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Abstract

Optical flow estimation requires spatial integration,
which essentially poses a grouping question: what points
belong to the same motion and what do not. Classical lo-
cal approaches to optical flow, such as Lucas-Kanade, use
isotropic neighborhoods and have considerable difficulty
near motion boundaries. In this work we utilize image-
based grouping to facilitate spatial- and scale-adaptive in-
tegration. We define soft spatial support using pairwise
affinities computed through intervening contour. We sam-
ple images at edges and corners, and iteratively estimate
affine motion at sample points. Figure-ground organiza-
tion further improves grouping and flow estimation near
boundaries. We show that affinity-based spatial integration
enables reliable flow estimation and avoids erroneous mo-
tion propagation from and/or across object boundaries. We
demonstrate our approach on the Middlebury flow dataset.

1. Introduction

The computation of optical flow requires spatial integra-
tion, because local signals are noisy and suffer from the
well-known aperture problem [16]. How to integrate mo-
tion spatially, referred to as the generalized aperture prob-
lem [17], is highly non-trivial: it essentially comes to a
grouping question, what pixels belong to a single motion
and what do not.

Classical local approaches to optical flow, such as Lucas-
Kanade [22], ignores grouping and uses isotropic neighbor-
hoods. They face a scale dilemma: a small neighborhood
may not contain enough information, and a large one may
straddle across object/motion boundaries.

To accommodate grouping, many approaches compute
segmentations and use resulting segments as spatial support
(e.g. [9, 43, 35]). Segmentation, however, is never perfect,
and making a hard decision at an early stage could be dan-
gerous. These approaches also face a scale dilemma: small
segments again may not contain enough motion, and seg-

Figure 1. Left: the Venus image from the Middlebury flow dataset,
consisting of four motion layers. Right: examples of erroneous
spatial integration. Flow estimated at Point A is typically down-
ward, because two boundaries around Point A move in opposite
directions and the T-junction “moves” down. Motion cues around
Point B are weak, and the strong motion boundary nearby, which
actually “belongs” to the right-hand side, causes its flow estima-
tion to go leftward. We solve these issues by applying image-based
grouping and figure-ground organization.

mentation at a large scale is unreliable.
In this work, we develop a grouping-based approach to

optical flow without making hard decisions. We apply the
Probability-of-Boundary operator [24] to compute a bound-
ary probability/contrast map. We use an asymmetric inter-
vening contour [23] scheme on the boundary map to define
pairwise affinities between locations. These affinities define
a soft spatial support independently for each location. We
use affinity values as weighting to estimate an affine motion
at each location.

To facilitate computation, we sample images at corners
and edges, estimate flow at sparse samples only, and then
interpolate them back to dense flow. Affinity-based soft
grouping defines spatial- and scale-adaptive support for mo-
tion integration and enables accurate flow estimation under
challenging circumstances (such as the examples in Fig-
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ure 1). We show that we significantly improve state-of-the-
art results on the Middlebury flow dataset [5].

2. Related Work

There are in general two perspectives to flow integration,
i.e. local and global. Classical local approaches, such as
Lucas-Kanade [22], use rectangular or Gaussian windows.
Windows are adaptive in scale in [18] but remain isotropic.
Pyramid-based Lucas-Kanade is capable of extending mo-
tion estimates from corners to edges and region interior, and
is still among the most popular flow and feature tracking
techniques today [4, 5].

A global approach to optical flow, such as Horn and
Schunck [16], jointly optimizes a flow field using both
brightness constancy and flow smoothness. Black and
Anandan [10] introduces a robust estimation framework,
allowing the recovery of piecewise smooth flow fields and
motion discontinuities.

The CLG algorithm [12] combines local and global ap-
proaches by smoothing motion signals before feeding into
a global scheme. Local smoothing offers robustness as in
Lucas-Kanade. This local integration is nevertheless still
isotropic, and has difficulty with the challenging examples
in Figure 1 (see [5]). More recent extensions have explored
occlusion detection [1, 41], real-time performance [11], or
learning spatial priors [29].

