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Abstract

Tracking people in a dense crowd is a challenging prob-
lem for a single camera tracker due to occlusions and ex-
tensive motion that make human segmentation difficult. In
this paper we suggest a method for simultaneously track-
ing all the people in a densely crowded scene using a set
of cameras with overlapping fields of view. To overcome
occlusions, the cameras are placed at a high elevation and
only people’s heads are tracked. Head detection is still dif-
ficult since each foreground region may consist of multi-
ple subjects. By combining data from several views, height
information is extracted and used for head segmentation.
The head tops, which are regarded as 2D patches at vari-
ous heights, are detected by applying intensity correlation
to aligned frames from the different cameras. The detected
head tops are then tracked using common assumptions on
motion direction and velocity. The method was tested on
sequences in indoor and outdoor environments under chal-
lenging illumination conditions. It was successful in track-
ing up to 21 people walking in a small area (2.5 people
per m?), in spite of severe and persistent occlusions.

1. Introduction

People tracking is a well-studied problem in computer
vision, mainly, but not exclusively, for surveillance applica-
tions. In this paper we present a new method for tracking
multiple people in a dense crowd by combining informa-
tion from a set of cameras overlooking the same scene. The
main challenge encountered by tracking methods is the se-
vere and persistent occlusion prevalent in images of a dense
crowd (as shown in Fig. 1). Most existing tracking methods
use a single camera, and thus do not cope well with crowded
scenes. For example, trackers based on a human shape
model such as Rodriguez & Shah [18] or Zhao & Neva-
tia [23] will encounter difficulties since body parts are not
isolated, and may be significantly occluded. Multiple cam-
era tracking methods often perform segmentation in each
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view separately, and are thus susceptible to the same prob-
lems (e.g., [1'1, 15]).

Our method avoids occlusion by only tracking heads. We
place a set of cameras at a high elevation, from which the
heads are almost always visible. Even under these condi-
tions, head segmentation using a single image is challeng-
ing, since in a dense crowd, people are often merged into
large foreground blobs (see Fig. 4). To overcome this prob-
lem, our method combines information from a set of static,
synchronized and partially calibrated cameras, with over-
lapping fields of view (see examples in Fig. 1).

We rely on the assumption that the head is the highest
region of the body. A head top forms a 2D blob on the
plane parallel to the floor at the person’s height. The set of
frames taken from different views at the same time step is
used to detect such blobs. For each height, the foreground
images from all views (each may be a blob containing many
people) are transformed using a planar homography [3] to
align the projection of the plane at that height. Intensity
correlation in the set of transformed frames is used to detect
the candidate blobs. In Fig. 2 we demonstrate this process
on a scene with a single person. Repeating this correlation
for a set of heights produces 2D blobs at various heights
that are candidate head tops. By projecting these blobs to
the floor, multiple detections of the same person at different
heights can be removed. At the end of this phase we obtain,
for each time step, the centers of the candidate head tops
projected to the floor of a reference sequence.

In the next phase of our algorithm, the detected head
top centers are combined into tracks. At the first level of
tracking, atomic tracks are detected using conservative as-
sumptions on the expected trajectory, such as consistency of
motion direction and velocity. At the second level, atomic
tracks are combined into longer tracks using a score which
reflects the likelihood that the two tracks belong to the same
trajectory. Finally, a score function based on the length of
the trajectory and on the consistency of its motion is used to
detect false positive tracks and filter them out.

Our method overcomes hard challenges of tracking peo-
ple: severe and persistent occlusions, subjects with non-



Figure 1. Four views of the same scene, with tracking result on the reference frame.

standard body shape (e.g., a person carrying a suitcase or
a backpack), people wearing similar clothing, shadows and
reflections on the floor, highly varied illumination within
the scene, and poor image contrast. The method was tested
on indoor and outdoor sequences with challenging lighting
conditions, and was successful in tracking up to 21 people
walking in a small area (2.5 people per m?).

