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Abstract

Restoration of a degraded image from motion blurring is
highly dependent on the estimation of the blurring kernel.
Most of the existing motion deblurring techniques model
the blurring kernel with a shift-invariant box filter, which
holds true only if the motion among images is of uniform
velocity. In this paper, we present a spectral analysis of
image gradients, which leads to a better configuration for
identifying the blurring kernel of more general motion types
(uniform velocity motion, accelerated motion and vibra-
tion). Furthermore, we introduce a hybrid Fourier-Radon
transform to estimate the parameters of the blurring ker-
nel with improved robustness to noise over available tech-
niques. The experiments on both simulated images and real
images show that our algorithm is capable of accurately
identifying the blurring kernel for a wider range of motion
types.

1. Introduction
Motion blur is caused by the relative motion between the
camera and the pictured object during the time the shuttle
is open. As blurring can significantly degrade the visual
quality of images, many researchers have been working ei-
ther on preventing motion blurring during image capturing
or on post-processing of the image to remove motion blur.
For uniform motion blur, the process of blurring is usually
modeled as the following convolution:

I(x, y) = (J ∗ P )(x, y) +N(x, y), (1)

where ∗ is the convolution operator, J is the original image,
I is the degraded image and P is the blurring kernel (Point
Spread Function), andN is the noise. To restore the original
image J from its blurred version I using so-called image
deconvolution technique, identify the blurring kernel P is
the first and the most important recovery step.

Early research on restoration of blurred images usually

uses only a single blurred image. A prior parametric knowl-
edge of the blurring kernel P is then required to estimate
the parameters of P . The inspection of zero patterns of
the blurred image in the spectral domain has been proposed
([4, 2, 15]) to find the blur extent and the blur direction of
uniform velocity motion. Also, model-based least squares
and maximum likelihood (ML) blur identification methods
have been proposed for the identification of general sym-
metric, finite extent kernels ([10, 6, 12]). By auto-regressive
modeling of the blurred image and assuming the noise is
zero mean Gaussian, either a least squares regression is
used to estimate the kernel for noiseless blurred images
([10]), or an expectation-maximization (EM) algorithm is
used to compute ML parameters for noisy blurred images
with medium signal-to-noise ratios ([12]).

Recently, image deblurring systems have been developed
using hardware or multiple images to obtain necessary mo-
tion information in restoring degraded images. [1] uses a
hybrid imaging system to find the kernel and [13] computes
a binary coded exposure sequence to keep the high spatial
frequencies lost in blurred images. In [9], the motion de-
blurring from multiple images is done by using fast image
capture in CMOS. The approach in [14] restores a clear im-
age using two images with motion blurring along perpen-
dicular directions. Another interesting approach is to use
some assumptions on the statistical property of the image
gradients’ distribution to either approximate the unblurred
image ([3, 8, 18]), or check the property of selected blurred
edges to estimate the local blurring filters ([5]).

In this paper, we focus on restoring a single motion-
blurred image taken by a hand-held digital camera. And
we do not make any assumption on the statistical property
of the blurred image, as it does not always hold in real life.
Most available techniques of restoring a single blurred im-
age assume an uniform velocity motion between the cam-
era and the scene. However, there are many other motion
types present when images are taken by a hand-held camera.
Common motion types include: uniform velocity, acceler-
ated motion and vibrations. Zero patterns of the blurred
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image in the spectral domain only appear in the case of uni-
form velocity motions. The assumption of the symmetry of
the kernel in ML approaches also works only for uniform
velocity motion. Moreover, even if the true kernel is indeed
symmetric, those approaches are still very sensitive to the
noise in the image.

Rosenfeld suggested in [16] that the blurring kernel of a
motion-blurred image may be estimated from the blurred in-
tensity distribution of a point object or a sharp edge against
a homogeneous background. Finding such edges or point
objects is definitely a challenging task. However this leads
us to investigate the properties of blurred image gradients in
the spectral domain. Our spectral analysis of blurred image
gradients shows that there exists some stronger periodic pat-
tern of blurred image gradients in the spectral domain. And
this underlying pattern has the following desired properties:

1. It is easier to detect and is more robust to noise than
the zero pattern of the blurred image intensity.

2. It holds true for both uniform velocity motions and ac-
celerated motions.

3. It could also be used to detect the motion blurring by
the vibration.

Another contribution in this paper is the introduction of a
hybrid Fourier-Radon transform to find such periodic pat-
terns in the spectral domain. Based on this new Fourier-
Radon transform, we propose an algorithm to identify the
blurring kernel of multiple motion types for noisy blurred
images.