A different approach to motion analysis is to group or
segment based on motion, explaining it in layers. Mixture
models have been popular, using affine motion for planar
surfaces [38] or smoothness inside layers [39], and a num-
ber of methods have been proposed to estimate model or-
der [3, 40]. Recent approaches have explored the combi-
nation of motion and color [19, 43]. The theme of these
approaches is mostly on segmentation and semantic inter-
pretation, not on accurate flow estimation.

Several lines of work have been developed to accommo-
date image-based grouping into optical flow. From a lo-
cal perspective, many algorithms segment images into re-
gions (using either brightness [9], color [14] or boundary
contrast [35]) and compute a single motion for each region.
The quality of segmentation is critical for these approaches.

From a global perspective, anisotropic diffusion uses
grouping information in a way by encouraging flow dis-
continuities at high-gradient locations [25, 2]. Gradients,
especially computed at a small scale, may not correspond
well with object boundaries [24]. Empirically, there has not
been enough evidence to support this anisotropicity [6].

Another related line of work that uses grouping is bilat-
eral filtering [36], where smoothing is based on both spa-
tial proximity and brightness/color similarity. It has been
applied as a post-processing step to correct errors near mo-
tion boundaries [41]. Such post-processing would have dif-
ficulty if initial flow estimates are qualitatively wrong.

Image grouping or segmentation is a vast field of its own
and has seen a lot of progress in recent years (e.g. [23, 37]).
Many discriminative approaches to grouping are based
on the concept of pairwise similarity or affinity between
points [31, 13]. Recent works define pairwise affinity
through intervening contour [20, 23, 42], which measures
boundary energy along straight line paths between points.
State-of-the-art boundary detection combines brightness,
color and texture contrasts [24].

3. Grouping for Optical Flow

Spatial integration for optical flow is essentially a ques-
tion of grouping: points that belong to a single moving ob-
ject (or object part) should share their motion information
for robustness, and points that belong to different objects
should have no influence on one another. One may define
grouping as pairwise affinities [31]: for every pair of points
in the image, an affinity value indicates how likely they are
grouped together.

Let us consider a local point of view for motion inte-
gration, where we want to estimate motion/flow at one par-
ticular point A. Classical Lucas-Kanade uses an isotropic
neighborhood around A. This is a very conservative view of
grouping, using proximity only: the affinity of A to another
point is 1 if it is with a small distance threshold, 0 otherwise.
On the other hand, a segmentation-based approach (e.g. [9])
takes a very aggressive view of grouping, computing a hard
segmentation, and the affinity of A to another point is 1 if
they belong to the same segment, 0 otherwise.

In this work we show that such a hard decision is not nec-
essary. We estimate a (soft) pairwise affinity g(A,B) from
A to another point B, and use this affinity as a weighting
of how much information we should include from B when
computing the flow at A.

Figure 2 shows a summary of our approach. We start by
computing boundary probability/contrast. The Probability-
of-Boundary operator [24] (Pb) combines local brightness,
color and texture contrasts and has been shown to out-
perform gradient-based approaches at boundary detection.
Texture analysis is especially useful for optical flow: un-
like traditional anisotropic diffusion, it would allow spatial
integration across small-scale textures.

The boundary contrast map, as shown in Figure 2(b), en-
ables us to define affinity between any pair of points through
intervening contour [23]: if two points are separated by
strong boundaries, they should be weakly associated; oth-
erwise, we are probably in a uniform region and the two
points should be strongly associated.

3.1. Sampling corners and edges

We have defined a soft grouping using pairwise affinity
between points through boundary estimation. It would be



(a) (b) (c) (d) (e) (f)
Figure 2. A summary of our grouping-based optical flow approach: for a pair of images (a), we apply the Probability-of-Boundary opera-
tor [24] to compute a soft boundary map (b). The boundary map enables us to define pairwise affinities through intervening contour [23].
To compute all-pair affinities would be costly and unnecessary; instead we sample the image at corners and edges (c). To estimate flow at
a sample point, e.g. the green-diamond location in (d), we estimate its grouping connections toward all other points. In (d) we visualize
(some) affinities using disk size, with large disks plotted at strongly connected points. These affinities define a (soft) support for spatial
integration of flow, avoiding connections across object boundaries. We estimate an affine motion using these affinities, obtaining a correct
flow estimate (e). Flow estimates for other points in the area are shown in (f).

too costly to compute, or just to store, affinities between all
pairs of pixels; it would also be unnecessary to use all pix-
els, as motion varies slowly except at object boundaries. We
facilitate the computation by sampling an image at corners
and edges, working with sparse samples only, and project-
ing the flow to the pixel-grid at the end.

