on the same CPU.

4. Experimental results

The following notations will be used to describe the dif-

ferent algorithms:

• E0 is a standard homography-based tracking algorithm
without taking into account motion blur,

• E1 means only the blur magnitude is estimated (14),

30x30 40x40 50x50 60x60 70x70 80x80 90x90 100x100
0

2

4

6

8

10

12

Template Size

T
im

e
 (

m
s
)

CPU

GPU naive

GPU

Figure 3. Timings for a rotational blur of 10 deg.

• E2 indicates translational motion blur estimation (2 pa-
rameters), gauss refers to the Gaussian model (7),

• E8 corresponds to the estimation of 8 independent blur
parameters (13).

4.1. Simulated results

Simulations were made to evaluate the quality of the ho-

mography estimation. The simulated sequences are com-

prised of 20-30 images, the blur was generated using (9)

with λ = 0.7. The sampling induced errors of 2-5 gray lev-
els. The reprojection error (RMS) and the Frobenius norm

with the respect to the true homography for a translation

sequence (Fig. 4), rotation sequence (Fig. 5) and “zoom”

sequence (Fig. 6) are shown. The pattern that emerges from

these tests is that E8 gives low reprojection errors but is

sensitive to noise and thus often leads to poor homography

estimates. E2 is only adapted to translational blur or blur

with a small magnitude. E1 gave reasonable results on all

the tests. E2 gauss did not give satisfying results but this

could be predicted as the simulation made use of a differ-

ent blur model. When no motion blur model was used, the

homography was generally poorly estimated.

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Image

R
M

S
 e

rr
o

r

E8

E2

E2 gauss

E1

E0

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

Image

H
 e

rr
o
r

(F
ro

b
e
n
iu

s
 n

o
rm

)

E8

E2

E2 gauss

E1

E0

Figure 4. Sequence with translational blur

4.2. Real data

We use two sequences – one corrupted by a “standard”

translational blur, and one of a rotating disc in which the

blur is clearly not translationnally invariant in the image

– in order to demonstrate our algorithm and evaluate it.

Both example sequences were acquired in an indoor envi-

ronment using a Unibrain Firewire camera with 640 × 480

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

Image

R
M

S
 e

rr
o

r

E8

E2

E2 gauss

E1

E0

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

Image

H
 e

rr
o

r
(F

ro
b

e
n

iu
s
 n

o
rm

)

 E8

E2

E2 gauss

E1

E0

Figure 5. Sequence with rotational blur

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

Image

R
M

S
 e

rr
o

r

E8

E2

E2 gauss

E1

E0

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

Image

H
 e

rr
o

r
(F

ro
b

e
n

iu
s
 n

o
rm

)

E8

E2

E2 gauss

E1

E0

Figure 6. Sequence with “zoom in ” blur

resolution. The first sequence is a hand-held sequence with

mainly translational blur. The second is a rotating DVD.

The minimisation was done in a coarse-to-fine approach;

the number of motion model parameters was adapted to the

image texture at a given scale.

4.2.1 Hand-held sequence

Images in figure 7 show the visual tracking obtained on

a hand-held sequence exhibiting mainly translational blur.

The blurred reference image an the reprojected current im-

age are also shown. Figure 8 details the RMS error during

the image sequence. Images 41-42 and 52-57 are strongly

blurred which explains the strong RMS errors for E0. In this

sequence, the reprojection errors do not differ a lot between

the different algorithms taking into account blurring. E1 is

thus the best choice because the computational complexity

is lower.

4.2.2 Sequence with rotational blur

Images of Fig. 9 show the visual tracking of a region on a

DVD. The blurred reference images and the reprojection of

the current image are also shown. Figure 10 is a plot of the

RMS reprojection error during the sequence. The vertical

black dotted lines indicate images where a strong amount

of blur occurred.