2. Related Work

Until recent years, the bulk of research in the field of
people detection and tracking concentrated on using a sin-
gle camera to track a small number of subjects. Papageor-
giou et al. [16] use SVM detectors based on Haar wavelets.
Felzenszwalb [4] trains a classifier using a human shape
model. Both methods are trained on full human figures,
and will not perform well if subjects are even partially oc-
cluded. Leibe et al. [14] also use a full-body representation,
but increase its flexibility by allowing interpolation between
local parts seen on different training objects. Wu & Neva-
tia [21] detect body parts by boosting a number of weak
classifiers, and track partially occluded humans using data
association and mean shift. Viola et al. [20] combine motion
and appearance for segmenting pedestrians. Several meth-
ods employ a Bayesian framework, using Kalman filters or
particle filters for tracking: Isard & MacCormick [8] handle
occlusions using a 3D object model that provides depth or-
dering; Zhao et al. [23] use a coarse 3D human shape model
to separate between different people that belong to a single
foreground blob; Smith et al. [19] and Yu et al. [22] use so-
phisticated background subtraction methods for detection,
and an MCMC approach to sample the solution space effi-
ciently.

These and other single camera methods are inadequate

for handling highly dense crowds such as those considered
in this paper, due to severe occlusion which results in large
foreground blobs comprised of multiple people. For exam-
ple, a suggested comparison between our method and the
state-of-the-art single view tracking system developed by
Wu, Zhao & Nevatia could not be performed, since their
method was reported to be inapplicable under these chal-
lenging density and illumination conditions '

Multiple cameras were traditionally used in tracking for
extending the limited viewing area of a single camera. In
this case, tracking is performed separately for each camera,
and the responsibility of tracking a given subject is trans-
fered from one camera to another [1, 17]. Some meth-
ods use multiple cameras with overlapping fields of view.
Krumm et al. [11] use pairs of cameras to resolve ambi-
guity using 3D stereo information. Their method is based
on background subtraction, and hence is limited when a
dense crowd is considered. Mittal & Davis [15] employ
a higher level of collaboration between cameras, where
foreground blob ambiguity is resolved by matching regions
along epipolar lines. The main limitation of this method is
its reliance on the assumption that different people within
a single foreground blob are separable based on color seg-
mentation alone. This assumption does not always hold,
since people often wear similarly colored clothes. Fleuret
et al. [5] combine a generative model with dynamic pro-
gramming, and demonstrate tracking of up to six people.

The method most similar to ours for detecting people
from multiple cameras was proposed by Khan & Shah [9].
They use a homography transformation to align the fore-
ground of the floor plane from images taken from a set
of cameras with overlapping fields of view, and achieve

'Personal communication.
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Figure 2. 2D patch detection demonstrated, for clarity, on a single,
isolated person. (a,b) Two views of the same person. (c) Homog-
raphy transformation is applied to image b to align points on the
3D plane at the head-top height with their counterparts in image a.
(d) Image ¢ overlaid on image a. (e) Overlay of additional trans-
formed images. (f) Variance map of the hyper-pixels of image e,
color coded such that red corresponds to a low variance.

good results in moderately crowded scenes. However,
their method seems inadequate for handling highly crowded
scenes. On one hand, tracking people’s feet rather than their
heads precludes the use of intensity value correlation, since
the occlusion of the feet in a dense crowd is likely to cause
many false negative detections. On the other hand, detec-
tion based solely on foreground/background separation of
images rather than on a more discriminative correlation of
intensity values can result in false positive detections (as
explained in Sec. 3.1.3, and demonstrated in Fig. 4b).

Recently, Khan et. al. [10] suggested applying the same
concept to planes at multiple heights for 3D shape recov-
ery of non-occluded objects. Several other methods have
utilized multiple cameras viewing a single object from dif-
ferent directions for 3D reconstruction, based on the visual
hull concept (Laurentini [12]), or on constructing a space
occupancy grid (Cheung et al. [2], Franco et al. [6]). How-
ever, none of these methods was used for tracking, or in the
presence of occlusion.

3. The Method

We assume a set of synchronized and partially calibrated
cameras overlooking a single scene, where head tops are
visible. The partial calibration of the cameras consists of
the homography of 3 planes parallel to the floor between
each pair of cameras.

Initially, head top centers and their heights are detected

(each represented by a single feature point), and projected
to the floor. These feature points are then tracked to recover
the trajectories of people’s motion, and filtered to remove
false positives.

3.1. Head Top Detection

The head top is defined as the highest 2D patch of a
person. The detection of candidate head tops is based on
co-temporal frames, that is, frames taken from different se-
quences at the same time. Since we assume synchronized
sequences, co-temporal frames are well defined. Fig. 4
shows intermediate results of the method described below.