A classical sparse flow approach, such as Lucas-Kanade,
focuses on corners only, where locally there is enough infor-
mation to determine the flow. Let λ1 > λ2 be the two eigen-
values of the second moment matrix. To select “good fea-
tures” or corners, one typically uses λ2, the smaller eigen-
value [33]. This criterion largely ignores edges.

There is of course a lot of motion information at a strong
edge: flow in the gradient direction is highly constrained.
For our purpose, where we want to extract all motion infor-
mation and to faithfully represent motion, edges are almost
as important as corners. Therefore we use a modified crite-
rion of “goodness”, i.e. the product

λ1 · (λ2 + εs)

where εs is a small constant. This criterion still prefers cor-
ners, but will also include strong edges, where λ1 is large
and λ2 is small. We sample sequentially with this criterion,
enforcing a minimum distance between samples. An exam-
ple of the sampling is shown in Figure 3. We choose a low
threshold so as to cover most of the image. The sampling is
almost uniform but it respects corners and edges.

A related sampling strategy is adopted in [30], but with
a different focus: there they obtain motion on the pixel-grid
first and then use it to track sample points through frames;
while we use sample points to estimate the motion itself.

3.2. Pairwise affinity using intervening contour

Intervening contour, introduced in [20], computes pair-
wise affinities from a boundary map by connecting two
points with a straight line path and measuring boundary en-
ergy or “resistance” along the path.

(a) (b) (c)
Figure 3. We want a spatial sampling that captures most motion
information and faithfully represents underlying image structure
and motion. (a) Uniform sampling is unaware of image structures.
(b) Classical feature selection criterion favors corners and ignores
edges. (c) Our sampling strategy uses both eigenvalues of the sec-
ond moment matrix and respects corners and edges.

Let E(t) be the Pb boundary contrast profile along the
straight line path between two points (i, j). A typical in-
tervening contour scheme computes the maximum E∗ =
maxt E(t) as a measure of resistance. One problem with
taking the maximum is that it ignores how many boundaries
the path crosses. After all, going across a weak boundary is
not the same as having to go across four of them. This sug-
gests using a sum R =

∫ |E′|.
Under the sum rule, a boundary point usually has a

high resistance (hence low affinity) going anywhere, be-
cause E at the starting point is high. To correct this bias
against boundary points, we modify the scheme to use “up-
ward” gradient, counting resistance only when climbing up
a boundary: R =

∫
max(E′, 0).

Finally, if we travel along a boundary, the contrast will
not be constant and we might encounter a lot of gradients.
On the other hand, E(t) is always high on the path. To allow
strong connections between points on the same boundary,
we balance the gradient max(E′, 0) with min E.

Combining the observations above, we modify the inter-
vening contour rule as follows:

R =
∫

max (E′(t), 0) dt − min E(t)



and compute affinity as g = exp(−cRR). An example of
this affinity is shown in Figure 2(d). We set cR = 10 and
cap affinity values at 1.1 (R may be negative due to the sec-
ond term, leading to strong connections along boundaries).

Our definition of intervening contour is asymmetric at
boundaries, as illustrated in Figure 4: if A is an interior
point and C is a boundary point nearby, A is weakly con-
nected to C, but C is strongly connected to A.