The rest of the paper is organized as follows: in Section
2, we first review the model of the blurring kernel of vari-
ous motion types proposed in [17], followed by an analysis
of blurred image gradients in the spectral domain. Section
3 introduces the Fourier-Radon transform and describes the
algorithm for estimating the parameters of the blurring ker-
nel. Experimental results are shown in Section 4 to demon-
strate the effectiveness and robustness of our approach to
restore motion-blurred images. At the end, we also discuss
some aspects of our approach and possible future work.

2. Analysis of motion blurring on image gradi-
ents

2.1. Motion blur model

Given a motion-blurred image taken by a digital camera,
we could assume the kernel P (x, y) is one-dimensional if
there are no significant changes in the motion direction dur-
ing the exposure time. The horizontal kernel P (x) can be
adequately approximated by a trapezoid ([17]):

P (x) = c
(
(1− α) + α(x+

L

2
)
)
χ[−L

2 ,
L
2 ](x), (2)

where χ[−L
2 ,

L
2 ] is the characteristic function on [−L2 ,

L
2 ]

and the constant c is the normalization term such that∫
R
P (x)dx = 1. (3)

The discrete version of P (x) could be written as:

p = c
(
(1− α)(1, 1, · · · , 1) + α(1, 2, · · · , L)

)
. (4)

There are two important parameters in this horizontal
model: the motion blur shape α; and the extent or the length
of the kernelL. Three representative prototype kernels from
the model (2) are:

(i) Ramp for highly accelerated (or decelerated) motion
with α = 1:

p = 2
L(L+1) (1, 2, · · · , L)

(or p = 2
L(L+1) (L, · · · , 1)). (5)

(ii) Trapezoid for accelerated (or decelerated) motion with
α = 1

L+1 :

p = 2
L(3L+1) (L+ 1, L+ 2, · · · , 2L)

(or p = 2
3L+1 (2L, 2L− 1, · · · , L+ 1)).

(6)

(iii) Square plus for uniform motion with α = 0:

p =
1
L

(1, 1, · · · , 1).

As far as the blur direction is concerned, the directional
blurring Pθ(x, y) can be formulated by rotating the hori-
zontal kernel P (x) around x-axis by θ degree. Thus in our
model, there are totally three quantitative parameters to es-
timate: motion blur shape α, extent L, direction θ; and one
qualitative parameter to determine: accelerated or deceler-
ated.

2.2. Cepstral method

The popular cepstral method ([4, 2, 15]) tries to identify
blur extent and direction of uniform velocity motion by in-
specting the zero pattern of the blurred image in the spectral
domain. The basic idea is as follows. Consider a horizon-
tal uniform velocity motion where Pu = 1

Lχ[−L/2,L/2]. By
taking the Fourier transform on both sides of Eqn. 1, we
obtain

Î = ĤP̂ + N̂ , (7)

where ·̂ is the Fourier transform defined by

f̂(ω) =
∫ ∞
−∞

f(x)e−2πiωxdx. (8)



Notice that the Fourier transform P̂u of Pu is a sinc func-
tion:

P̂u(ω) =
sinπωL
πωL

= sinc(πωL). (9)

with periodic zeros {x = k
L , k = 0,±1,±2, · · · }. The

same periodic zeros are still preserved in Î if we omit the
noise N̂ . The inspection of such a periodic zero pattern is
usually done by using the so-called cepstrum of the blurred
image to estimate the blur extent L. The cepstrum of the
blurred image I is defined as

C(I) = l̂og |Î|. (10)

Notice that the cepstrum is additive under convolution, that
is,

C(I) = ̂log |Ĥ ∗ P | = ̂log |Ĥ|+ l̂og |P̂ | = C(H) + C(P ).
(11)

log |P̂ | has large periodic negative spikes at ± 1
L ,±

2
L · · ·

with periodicity 1/L, which is very likely preserved in
log |Î|. Thus, we will see two peaks in the cepstrum C(I)
and the distance between these two peaks is 2

L . For arbitrar-
ily oriented uniform velocity motion, the motion direction
θ could be obtained from the orientation of line segment
which passing through these two peaks in C(I).