3.1.1 2D Patch Detection

To detect a 2D patch visible in a set of co-temporal frames,
we use the known observation that images of a planar sur-
face are related by a homography transformation. When a
homography transformation is applied to images of an ar-
bitrary 3D scene, the points that correspond to the plane
will align, while the rest of the points will not. This idea is
demonstrated in Fig. 2 for a single person at a given height.

Consider n synchronized cameras. Let S; be the se-
quence taken by camera i, with Sy serving as the reference
sequence. Let 7" be a plane in the 3D scene parallel to the
image floor at height h. A w-mapping between an image
and a reference image is defined as the homography that
aligns the projection of points on the plane 7 in the two im-
ages. For a plane 7 and sequences S; and S, it is given by
the 3 x 3 homography matrix Aﬁl. Using the three known
homography matrices given by the partial calibration, A?&,
At and A}'3, he homography matrices A'; can be com-
puted for any height h.

Consider S1(t), a frame of the reference sequence in
time ¢. To detect the set of pixels in S (¢) that are pro-
jections of a 2D patch at height h, the co-temporal set of
n frames is used. Each of the frames is aligned to the se-
quence 51, using the homography given by the matrix AZI.
Let S;(t) be a frame from sequence 7 taken at time ¢. Let
p € Si(t), and let I;(p) be its intensity. A hyper-pixel is
defined as an n x 1 vector ¢ consisting of the set of inten-
sities that are 7/-mapped to ¢ € S;(t). The 7"*-mapping of
the point p € S;(¢) to a point ¢ in frame S;(¢) is given by
q= Af, 1pi. The inverse transformation, p; = A}iiq, allows
us to compute §’:

Ii(q) Ii(q)

Ir(p2) IQ(A}fQQ)
“ho_ _

:[n (Pn) In (A?,nq)

The hyper-pixel ¢ is computed for each pixel ¢ € S;(¢).
Highly correlated intensities within a hyper-pixel indicate



(a) Low variance

(b) Low variance

(c) High variance

Figure 3. After applying the plane transformation which corresponds to the imaginary plane in the scene, the hyper-pixel of the aligned
images will contain the marked rays. (a) A 3D point at the plane height is detected where a person is present. (b) A false positive detection
occurs due to accidental projections of points from different people. This will only happen if all points coincidentally have the same color.
(c¢) In the more common case, points belonging to different objects have different colors. This results in high hyper-pixel intensity variance,

which prevents false positive detection.

that the pixel is a projection of a point on the considered
plane 7", A low correlation can be expected for other points
provided that the scene is not homogeneous in color. Using
hyper-pixel intensity variance, we obtain a set of pixels that
are likely to be projections of points on the plane 7. Sim-
ple clustering, using double threshold hysteresis on these
pixels and a rough estimation of the head top size (in pix-
els), can be used for detecting candidate 2D patches on the
plane ", If a blob is larger than the expected size of a head
top, a situation that may occur in extremely dense crowds,
the blob is split into several appropriately sized blobs using
K-means clustering. The centers of the 2D patches are then
used for further processing.

A possible source of false positive detections is homo-
geneous background. For example, in an outdoor scene,
the texture or color of the ground may be uniform, as may
be the floor or walls in an indoor scene. We therefore align
only the foreground regions, computed using a simple back-
ground subtraction algorithm (which subtracts each frame
from a single background frame, taken when the scene was

empty).

3.1.2 Detecting the Highest 2D Patch

The process of detecting 2D patches is repeated for a set
H = {hy,...,h,} of expected people heights. The set is
taken at a resolution of Scm. We assume that the head tops
are visible to all cameras. It follows that at this stage of
our algorithm, all head tops are detected as 2D patches at
one of the considered heights. However, a single person
might be detected as patches at several heights, and all but
the highest one should be removed. To do so, we compute
the foot location of each of the 2D patches as would appear
in the reference sequence.

The foot location is assumed to be the orthogonal pro-
jection of a 2D patch at a given height A to the floor. The
projection is computed using a homography transformation
from the reference sequence to itself. The homography
aligns the location of each point on the plane 7" in the ref-
erence image with the location of its projection to the plane
7Y in the same image. For each height h; € H, the homog-
raphy transformation that maps the projection of the plane
7l to the floor of sequence S; is given by the 3 x 3 ho-
mography matrix B"¢. These matrices can be computed on
the basis of the partial calibration assumption of our sys-
tem. For a head top center ¢ € S (¢), detected at height h,
the projection to the floor of S; is given by B" ¢. For each
floor location, a single 2D patch is chosen. If more than
one patch is projected to roughly the same foot location, the
highest one is chosen, and the rest are ignored. This pro-
vides, in addition to detection, an estimation of the detected
person’s height, which can later assist in tracking.