Such behavior is in fact desirable for motion estima-
tion. Because of the aperture problem, points on a boundary
alone are not enough to estimate flow, and they need to con-
nect into nearby regions. On the other hand, as we have seen
in Figure 1 B, connecting onto a boundary without know-
ing its figure-ground assignment may lead to large errors.
Hence we choose to suppress connections onto boundaries.
This conservative strategy downplays the role of contour-
based motion analysis (e.g. [21]), a challenging and un-
solved problem that needs to be addressed in the future.
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Figure 4. Asymmetric intervening contour: intervening contour
defines pairwise affinity by measuring how much “resistance” (i.e.
boundary energy) one encounters when traveling from one point
to another through straight line (a). We measure this resistance
using “upward” gradient only, leading to asymmetric affinities: (b)
Point A is strongly connected with B but weakly with C and D,
having to climb onto a strong boundary; (c) Point C is strongly
connected with all A, B and D, because traveling “downward” on
the boundary incurs no cost.

4. Semi-Local Optical Flow

In the previous section we have collected a set of sam-
ple points {xi, yi} at corners and edges, and have defined
pairwise affinities g(·, ·) through intervening contour. For
each point i, the affinity g(i, ·) defines a soft support for
flow integration at i.

Because the affinity-based support is much larger than
the typical scales used in local optical flow methods, we
view our approach as semi-local. It is spatial-adaptive as
intervening contour suppresses connections through bound-
aries. It is also scale-adaptive: the support expands further
in a uniform region than in a region of strong contrasts. For
a large spatial support, we can no longer assume that motion
inside is approximately constant. Instead we will estimate
an affine motion, at each point i, using the affinity g(i, ·) as
weighting.

4.1. Affinity-based affine flow

Let I(x, y, t) represent a sequence of images and let
v = (vx, vy) be the flow/motion. The brightness con-
stancy assumption and a differential approximation lead to
the classical optical flow constraint:

Ixvx + Iyvy + It = 0 (1)

The optical flow constraint is defined at a point. Because we
are working with sparse samples, every sample point repre-
sents a small neighborhood around it. If the minimum dis-
tance in sampling is d, every point has a “zone-of-control”
of radius d/2. As in Lucas-Kanade, we assume that mo-
tion is constant in this neighborhood. If we put together the
spatial and temporal gradients in vectors Ix, Iy and It, lo-
cally the flow needs to satisfy the over-constrained equation
[IxIy]v = It. The least squares solution to the problem is a
2 × 2 system

Av = b

where A = [IxIy]T [IxIy] and b = [IxIy]T It. This 2 × 2
system summarizes motion cues around each sample point.

The entries in A and b scale quadratically with image
brightness I . As pointed out in [34], the certainty of lo-
cal flow scales differently with brightness: it increases first
when image contrasts arise above noise level, but quickly
saturates. To capture this intuition, we normalize A and b
using 1/(A11 + A22 + εA).

To estimate the flow at a certain point i, we as-
sume that the semi-local motion based at i is affine,
and its prediction at a nearby point j would be vj =
(α1x + α2y + α3, α4x + α5y + α6)

T . We find the best fit-
ting affine motion �α∗ by minimizing the following weighted
error: ∑

j

g(i, j)
∥∥Ajvj(�α) − bj

∥∥2
(2)

The flow estimation at i is then vi(�α∗). In practice, we
threshold the affinity g(i, j), and only include points that
have strong connections to i.

To increase the robustness of the affine estimation, We
use two extensions: (1) a robust error norm; and (2) a reg-
ularization on the affine parameters. For the robust norm,
We use the Lorentzian function as in [10], and solve with
iterative least squares. For affine regularization, we put
a small constant cost on the four linear parameters in the
affine model, hence favoring constant motion over large
affine variations.

4.2. Iterative and coarse-to-fine estimation

Because our method is based on the linearized optical
flow constraint (Eq. 1), conventional wisdoms on differen-
tial flow apply: iterative/incremental estimation is needed
for accurate flow recovery, and coarse-to-fine search is
needed to handle large motions.
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Figure 5. Examples of figure-ground assignment for optical flow:
(a) A priori, we do not know which side a boundary location A
belongs to; our intervening contour scheme allows A to connect
to both sides, leading to a “tainted” flow estimate. (b) Using local
boundary orientation, we fit affine motions to the two sides, and
assign A to the side that better explains the motion at A. In this
case, the figureness estimate is 0.77 left vs 0.23 right. This es-
timate boosts connections to the left side and suppresses those to
the right, leading to an accurate estimate (c). A similar example
is found in (d-f). There, figure-ground assignment also helps the
estimate at an off-boundary location B, because the influence from
A to B is reduced.