2.3. Spectral analysis of image gradients

If there is little noise in the image and the motion is very
close to uniform velocity, the cepstral method could identify
the kernel P reasonably well. However, it will fail for other
motion types since there is no such zero pattern present in
those cases. Even for uniform velocity motion, the fast de-
cay of the sinc function could make the inspection of the
zero pattern very difficult for noisy images. It turns out that
there also exists a similar periodic pattern of blurred image
gradients in the spectral domain. The new periodic pattern
is much easier to inspect and more robust to the noise.

For the simplicity of the discussion, we first assume that
the blur direction is horizontal. The differentiation on both
sides of Eqn. 1 yields

I ′ = (H ∗ P )′ +N ′. (12)

Omitting the noise term N ′, we have

Î ′(ω) = ̂(H ∗ P )′(ω) = Ĥ ∗ P ′(ω) = Ĥ(ω)P̂ ′(ω). (13)

Based on the definition of P (x) in Eqn. 2, |P̂ ′(ω)| could be
expressed as:

|P̂ ′| = |i2πωP̂ (ω)|
= C|α(−Le−iLπω + sin(Lπω)

πω ) + 2(1− α)i sin(Lπω)|
= C

(
(2 + α(L− 2))2 sin2(Lπω) + α2L2 cos2(Lπω)

− α2

πω (L sin(2Lπω)) + α2

π2ω2 sin2(Lπω)
) 1

2 .

,

(14)

(a) (b)

(c) (d)

(e) (f)

Figure 1. (a),(c),(e) are |P̂ (ω)| of the kernel P in the spectral do-
main for motion type (1) Ramp, (2) Trapezoid and (3) Square plus
respectively; (b), (d), (f) are |P̂ ′(ω)| of the kernel P ′ in the spec-
tral domain for motion type (1), (2), (3) respectively.

for some constant C. |P̂ ′(ω)| could be further simplified as:

|P̂ ′(ω)| =
(
C1α

2 − C2(1− α) sin2(Lπω) + α2O(
1
ω

)
) 1

2 ,

(15)
where

C1 = CL2, C2 = 4C(1 + α(L− 1)). (16)

Eqn. 15 tells us that there exists a periodic pattern of
small values in |P̂ ′(ω)| with reasonably large ω (ω > 1

L
is enough in practice). The periodicity of this pattern is de-
termined by the blur extent L. We could then expect that
there exist large periodic negative spikes with periodicity 1

L

in log |Î ′|. The inspection of peaks in the cepstrum C(I ′)
will then tell us the blurring extent L.

Fig. 1 compares |P̂ | against |P̂ ′| for three representative
motion types: ramp; trapezoid and square plus. |P̂ ′| clearly
has a much stronger periodic pattern of local small values
than |P̂ | for all three motion types. Especially for ramp mo-
tion (highly accelerated motion), there is hardly any peri-
odic pattern in |P̂ | while |P̂ ′| still has a noticeable periodic
pattern of small values when ω is away from the original
point.

The preferred periodic pattern introduced in log |P̂ ′|
leads to a much easier identification of peaks in the cep-
strum C(I ′). As a visual illustration, we compared log |Î ′|
against log |Î| of blurring images shown in Fig. 2. Fig. 3
shows that log |Î ′| clearly has a stronger periodic pattern



(a) (b)

(c) (d)

Figure 2. (a) is the un-blurred image; (b) is the image blurred by
uniform velocity motion; (c) is the image blurred by accelerated
motion; (d) is the image blurred by highly accelerated motion. All
three images are blurred by a blurring kernel with the same extent
(20 pixels) and the same direction (diagonal).

(a) (b)

(c) (d)

(e) (f)

Figure 3. (a), (c), (e) are |Î(ω)| of blurred images I in Fig. 2 (b),
(c), (d) respectively; (b), (d), (f) are |Î ′(ω)| of blurred image gra-
dients I ′ in Fig. 2 (b), (c), (d) respectively.

than log |Î| does for these three motion types. In particular
for ramp motion, we observe from Fig. 4 that the cepstrum
C(I ′) can identify both the blur extent and the blur direc-
tion very well while the cepstrum C(I) fails to show any
information on the blur extent or the blur direction.

(a) (b)

Figure 4. (a) is the cepstrum C(I) of the blurred image I in Fig. 2
(d) with ramp motion; (b) is the cepstrum C(I ′) of the blurred
image gradients I ′ in Fig. 2 (d) with ramp motion.