3.1.3 Expected ’Phantoms’

Phantoms typically occur when people are dressed in sim-
ilar colors, and the crowd is dense. As a result, portions
of the scene may be homogeneous, and accidental intensity
correlation of aligned frames may be detected as head tops.
Fig. 3b illustrates how plane alignment can correlate non-
corresponding pixels originating from different people who
happen to be wearing similarly colored clothes. In this case,
rays intersect in front of the people, and the created phan-
tom is taller. Similarly, shorter phantoms may appear if the
rays intersect behind the people. Note that if only back-
ground/foreground values are used, as in [9], such acciden-
tal detections will occur even if people are wearing different
colors (as in Fig. 3¢). Our method will not detect a phantom
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Figure 4. Intermediate results of head top detection. (a) Background subtraction on a single frame. (b) Aligned foreground of all views
for a given height (color coded for the number of foregrounds in each hyper-pixel, where red is high). (c) Variance of the foreground
hyper-pixels (red for low). (d) Detected head tops at a given height, and their projection to the floor. (e) The same as d for all heights.

(f) Tracking results with 20 frame history.

in this case, since it uses intensity value correlation.

Phantoms can also affect the detection of real people
walking in the scene: the head of a phantom can be just
above a real head, causing it to be removed since it is not
the highest patch above the foot location. The probability of
detecting phantoms can be reduced by increasing the num-
ber of cameras (see Sec. 4.3). We remove phantoms in the
tracking phase, by filtering out tracks that exhibit abnormal
motion behavior. Phantom removal can be further improved
by utilizing human shape detection methods, but this is be-
yond the scope of this paper.

3.2. Tracking

The input to the tracker for each time step consists of
two lists of head top centers projected to the floor of the
reference sequence. Each list is computed using a different
threshold. The high threshold list will have less false pos-
itive head top detections but more false negative detections
than the lower threshold list.

At the first stage of tracking, atomic tracks are computed
using prediction of the feature location in the next frame
based on its motion velocity and direction in previous ones.
Tracking is performed using the high threshold list. If sev-

eral features are found within a small radius of the expected
region, the nearest neighbor is chosen. If no feature is found
within the region, the search is repeated using the lower
threshold list. Failure to find the feature in either list is
considered a negative detection. The termination of tracks
is determined by the number of successive negative detec-
tions. After all tracks have been matched to features in a
given time step, the remaining unmatched features are con-
sidered as candidates for new tracks. Tracks are initialized
from these candidates only after two or more consecutive
positive detections.

The result of the first stage of tracking is a large number
of tracks, some of which are fragments of real trajectories
and others which are false positives. The next stage com-
bines fragments into long continuous tracks, leaving short
unmatched tracks for deletion in the final stage.

Let tr; and tr; be two atomic tracks. The numbers
of the first and last frames of a track are denoted by
f(tr;) and £(tr;), respectively. The time overlap of two
tracks is defined as overlap(tr;,tr;) = f(trj) — £(tr;).
Two tracks, ¢r; and t¢r;, are considered for merging if
—10 < overlap(tr;,tr;) < 40. A merge score is computed
for each pair of tracks that satisfies this condition. The
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Figure 5. Examples of tracked trajectories from three sequences. (For sequences S1 and S3a, sticks connecting heads and their projections
to the floor are displayed. For sequence S5, due to the complexity of the trajectories, only heads are displayed.)

score is a function of the following measures: m; — the
amount of overlap between the tracks; my — the differ-
ence between the two tracks’” motion directions; ms3 —
the direction change required by ¢r; in order to reach the
merge point with ¢r;; my4 — the height difference between
tr; and tr;; ms, me — the minimal and average distances
between corresponding points along the overlapping seg-
ments (or along the expected paths of the trajectories, in
case of a negative overlap). The merge score is defined by:
score(tr;, tr;) = %Zmi/ﬁzi, where m; is the maximal
expected value of the measure m;.