Suppose we have an initial estimate of flow v̂j , we need
to warp the second image to compute incremental temporal
differences It. One approach would be to do local warping
around each sample point. We instead choose to compute a
single global warping. This warping requires a dense flow.
We use a simple linear interpolation scheme based on De-
launay triangulation to project the flow on the sample points
onto the pixel-grid.

Having computed the temporal differences in b, it is easy
to incorporate incremental flow into the cost function in
Eq. 2: now the data term depends on the difference vj − v̂j .
We also need an initial estimate on �α to start the robust es-
timation: we use a least squares fit on the current estimates
v̂j (i.e. not using the data terms).

4.3. Figure/ground assignment of boundaries

When we define pairwise affinity in Section 3.2, we leave
open the question of figure-ground assignment at bound-
aries. Suppose we have obtained a motion estimation v̂j :
we can assign a figure/ground label to boundary points
based on motion similarity.

At each point i, the Pb boundary map provides a lo-
cal contour orientation (in which contrast is at maximum).
Using this orientation we divide sample points into two
groups: “left” and “right”. We estimate two affine mo-

tions, �αL and �αR, in the two half-disks, analogous to mo-
tion boundary detection (e.g. [8]). �αL would predict a flow
vL

i at i, and �αR would predict a different one vR
i . We com-

pare these two predictions against the original estimate v̂i

(which uses points from both sides), by computing the ratio

rF = ‖vL − v̂‖/ (‖vL − v̂‖ + ‖vR − v̂‖)
To increase robustness, we add a small constant (0.1) to the
two differences. Because figure-ground assignment only
makes sense at boundaries, we modulate rF with the bound-
ary contrast E to obtain a figure-ground estimate F :

log [F/(1 − F )] = log [rF /(1 − rF )] · E
and multiply the affinity g(i, j) from i to j with 2F (i)
and exp [−cR(F (j) − 0.5)E(j)] (the latter term is used to
negate the “upward” gradient near point j).

4.4. From sparse to dense flow

For some applications, a sparse flow suffices. For others,
a dense flow is desirable. Because we have a relatively uni-
form sampling (at both corners and edges), obtaining dense
flow is not difficult.

Consider a standard linear interpolation: construct a De-
launay triangulation of the sample points, and for each tri-
angle, use Barycentric coordinates in the interior to aver-
age flow at the three vertices. Such a scheme works well
in region interior but encounters problems at motion dis-
continuities. Again this is a figure-ground issue: flow on
the boundary should not be extended into the “wrong” side.
This problem is only minor, and we use a simple fix by dis-
counting flow on boundaries. In the standard scheme, three
vertices on the triangle are treated as equally important; we
instead weight the vertices by exp(−cIE)1. If a triangle
touches a strong contrast boundary, we rely on flow on the
interior points to fill it in.

5. Experiments

For experimental evaluation, we test our group-based ap-
proach on the Middlebury public flow dataset [5] . It is part
of a new flow dataset with groundtruth that presents a va-
riety of challenges, including hidden texture, realistic and
complex scenes and non-rigid motion. For fair compari-
son, we take the gray-scale and two-frame version of the
dataset as input, and use only the brightness constancy as-
sumption. We also test on the Marble sequence [26], using
frame 35 − 36 for evaluation.

We use a sampling distance of 5 pixels, and each sample
point averages motion in a 5×5 neighborhood. The number
of sample points on the images range from 4000 to 6000.

1The figure-ground estimates in Section 4.3 may also be used for
weighting; in practice it has offered little improvements.