Furthermore, the phase of the peaks in the cepstrum
C(I ′) tells us something about the type of the motion. It
is difficult to derive a close-form for the relationship be-
tween the phase of the peaks in the cepstrum and the exact
value α. A numerical approximation shows that the phase
is monotonically increasing with respect to α. The Larger
the motion shape α is, the farther the phase is away from 0.
The phase of the peak in C(I ′) is about π

2L for ramp motion;
while the phase is close to 0 for both trapezoid motion and
square plus motion. Thus we could identify the ramp mo-
tion from the phase of the peaks in the cepstrum. Combined
with the analysis of the intentional restoration errors pro-
posed in [17], we could qualitatively identify all three basic
motion types: ramp; trapezoid and square plus. Whether
the motion is accelerated or decelerated could also be deter-
mined from the analysis of the intentional restoration errors.
In practice, it often turns out that a qualitative evaluation on
α is good enough for restoring the blurred image.

3. Algorithm of identifying the blurring kernel

The cepstral method estimates the parameters of the blur-
ring kernel P by inspecting the two pronounced peaks in
the cepstrum C(I ′), as shown in Fig. 4. The distance be-
tween two peaks determines the blur extent, the orientation
of the straight line passing through two peaks determines
the blur direction, and the phase of two peaks together with
the intentional restoration residual determines the motion
type. However, the main drawback of this method is that
it is very sensitive to the noise in image or to the imperfect
modeling of motion (moving objects in the scene, compli-
cated motion path, etc). The peaks are often very vague
in these cases. Furthermore, spurious peaks are very likely
to appear in the cepstrum which make finding the correct
peaks impossible. It is shown in [7] that the estimation of
motion direction using the cepstral method is very poor for
noisy blurred images.

The Radon transform is widely used to extract straight
line features from noisy images. The Radon transform is



defined by

R(I)(ρ, θ) =
∫ ∞
−∞

I(ρ cos θ− s sin θ, ρ sin θ+ s cos θ)ds,

(17)
which integrates I over a line of distance ρ from the origin
and at an angle θ to the y-axis. It is easy to see that any
line in the image will be represented by a peak in the Radon
transform whose location determines the parameters of the
line in the original image.

Recall that given a motion-blurred image, we have peri-
odic large negative lines in log |Î ′|with slope θ0 and period-
icity 1

L , as shown in Fig. 3. So the image R(log |Î ′|)(ρ, θ)
resulted from a Radon transform on log |Î ′| will have peri-
odic peaks located at

(± 1
L
,
π

2
− θ0), (±

2
L
,
π

2
− θ0),±

3
L
,
π

2
− θ0), · · · . (18)

Based on this observation, we introduce a Fourier-Radon
transform F(·) as follows:

F(g)(ω, θ) = R̂(g)(ω, θ)
=
∫∞
−∞

∫∞
−∞ e−2πiωρg(ρ cos θ − s sin θ, ρ sin θ + s cos θ)dρds.

(19)
It is easy to see that there is a peak in |F(g)| and its location
(ω0, ψ0) is determined by the blur extent L and the blur
direction θ0 as follows:

ω0 =
1
L

and ψ0 =
π

2
− θ0. (20)

Theorem 3.1 Let g(x, y) be the image of periodic lines of
slope π

2 − θ0 defined by

g(x, y) =
∑
k∈N

χ(Lk − x cos θ0 − y sin θ0), (21)

where χ is the characteristic function on 0 and L is the pe-
riodicity. Then we have

F(g)(ω, θ) = δ(ω − 1
L

)χ(θ − θ0), θ ∈ [0, π), (22)

where δ is the Dirac delta distribution.

See Appendix A for the proof.
The incorporation of the Radon transform into the esti-

mation of motion blur direction is not new. In [7], the blur
direction is first estimated by identifying the peak in Radon
transform. Then the blur extent is estimated from the 1D
cepstrum of the de-rotated blurred image based on the es-
timated motion direction. The drawback of this sequential
approach is that the periodicity of large negative lines in
log |Î| are not enforced in an optimal way. On the contrary,
our proposed Fourier-Radon transform leads to a more ro-
bust estimation on the blur extent and the blur direction by

simultaneously estimating these two parameters and by en-
forcing the periodicity constraint.