Finally, a consistency score is used to remove tracks that
are suspected as false positives. This score is based on
weighted components which include the average change in
speed, direction and height between any two consecutive
time steps, and the track length. This heuristic successfully
removes most of the phantom tracks. In addition, pairs of
tracks that consistently move together, staying within a very
small distance from each other, are detected. In such cases,
the shorter track, which is usually the shoulder, is deleted.

4. Experimental Results

To demonstrate the effectiveness of our method, we per-
formed experiments on real video sequences under chang-
ing conditions. In Sec. 4.2 we describe the scenarios and
the results of applying our method to several indoor and
outdoor sequences with varying degrees of crowd density
and challenging illumination conditions. In Sec. 4.3 we in-
vestigate how changing the number of cameras affects the
tracking results.

4.1. Implementation and System Details

We used between 3 and 9 USB cameras (IDS uEye Ul-
1545LE-C), connected to 3 laptops. The cameras were
placed around the scene, 2-3 meters apart, with the vertical
viewing angle of each camera rotated at 30° relative to its

neighbor. Horizontally, they were placed at an elevation of
6 meters, viewing the scene at a relatively sharp angle (45°
or more below the horizon). Detection and tracking were
performed on an area of 3 x 6 meters. All test sequences
were taken at a rate of 15 frames per second, with an image
size of 640 x 512.

The cameras were calibrated using vertical poles placed
at the corners of the scene, mounted with LEDS blinking at
unique frequencies, as described in [7]. In future work we
intend to develop a calibration method that relies on tracked
people in a non-dense environment, similar to [13].

The algorithm was implemented in Matlab on gray level
images. The algorithm’s behavior is controlled by several
parameters, all of which have a single global setting except
for the hysteresis double thresholds. These are used to iso-
late high correlation (low variance) hyper-pixels of plane-
aligned images, and are set manually for each sequence,
since they depend on volatile factors such as the lighting
conditions and the number of cameras.

4.2. Sequences and Results

Below we describe the different scenarios used for test-
ing our approach, and assess the system’s performance.

The following evaluation criteria reflect both the success
of recovering each of the trajectories and the success of as-
signing a single ID to each one. True Positive (TP): 75%-
100% of the trajectory is tracked, possibly with some ID
changes; Perfect True Positive (PTP): 100% of the trajec-
tory is tracked, with a single ID (note that these trajecto-
ries are counted in TP as well); Detection Rate (DR): per-
cent of frames tracked compared to ground truth trajectory,
independent of ID change (and including false negatives);
ID Changes (IDC): number of times a track changes its
ID; False Negative (FN): less than 75% of the trajectory is
tracked; False Positive (FP): a track with no real trajectory.

Table 1 summarizes the tracking results. Examples can
be seen in Fig. 1 and in Fig. 5, where each detected person



[ 1Seq [ GT | TP [ PTP [ IDC | DR% [ FN [ FP |

S1 27 ] 26 ] 23 3 %87 [ 1 ] 6
S2 | 42 [ 41 [ 39 0 979 | 1 |5
S3a | 19 [ 19 | 19 0 [ 1000 00
S3b [ 18 [ 18 | 18 0 [ 1000 072
S3c [ 21 [ 21 | 20 1 91 [ 0[O0
S4 [ 23 [ 23 22 0 9.1 [ 0 [ 1
S5 24 |23 14 ] 12 ] 44110
[ Total [ 174 J 171 [ 155 [ 16 | 984 [ 3 [ 14 |

Table 1. Tracking results on 7 Sequences (GT — Ground Truth;
TP — True Positive, 75%-100% tracked; PTP — Perfect True Posi-
tive, 100% tracked, no ID changes along the trajectory; IDC — ID
Changes; DR — Detection Rate; FN — False Negative; FP — False
Positive).

is marked by his head center. The tails mark the detected
trajectories up to the displayed frame.
We next describe each sequence in detail:?

S1: Along (1500 frames), relatively sparse (up to 6 concur-
rent trajectories), outdoor sequence using only 6 cameras
which, due to physical limitations, are all collinear. The
sequence was taken at twilight, and thus suffers from dim
lighting and poor contrast. The tracking results are very
good, except for a high false positive rate resulting from the
low threshold chosen to cope with the low image contrast.
Fig. 5a presents the tracking results on this sequence.