For spatial integration, we set a threshold on affinity at 0.5,
and use a minimum number of 10 points and a maximum
of 40 points. We work with a pyramid of level 2 and use 5
iterations at the coarse level and 25 at the fine level. Figure-
ground estimation is done only twice, at iteration 15 and 20.
There are two parameters in the robust affine estimation, a
constant in the Lorentzian function, and a constant on the
regularization of linear terms. We use the same number for
both, and decrease it from 1e − 5 to 1e − 10 as we iterate.
Same parameters are used in all the experiments.

We evaluate results with two standard error measures [6],
average angular error (AAE), and average end-point error
(AEE). For comparison, we include results from the clas-
sical algorithm of Black and Anandan (1996) [10]2, which
ranks around the top on the Middlebury dataset [5]. Quanti-
tative comparisons are listed in the table in Figure 7. In ad-
dition, we show color-coded results along with groundtruth
flow, and visualize angular errors at the end for analysis.

Our experiments show that grouping significantly im-
proves optical flow estimation. We consistently do bet-
ter, especially on the “hard” examples, such as Dimetrodon
(hidden texture) and RubberWhale (non-rigid motion).
Qualitatively, we do well in a number of difficult situa-
tions, including weak-contrast and untextured regions such
as in Venus (the examples in Figure 1) and Dimetrodon, or
small regions near motion boundaries such as the corners in
Venus and the holes and the rotating wheel in RubberWhale.
In many cases, this is because we successfully prevent the
propagation of boundary motion into the “wrong” side.

We observe that the improvement is smaller on Hy-
drangea; there is not much grouping in that example (one
object against one background), and the motion of the ob-
ject is not affine. We still do better than Black & Anan-
dan near the object boundary and improve the score. Simi-
larly, the Marble example is highly textured with little static
boundary contrast; nevertheless our result is comparable to
what has been reported in the literature (e.g. [27, 1]).

It is interesting to look at the visualization of error in
Figure 7 and see where we do poorly. A revealing exam-
ple can be found in RubberWhale (on the right center): if
grouping fails (and we know grouping is not perfect), it will
hurt flow estimation and cause large errors. Figure 6 ex-
plores the problem in detail. A similar failure can be found
in the Venus image (near bottom center). While this calls
for better grouping cues than Pb, it also suggests that static
image grouping should be combined with motion or “com-
mon fate” to improve affinity estimation.

2We thank the authors for providing their implementation. Default pa-
rameters are used in these experiments.

(a) (b) (c)
Figure 6. An example where incorrect grouping hurts optical flow:
(a) a zoom-in on the RubberWhale image, where the grey band in
the middle moves rightward. (b) The boundary contrast from the
gray region to the white region below is much stronger than that
to the textured region above; hence the green-diamond location is
incorrectly grouped together with the textured region, causing its
flow estimate to go leftward (c).

6. Discussions

In this work we have incorporated image-based grouping
into optical flow. We apply a local boundary operator and an
asymmetric intervening contour scheme to compute affini-
ties between points. Pairwise affinity defines local spatial-
and scale-adaptive support for motion integration, and al-
lows accurate recovery of flow near motion boundaries and
in weak-contrast regions. Quantitative evaluations on chal-
lenging datasets show that grouping significantly improves
flow estimation over state-of-the-art results.

Local motion integration at a large and adaptive scale in-
curs a high computational cost, and our current approach
is not nearly as efficient as existing methods that are close
to real-time (it takes minutes per image). Nevertheless, we
have shown that sparse sampling makes such complex lo-
cal computations feasible while still capturing most motion
information and faithfully representing flow fields. Such a
sampling strategy opens up many possibilities for accurate
flow computation that could go beyond popular PDE-based
methods.

Grouping in our current approach is solely based on
brightness and texture contrasts, because we want to
demonstrate how static image analysis at the mid-level can
help motion estimation. As we have observed, such group-
ing is never perfect and may cause problems where it fails.
It would need to be combined with “common fate”, or
motion-based grouping [7, 38, 32], to avoid making gross
errors. On the other hand, the figure-ground analysis in our
work is solely based on motion. Recent works on figure-
ground [28, 15] have revealed that there is rich information
available in a single image as well. It would be interesting
to combine the strengths of both.
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