The E1 algorithm showed higher errors than the algo-

rithms with higher complexity except when motion blur oc-

curred. The error was then lower than the E2 algorithms and

comparable to E8. This is exactly the desired behaviour:

these errors indicate that the blur is being correctly modeled

without over-parameterisation. (We may note that lower er-

Figure 7. Images 1, 29, 42, 55 and 73 of the hand-held sequence with blurred reference image (middle row) and reprojected current template

(bottom row) (algorithm E8)

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

8

9

Image number

R
e
p
ro

je
c
ti
o
n
 e

rr
o
r

(R
M

S
)

E8

E2

E2 gauss

E1

E0

Figure 8. Reprojection error during the handheld sequence

rors for the blurred images come from the low-pass filter

effect of blurring.)

5. Conclusion

In this article, we studied how to model and generate

blur for improving visual tracking. Our approach improves

over the current state of the art by enabling to track in pres-

ence of spatially variant blur such as rotation and zoom and

more generally any blur generated by constant velocity mo-

tion between a camera and a planar template. Several for-

mulations of the problem with different complexities were

analysed and we came to the conclusion that for many real-

world sequences a single blur magnitude parameter was suf-

ficient. This result is interesting as it indicates that tracking

can be greatly improved with a low increase in overall com-

plexity and with good stability. A hierarchy of motion mod-

els was also proposed to improve tracking complexity.

References

[1] S. Baker, R. Patil, K. Cheung, and I. Matthews. Lucas-

kanade 20 years on. Technical report, Robotics Institute,

Carnegie Mellon University, 2004.

[2] S. Benhimane and E. Malis. Real-time image-based tracking

of planes using efficient second-order minimization. In IEEE

International Conference on Intelligent Robots and Systems,

2004.

[3] J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani.

Hierarchical model-based motion estimation. In European

Conference on Computer Vision, 1992.

[4] G. J. Brostow and I. Essa. Image-based motion blur for stop

motion animation. In Proc. of ACM SIGGRAPH’01, 2001.

[5] B. Cabral and L. C. Leedom. Imaging vector fields using line

integral convolution. In Proc. of ACM SIGGRAPH’93, pages

Figure 9. Images 301, 310, 333, 342 and 348 of the DVD sequence with blurred reference image (middle row) and reprojected current

template (bottom row) (algorithm E1 dir)

300 305 310 315 320 325 330 335 340 345 350
0

2

4

6

8

10

12

14

16

18

Image number

R
e

p
ro

je
c
ti
o

n
 e

rr
o

r
(R

M
S

)

E8

E2

E2 gauss

E1

E0

Figure 10. Reprojection error during the DVD sequence

263–270, 1993.

[6] S. Cho, Y. Matsushita, and S. Lee. Removing non-uniform

motion blur from images. In IEEE International Conference

on Computer Vision, 2007.

[7] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T.

Freeman. Removing camera shake from a single photograph.

2006.

[8] J. Flusser, J. Boldys, and B. Zitová. Moment forms invariant

to rotation and blur in arbitrary number of dimensions. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

25(2), 2003.

[9] J. Flusser and T. Suk. Degraded image analysis: An invari-

ant approach. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 20(6):590–603, 1998.

[10] G. D. Hager and P. N. Belhumeur. Efficient region tracking

with parametric models of geometry and illumination. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

20(10):1025–1039, 1998.

[11] H. Jin, P. Favaro, and R. Cipolla. Visual tracking in the pres-

ence of motion blur. In IEEE Conference on Computer Vision

and Pattern Recognition, 2005.

[12] B. D. Lucas and T. Kanade. An iterative image registration

technique with an application to stereo vision. International

Joint Conference on Artificial Intelligence, pages 674–679,

1981.

[13] M. Potmesil and I. Chakravarty. Modeling motion blur

in computer-generated images. In Proc. of ACM SIG-

GRAPH’83, pages 389–399, 1983.

[14] A. Rav-Acha and S. Peleg. Two motion blurred images are

better than one. Pattern Recognition Letters, 26(3):311–317,

2005.

[15] J. Shi and C. Tomasi. Good features to track. In IEEE Con-

ference on Computer Vision and Pattern Recognition, 1994.

[16] L. Yuan, J. Sun, L. Quan, and H.-Y. Shum. Blurred/no-

blurred image alignment using kernel sparseness prior. In

IEEE International Conference on Computer Vision, 2007.