It is noted here that the Fourier-Radon transform may not
be a good choice if it is applied directly on log |Î| as most
approaches do. The reason is that the periodicity in log |Î|
is very weak for non-uniform velocity motions. It is then
not a good constraint to enforce in the estimation process.
However, it is not the case if we use log |Î ′| of the image
gradients. The Fourier-Radon transform could be used to
explore the potential brought on by the strong periodicity
of large negative lines in log |Î ′|. At the end, a detailed
description of the algorithm is given as follows.

Given a blurred image I ,

1. Calculate four image gradients I ′1, I
′
2, I
′
3, I
′
4 of the

blurred image I on horizontal direction, vertical di-
rection, diagonal direction, anti-diagonal direction re-
spectively.

2. For each I ′k, calculate log |Î ′k|.

3. For each I ′k, compute the Fourier-Radon transform
F(log |Î ′k|) using Eqn. 19.

4. Find M points {(ωk, θk), k = 1, · · · ,M} correspond-
ing to M largest values of

∑4
k=1 |F(log |Î ′k|)|.

5. From each point (ωi, θi) and its corresponding phase
Arg(

∑4
k=1 F(log |Î ′k|)(ωi, θi)), derive the parameters

of each kernel candidate: the extent Li, the direction θi
and the motion type.

6. For each blurring kernel candidate, deblur the image
I by the total variation deconvolution algorithm from
[11].

7. Use the analysis technique on intentional restoration
error ([17]) to find the most likely kernel and its re-
stored image.

4. Experiments and conclusions
4.1. Simulated noisy images

In the first experiment, we use the image shown in Fig. 2
(a) as the original image to synthesize the blurred images
of three motion types (ramp, trapezoid and square plus)
with different noise levels. The purpose of this experiment
is to evaluate the robustness to noise of our proposed ap-
proach against available approaches. For the comparison,
we choose the algorithm proposed in [7] which sequentially
combines the Radon transform and 1D cepstral method.
The reason why we choose this algorithm is that it generally
outperforms the traditional 2D cepstral method by a large
margin, especially on the estimation of motion direction.



(a) (b)

Figure 5. (a) is the noisy version of the blurred image shown in
Fig. 2 (b) with SNR 20. (b) is the noisy version of the blurred
image shown in Fig. 2 (b) with SNR 12.

(a) (b)

(c) (d)

(e) (f)

Figure 6. (a), (c) and (e) are the average estimation errors of blur
extent for three motion types: ramp, trapezoid and square plus
respectively; (b), (d) and (f) are the average estimation errors of
blur direction for three motion types: ramp, trapezoid and square
plus. ’RC+Intensity’ denotes the method in [7]. ’FR+Gradient’
denotes our method.

And the blur direction is more important than other param-
eters when we restore the blurred image using the estimated
blurring kernel.

All blurred images in this experiment are generated by
applying a blurring kernel with extent L = 20 pixels and
direction θ = 45 degree, subsequently contaminated by
zero mean white Gaussian noise with different noise lev-
els. Thirty two random samples are generated for each noise
level. The noise level is measured by the SNR (signal-to-
noise ratio) of the noised image Ĩ to the true image I , which

(a) (b)

(c) (d)

(e) (f)

Figure 7. (a), (c) and (e) are the average estimation errors of blur
extent for three motion types. The corresponding blurring direc-
tions are all 45 degree. (b), (d) and (f) are the average estimation
errors of blur direction for three motion types. The corresponding
blur extents are all 20 pixels. ’RC+Intensity’ denotes the method
in [7] and ’FR+Gradient’ denotes our method.

is defined as

SNR(I) = 20 log10(‖I‖2/‖I − Ĩ‖2). (23)

See Fig 5 for two noisy samples of the blurred image shown
in Fig. 2 (b).

Fig. 6 compares the results from our method (denoted by
FR+Gradients method) against those from the algorithm in
[7] (denoted by RC+Intensity method) with different noise
levels. The comparison shows that our algorithm is more
robust to noise than the algorithm in [7] on the estimation
of both the blur extent and the blur direction for all three
motion types. In particular, [7] completely fails on the esti-
mation of the blur direction of the ramp motion even when
the noise level is low, while the noise hardly has any impact
on the estimation of the blur direction by our algorithm. The
robustness of our method relies mostly on the stronger peri-
odic patterns which cancel the increasing noise level when
use image gradients compared to using image intensities.
Also, the introduced Fourier-Radon method can detect such
periodicity better than ceptral methods do, since it simuta-
neously utilizes both parallelity and periodicity instead of
sequentially using them as ceptral methods do.