S2: A long (1100 frames) indoor sequence, with medium
crowd density using 9 cameras. People in the scene move
in groups (up to 9 people concurrently). Lighting condi-
tions are very hard: bright lights coming in through the win-
dows and reflected by the shiny floor create a highly con-
trasted background; long dark shadows interfere with fore-
ground/background separation; inconsistent lighting within
the scene significantly alters an object’s appearance along
different parts of its trajectory. In addition, tall statues are
placed along the path, sometimes causing almost full occlu-
sion. Despite these problems, the tracking quality is good,
with only a single track lost, and most of the others perfectly
tracked.

S3: Three excerpts from a longer sequence (200, 250 and
300 frames) with a very high crowd density, taken with 9
cameras. The scene is the same brightly lighted indoor sce-
nario described in the previous sequence. The sequences
contain 57 trajectories in total, with up to 19 concurrent.
All of the people move very closely together in a single
group and in the same direction (S3a & S3b), or split into
two groups which pass close to each other in opposite di-
rections (S3c¢). An additional difficulty is the inclusion of
several bald-headed people in the sequence: the bright over-

2 Tracking results can be seen in:
ftp://ftp.idc.ac.il/Pub/Users/CS/Yael/CVPR-2008/CVPR-2008-results.zip

head lights falling on a bald head give it a different ap-
pearance in different views, resulting in a high hyper-pixel
variance and a detection failure. Despite similar density,
tracking results are significantly better than in sequence S5,
partly because of the higher number of cameras, but mostly
because of the more natural motion patterns displayed by
the people. The detection rate is almost perfect (99.7%),
and the error rate is very low (a total of 2 false positives, 0
false negatives and 2 ID changes for the three sequences
combined). Fig. 5b presents the tracking results on se-
quence S3a.

S4: A high crowd density sequence (200 frames), taken
using 6 cameras placed around the scene. Most of the peo-
ple are visible at the same time (up to 19), and all of them
move in the same direction, making separation based on
motion impossible. Tracking results are very good: one of
the tracks is detected late (30 frames after first appearing),
while all the others are perfectly tracked.

S5: A very high crowd density sequence (200 frames) with
complex motion taken with the same setup as above. The
sequence begins with 21 people crowded into an 8m? area,
a density of over 2.5 people per m?2. People then start to
move in an unnaturally complex manner — changing direc-
tions sharply and frequently, and passing very close to each
other. The detection results are good, with a 94.4% detec-
tion rate and no false positives, but the tracking consistency
is not as good, with almost half of the trajectories changing
their ID at some point along their path. Fig. Sc presents the
tracking results on this sequence. The tails demonstrate the
complex motion of the people.

4.3. Varying the Number of Cameras

In theory, two or three cameras are sufficient for apply-
ing our method. In this experiment we test the effect of
varying the number of cameras in one of our more challeng-
ing sequences, S3b. The results are summarized in Fig. 6.
In general, both detection and tracking quality improve as
the number of cameras increases. However, increasing this
number beyond six has a negligible effect. The detection
rate and the true positive detection remain high even when
the number of cameras is decreased to three. As men-
tioned in Sec. 3 and demonstrated in Fig. 3b, decreasing
the number of cameras may increase the number of acci-
dental matchings, causing phantoms to appear. The effect
of this phenomenon is apparent in Fig. 6b. The ambigu-
ity caused by the presence of a large number of phantoms
also affects other parameters, resulting in an increase in the
number of ID changes and of false negative detections. We
can therefore conclude that our tracker performs well when
the number of cameras is sufficient for handling the crowd
density. Otherwise, its performance gradually degrades as
the number of cameras decreases.
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Figure 6. System performance as a function of the number of cameras. Results improve as the number of cameras increases. When this

number drops below 5, system performance deteriorates considerably.

5. Conclusions

We suggest a method based on a multiple camera sys-
tem for tracking people in a dense crowd. The use of mul-
tiple cameras with overlapping fields of view enables ro-
bust tracking of people in highly crowded scenes. This may
overshadow budget limitations when essential or sensitive
areas are considered. The sharp decline in camera prices
in recent years may further increase the feasibility of this
setup.

Our main contribution is the use of multiple height
homographies for head top detection, which makes our
method robust to severe and persistent occlusions, and to
challenging lighting conditions. Most of the false positives
generated by this method are removed by a heuristic track-
ing scheme.

In the future we intend to investigate automatic setting
of system parameters and to consider a distributed imple-
mentation of our algorithm. Another promising direction is
to combine our algorithm with human body segmentation
methods, to assist in false positive removal.
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