Fig. 7 compares the performance of two methods on im-
ages blurred by different blurring kernels with strong noise.



(a) (b) (c)

(d) (e) (f)

(h) (i) (j)

Figure 8. (a), (d) and (h) are three real motion-blurred images; (b), (e) and (i) are the de-blurred images using the blurring kernel estimated
by the method in [7] and (c), (f) and (j) are the deblurred image using the blurring kernel estimated by our method. All blurred images are
restored by the deconvolution algorithm presented in [11].

The tested images are simulated by applying blur kernels
of different directions and different extents on the original
image shown in Fig. 2 (a). The SNRs of all tested images
are 12 dB. The blur direction ranges from -22.5 degree to
22.5 degree; and the blur extent ranges from 10 pixels to 40
pixels. The results from two methods are shown in Fig. 7. It
is clear that out algorithm outperforms the algorithm in [7]
by a large margin both on the estimation of the blur extent
and on the estimation of the blur direction.

4.2. Real images

In the second experiment, we run both algorithms on 100
real images of both indoor and outdoor scenes. All im-
ages are taken by a hand-held digital camera without sta-
bilizing the camera body. First both methods are applied on
the blurred images to identify the blurring kernel. Then the
deconvolution algorithm in [11] is implemented to restore
the blurred images. The de-blurred images of all images
by both algorithms are visually evaluated. If the de-blurred
image bring noticeable visual improvement over blurred im-
age, we call it ’successful’; otherwise we call it ’unsuccess-
ful’. Among all 100 tested images, 73 images are success-

fully restored by our method but only 44 images are suc-
cessfully restored by the algorithm in [7]. Fig. 8 lists three
samples. The left column of Fig. 8 shows three blurred im-
ages. The middle and the right column of Fig. 8 demon-
strate the corresponding de-blurred images using [7] and
our method respectively. The visual improvement of our
algorithm over [7] is evident in all three samples.

4.3. Conclusion and future work

From the results of both simulated and real images, we
could clearly see the advantage of our approach over avail-
able techniques. By working on the image gradients, we
obtain a periodic pattern which exists in a wide range of mo-
tion types and robust to noise. Also, the proposed Fourier-
Radon transform provides a robust algorithm to catch this
periodic pattern even in noisy images. In our experiment,
it turns out that the blurred image due to camera shakes of-
ten can not be modeled well by an uniform velocity motion
blurring. Instead, a trapezoid motion or a ramp motion is a
better description of camera shakes. Also, the motion blur-
ring of the object is often accompanied by the out-of-focus
blurring of the background. Our algorithm still can find the



motion-blurring kernel in many cases while the other tech-
niques can not. In future, we would like to investigate the
generalization of our algorithm to handle more complicated
motion blur. In particular, we are interested in developing a
localize version of our algorithm to identify the block-wise
blurring kernels of a given blurred image. With such an
algorithm in hand, we will be able to restore the motion-
blurred image caused by fast-moving objects in the scene.
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A. The proof of Theorem 3.1
We have that

F(g)(ω, θ) = R̂(g)(ω, θ)

=
∫ ∞
−∞

e−2πiωρdρ

∫ ∞
−∞

∑
k

χ(Lk − (ρ cos θ −

s sin θ) cos θ0 − (ρ sin θ + s cos θ) sin θ0)ds

=
∫ ∞
−∞

e−2πiωρdρ

∫ ∞
−∞

∑
k

χ(Lk

−ρ cos(θ − θ0) + s sin(θ − θ0))ds. (24)

If θ = θ0, we have then

F(g)(ω, θ) =
∑
k

∫ ∞
−∞

e−2πiωρdρ

∫ ∞
−∞

χ(Lk − ρ)ds

=
∑
k

∫ ∞
−∞

e−2πiωρδ(ρ− Lk)dρ

=
∑
k

e−2πiωLk

= δ(ω − 1
L

). (25)

If θ 6= θ0, then we have

F(g)(ω, θ) =
∫ ∞
−∞

e−2πiωρdρ · 0

= 0. (26)

Thus we have

F(g)(ω, θ) = δ(ω − 1
L

)χ(θ − θ0). (27)

The proof is done. �


