
Adaptive and Constrained Algorithms for Inverse Compositional

Active Appearance Model Fitting

George Papandreou and Petros Maragos

School of E.C.E., National Technical University of Athens, Greece

http://cvsp.cs.ntua.gr
∗

Abstract

Parametric models of shape and texture such as Ac-

tive Appearance Models (AAMs) are diverse tools for de-

formable object appearance modeling and have found im-

portant applications in both image synthesis and analy-

sis problems. Among the numerous algorithms that have

been proposed for AAM fitting, those based on the inverse-

compositional image alignment technique have recently re-

ceived considerable attention due to their potential for high

efficiency. However, existing fitting algorithms perform

poorly when used in conjunction with models exhibiting

significant appearance variation, such as AAMs trained

on multiple-subject human face images. We introduce two

enhancements to inverse-compositional AAM matching al-

gorithms in order to overcome this limitation. First, we

propose fitting algorithm adaptation, by means of (a) fit-

ting matrix adjustment and (b) AAM mean template up-

date. Second, we show how prior information can be in-

corporated and constrain the AAM fitting process. The

inverse-compositional nature of the algorithm allows effi-

cient implementation of these enhancements. Both tech-

niques substantially improve AAM fitting performance, as

demonstrated with experiments on publicly available multi-

person face datasets.

1. Introduction

Parametric models of shape and texture, such as Ac-

tive Appearance Models [8], Active Blobs [25], Morphable

Models [18], and other related approaches [5, 11, 16] are

widely used techniques for object appearance modeling.

Employing a number of parameters controlling shape and

texture variation, these models bring a target image into reg-

istration with a reference template, even in cases that the

target image is a deformed version of the template; imaging

∗This work was supported in part by grant ΠENE∆-2003-E∆865 [co-

financed by E.U.-European Social Fund (75%) and the Greek Ministry

of Development-GSRT (25%)] and in part by the European Community

projects ASPI, MUSCLE, and HIWIRE.

conditions such as camera position and object illumination

can also differ significantly between the template and the

target image. Active Appearance Models can additionaly

represent appearance variability in a whole class of objects,

such as faces or cars, after learning it from examples during

a training phase. Such parametric models can be applied to

both image synthesis and analysis problems. Representative

applications are object tracking in video [25], face recogni-

tion [6], face synthesis [18], and image stitching [26].

An important issue with AAMs concerns matching them

to images by finding the parameters that minimize the dis-

crepancy between observed and synthesized object appear-

ances, possibly also including a prior penalty on the pa-

rameter values. This is a difficult non-linear optimization

task and general-purpose optimization procedures can be

inneficient. Most existing AAM fitting algorithms solve

the matching problem by iteratively updating the model pa-

rameters, assuming that there is a fixed AAM fitting matrix

which maps the synthesis error image to model parameter

increments; this matrix is learned in a precomputation phase

and is subsequently used unaltered, resulting in a very ef-

ficient class of algorithms, reviewed in Section 2. How-

ever, the fixed mapping approach reaches its limits when

one works with models allowing considerable appearance

deviation from the mean template, such as AAMs built on

large multi-person face datasets [3, 10].

As has been highlighted in [2], in performing incremen-

tal image registration one can choose between (a) updat-

ing the warp parameters either additively or composition-

ally and (b) calculating incremental warps and image gra-

dients either forwardly on the target image or inversely on

the model template. In our work, similarly to [2,12,22], we

use the inverse compositional combination because it facil-

itates efficient calculations, since manipulating the model

template instead of the target image allows precomputing

useful quantities and thus accelerates image fitting.

Our first main contribution is that we introduce two

complementary adaptation mechanisms in inverse com-

positional AAM fitting. The first adaptation mechanism

amounts to AAM fitting matrix adjustment and compensates

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

for the deviation of the model’s synthetic texture from the

mean texture. A desirable characteristic of our algorithm

is that it features a tunable order parameter which adjusts

the adaptation accuracy vs. computational load trade-off,

allowing a variety of choices to the user. We show that

previously presented algorithms such as the fast (but pos-

sibly inaccurate) project-out method of [19] and the more

accurate (but slow) simultaneous method of [15] are just

the zero-order and maximum-order, respectively, extremes

of plausible choices. Our analysis sheds new light in their

properties and their shortcomings. As a second complemen-

tary adaptation mechanism, we propose a computationally

cheap mean template update procedure, particularly suited

for object tracking in videos, which can be applied period-

ically and adapt the mean texture of the model’s template,

considerably improving the accuracy of the fast (low-order)

algorithms we present. Both adaptation techniques are pre-

sented in Section 3.

Our second main contribution is that we show how prior

constraints on model parameters can be properly incorpo-

rated into inverse compositional AAM fitting algorithms.

Such prior information, typically in the form of dynamic

constraints within a tracking system or static constraints

induced during the PCA-based AAM training phase, can

significantly improve AAM fitting robustness as has been

demonstrated within the conventional forwards additive pa-

rameter update framework [9]. However, utilizing them

within the compositional warp update mechanism is not

straightforward, as one needs to compute the Jacobian ma-

trix of the compositional-to-additive warp update, which

had only been done before for the simple case of global

affine transformation [1]. We show in Section 4 how this Ja-

cobian matrix can be efficiently calculated for the more flex-

ible warps often utilized in conjunction with AAMs, such

as thin-plate spline warps. We present in Section 5 exper-

imental results on face matching and tracking with AAMs

built on multi-person datasets which demonstrate that incor-

porating adaptation mechanisms and prior constraints sub-

stantially improves AAM fitting performance.

2. Active Appearance Models

Active Appearance Models are generative models which

use a compact set of parameters to describe the shape and

texture variation of objects in images.

2.1. Object Appearance Representation

Typically the shape of the object is sampled at L land-

marks, whose coordinates constitute a shape vector s of

length 2L in the 2-D case. Active Appearance Models allow

a particular instance of the shape sp deviate from a mean

shape s0 by letting sp − s0 lie in a linear subspace spanned

by n eigenshapes si, yielding

sp = s0 +

n
∑

i=1

pisi. (1)

The modes of shape variation si can be either statistically

learned using a training set [8], or computed by modal anal-

ysis of the shape mesh [25], or selected a-priori to allow

modeling certain distortions [14]. Often these modes delib-

erately do not model scale and translation, in which case an

explicit 4 d.o.f. similarity transform St, defined as St(x) =
(

1+t1 −t2
t2 1+t1

)

x +
(

t3
t4

)

, makes the model scale and transla-

tion invariant. The enhanced shape parameter vector p̃ =
[t1:4,p1:n]T with length 4 + n implicitly defines a dense

continuous deformation field W(x, p̃) = St

(

W(x,p)
)

,

namely deformation followed by similarity, which maps ev-

ery point x in the model template to its corresponding im-

age point as follows: The deformation W(x,p), typically

a thin-plate spline or a piecewise affine mapping, is deter-

mined by requiring that it maps each landmark in the refer-

ence shape s0 to its corresponding landmark in sp.

The texture part of the appearance refers to the intensity

or color (other information channels can also be added) of

the object in a shape-normalized frame, after registering it

with the model template. Similarly to shape, allowable tex-

ture samples Aλ(x) are generated linearly, using a mean

texture A0(x) and a set of m eigentextures Ai(x):

Aλ = A0 +

m
∑

i=1

λiAi, (2)

where we have used vector notation for textures; e.g. A0

denotes the mean texture image raster-scanned into a vec-

tor with N entries, as many as the texture samples of the

reference object. The eigentexture images compensate il-

lumination changes [16] and model texture variability be-

tween different objects of the same class (e.g. faces) [8,18].

For example, Figure 1 shows the leading eigenshapes and

eigentextures obtained by AAM training on a person’s face.

Camera gain and offset are usually accounted for sepa-

rately by a global affine texture transformation Tu(I) =
(u1 + 1)I + u2. We gather all texture parameters in an en-

hanced texture vector λ̃ = [u1:2,λ1:m]T with length 2+m.

Figure 1. Upper row: Mean shape s0 and the first eigenshapes si.

Bottom row: Mean texture A0 and the first eigentextures Ai.

2.2. Model Fitting

A central issue with parametric appearance models is de-

signing algorithms that efficiently and accurately fit them

to a novel target image I , i.e. find the concatenated shape

and texture parameter vector q = [p̃T , λ̃
T
]T with length

n + m + 6 that minimizes the discrepancy between the

warped-back normalized image texture Tu(I(W(p̃))) and

the synthesized texture Aλ. The error image E(q) is:

E(q) = Tu(I(W(p̃)))−Aλ

= Tu(I(W(p̃)))− (A0 +

m
∑

i=1

λiAi).
(3)

The mismatch is usually quantified by the Euclidean norm
1

σ2 ‖E(q)‖22 (sum of square differences) of the error image,

where σ2 is the variance of the model noise; robust norms

are advantageous when handling occlusion [5]. Minimiz-

ing this mis-match is a non-linear least-squares problem on

a high-dimensional space and general-purpose optimization

techniques such as stochastic gradient descent [18] can be

slow. Most efficient techniques to solve the problem require

as input a good starting guess for the unknown parameter

vector q and then iteratively update it until a (local) mini-

mum of the mismatch norm is reached. Building an image

pyramid and matching in a coarse-to-fine fashion typically

improves the robustness of such incremental methods [4].

A standard general technique for improving the param-

eter estimate uses a first-order Taylor expansion E(q +
dq) ≈ E(q) + ∂E

∂q
dq and then applies a Gauss-Newton

type algorithm to compute an additive increment by dq =

K(q)E(q), where K(q) = −(∂E
∂q

T ∂E
∂q

)−1 ∂E
∂q

T
. However

this is computationally expensive, since image gradients ∂I
∂x

and warp Jacobians ∂W
∂p

need to be recomputed at every

step [2]. Although K(q) changes in general, a number of

authors still utilize a fixed AAM fitting matrix K from E(q)
to dq which is computed by multivariate analysis on the

training set [8, 13, 14, 25]. An interesting recent extension

of this approach allows the fixed mapping to be non-linear,

and learns it on the training set via boosting [23]. Utilizing

a fixed linear or non-linear mapping to compute parame-

ter updates leads to very efficient algorithms which often

demonstrate good accuracy. However, it has been demon-

strated that adapting the mapping K(q) to the target image

I can lead to notable performance improvements, especially

in dealing with target images whose texture substantially

departs from the mean model texture [3, 10].

As Baker and Matthews have highlighted [2, 19], the so-

called forwards additive class of algorithms just described is

not the only viable parameter update strategy. They unified

previous work on forwards compositional [24] and inverse

additive [16] parameter update strategies in iterative image

alignment algorithms and introduced the inverse composi-

tional parameter update technique, where a warp parameter

update dp̃ is combined with the current estimate p̃ inverse-

compositionally:

W(x, p̃)←W(x, p̃)◦W−1(x, dp̃) ≡W(W−1(x, dp̃), p̃).
(4)

They showed that, although the compositional parameter

update (4) is obviously more costly than the simple additive

update p̃ ← p̃ + dp̃, each full step of the IC algorithm is

overall cheaper than in any alternative approach when tex-

ture variation is allowed, because it turns out that most of

the quantities involved do not change during the fitting pro-

cedure and thus can be precomputed, as will be made clear

in the sequel. See [2] for further details and [22] for an

application of the inverse compositional approach to 3-D

morphable model fitting.

Exploiting its advantageous properties, Baker et al. have

introduced two algorithms that fall into the inverse com-

positional framework. On the one hand, their project-out

algorithm [19] avoids updates to the texture parameters λ

and matrix inversions every step and is thus extremely ef-

ficient; however it performs very poorly when the texture

variability in the object class is big and the authors have not

precisely identified the reasons of this failure [15]. On the

other hand, their simultaneous algorithm [15] is more accu-

rate but also fairly slow. The adaptation mechanisms which

we introduce in Section 3 shed new light and move beyond

the project-out and simultaneous algorithms. Moreover, in-

cluding prior information in the fitting process as described

in Section 4 clearly improves further the accuracy and ro-

bustness of the inverse compositional family of algorithms.

3. Adaptive Inverse Compositional AAMs

In this section we discuss two adaptation strategies for

Inverse Compositional AAMs. The first is an efficient

variable-order algorithm which adjusts the AAM fitting ma-

trix, adapting to the target image texture. The second is a

mean template update strategy which periodically modifies

the mean texture vector and significantly improves the ac-

curacy of our low-order inverse compositional algorithms.

3.1. Fitting Matrix Adjustment

We work in the inverse compositional framework re-

viewed in Section 2 and use similar notation to [15, 19].

In each fitting step we look for a parameter update vector

dq = [dp̃T , dλ̃
T
]T that minimizes the norm ‖E(q, dq)‖2

of the error image with respect to dq. From Eq. (3), the

error at an arbitrary point x in the reference patch after the

inverse-compositional update is applied is given by

E(x;q, dq) = Tu

(

I(W(x; p̃))
)

−

Tdu

(

Aλ+dλ(W(x; dp̃))
)

(5)

Making a first-order Taylor expansion around zero dq,

ignoring second-order terms and applying the chain-rule to

compute derivatives of composite functions, yields:

E(x;q, dq) = E(x;q)−
∂T (Aλ(x))

∂u
du−

∂Aλ(x)

∂x

∂W(x)

∂p̃

∣

∣

∣

p̃=0
dp̃− [A1(x) . . . Am(x)]dλ. (6)

The images multiplying the parameter updates, called steep-

est descent (s.d.) images in [19], give the change in texture

caused by updating the corresponding parameter. These

steepest descent images in our case are: 1) brightness cor-

rection s.d. images
∂T (Aλ(x))

∂u
= [Aλ(x) 1] corresponding

to du, 2) texture variation s.d. images [A1(x) . . . Am(x)]
corresponding to dλ, and 3) shape warp s.d. images, also

called motion templates in [16], Mλ(x) = ∂Aλ(x)
∂x

∂W(x)
∂p̃

,

corresponding to the 2 + n shape parameters in dp̃.

We make two observations. First, by reparameterizing

the texture increment vector as

dλ
′ = dλ− u1λ (7)

and defining its corresponding enhanced version dλ̃
′

=
[du1:2, dλ

′

1:m]T , yields the image-independent merged

brightness correction and texture variation s.d. images

A(x) = [A0(x) 1A1(x) . . . Am(x)] corresponding to dλ̃
′

.

Second, note that the warp Jacobian
∂W(x)

∂p̃
=

[

∂S
∂t

, ∂W(x)
∂p

]

is evaluated for zero p̃; thus, as expected from the inverse

compositional strategy we have adopted, it remains fixed.

However the motion templates Mλ(x) do depend on the

current texture estimate λ through the template gradient

term
∂Aλ(x)

∂x
and can be written as:

Mλ = M0 +

m
∑

i=1

λiMi, (8)

where Mi(x) = ∂Ai(x)
∂x

∂W(x)
∂p̃

∣

∣

∣

p̃=0
. Here M0 gathers the

unadapted motion templates corresponding to the model’s

mean texture A0, while each Mi, for i = 1, . . . ,m, is a

fixed N × (n + 4) matrix isolating the contribution of the

Ai eigen-texture to the motion templates. The effect of such

an adaptation on the motion template corresponding to x-

translation (parameter t3) is illustrated on Fig. 2. Adapting

the motion templates with Eq. (8) thus compensates for tex-

ture variation within the inverse compositional framework.

Resorting back to vector notation for images, we can re-

write compactly the least squares problem to be solved as

min
1

2σ2
‖E(q)−Hλdq′‖22, (9)

where E(q) is the current texture error given by Eq. (3);

Hλ =
[

Mλ A
]

is the N×(m+n+6) compound matrix of

A0 M0(:, 3) I Mλ(:, 3)

Figure 2. Left: Mean texture A0 and x-tranlation mean motion

template (third column of M0). Right: Target image I and corre-

sponding adapted motion template (third column of Mλ).

steepest descent images; and dq′ =

[

dp̃

dλ̃
′

]

is the vector of

the shape and reparameterized texture parameters. Invoking

the normal equations yields, respectively, the least-squares

estimate and corresponding covariance matrix

dq′ = σ−2ΣqHT
λ E(q) (10a)

Σq = σ2(HT
λ

Hλ)−1 = σ2

[

MT
λ

Mλ MT
λ

A
AT Mλ AT A

]

−1

. (10b)

Similarly to [16], we can consider Eq. (10) in partitioned

form, separating the shape and texture components of the

solution. This yields the shape parameter update

dp̃ = (M ′T
λ

M ′

λ
)−1MT

λ
PE(q), (11)

where we have defined (a) the projection matrix P =
I − A(AT A)−1AT (it projects vectors to the comple-

ment of the subspace spanned by the columns of A =
[A0 1N×1 A1 . . . Am]) and (b) the project-out N × (4 + n)
motion template matrix M ′

λ
= PMλ, whose columns con-

tain the motion template images after being projected by

P . Note that if we similarly define the fixed matrices

M ′

i = PMi, then from Eq. (8) we obtain

M ′

λ
= M ′

0 +
m

∑

i=1

λiM
′

i . (12)

After computing dp̃ using (11), the texture parameter up-

date can be computed by

dλ̃
′

= (AT A)−1AT (E(q)−Mλdp̃). (13)

Note that (AT A)−1AT is also a non-changing (2+m)×N
matrix and thus can be precomputed.

After dλ̃
′

has been computed, we rectify the original

texture parameterization by inverting (7), setting dλ =
dλ

′ +u1λ, which yields the final inverse-compositional es-

timates for dλ̃ = [duT , dλ
T]T and dq = [dp̃T , dλ̃

T
]T ;

note that recovering the original texture parameterization

does not affect the covariance matrix Σq of Eq. (10b). We

subsequently update the model parameters using the newly

computed increments, as follows: (a) The m eigen-texture

parameters λ are updated additively, λ← λ + dλ. (b) The

2 gain/offset correction parameters u are updated inverse-

compositionally, Tu ← Tu ◦T
−1
du (simple closed form solu-

tion). (c) The 4+n warp parameters p̃ are updated inverse-

compositionally according to Eq. (4) – a practical algorithm

to achieve this is given in [19], while in Sec. 4.1 we provide

an alternative approach through computation of the inverse-

compositional to forwards-additive Jacobian matrix Jp̃, in

which case we have p̃← p̃ + Jp̃dp̃.

In the approach we have described so far, the parame-

ter increments dq′ are computed from the current synthesis

error image E(q) using the mapping K(q) = σ−2ΣqHT
λ

(see Eq. (10a)) which adapts as the search progresses, de-

pending to the current estimate of the texture parameter λ.

Actually the parameter updates given in Eq. (10a) are iden-

tical to those of the accurate simultaneous algorithm of [15].

However, our derivation lends itself to a more efficient im-

plementation, since using our partitioned formulas of (11)

and (13) is preferable to directly solving (10a) for the com-

bined shape and texture vector dq′ as is done in [15].

Moreover, the very efficient project-out algorithm of [19]

can actually be derived if we use the unadapted motion tem-

plates M0 which correspond to the mean texture image A0

instead of the proper Mλ, i.e. setting M ′

λ
= M ′

0 in Eq. (11).

Our derivation thus makes clear why the project-out algo-

rithm fails in the case of images with substantial texture

variability such as the generic-face AAM studied in [15],

where the previous approximation can be very crude. As we

expect, the adapted motion templates for textures very dif-

ferent from the mean texture can significantly diverge from

their unadapted versions.

Are there any algorithms that lie somewhere in-between

the simultaneous and project-out algorithms, both in terms

of computational cost and performance? The answer is pos-

itive: we can in general only partially adapt the motion tem-

plates by retaining r, 0 ≤ r ≤ m out of the m constituents

of the fully-adapted motion templates of Eqs. (8) and (12),

i.e. make the approximations

Mλ ≈M0 +

r
∑

i=1

λiMi, M ′

λ ≈M ′

0 +

r
∑

i=1

λiM
′

i (14)

We call r the order of our algorithm. One can actually quan-

tify the error incurred by this approximation to the least-

squares solution using matrix perturbation analysis tech-

niques from the numerical linear algebra literature [17],

showing, for example, that the approximation causes non-

zero steady-state matching error, but this is beyond the

scope of the present paper. Note that the fully-adapted si-

multaneous algorithm corresponds to r = m, while the un-

adapted project-out to r = 0. Also note that, since only

the λ1:r part of λ is needed in Eq. (14) for computing the

approximate motion templates, we need compute only the

first r+2 elements of dλ̃
′

in Eq. (13). Hence, in computing

E(q) by Eq. (3) the sum needs only extend from 1 to r.

The computational cost of the variable-order inverse

compositional algorithm will be analyzed now. For solv-

ing Eqs. (11) and (13), we must first compute E(q), Mλ,

and M ′T
λ

M ′

λ
; all other terms remain fixed and can be pre-

computed. Regarding E(q), the needed first r terms in the

sum of Eq. (3) can be computed, with cost O(rN). The

approximate motion templates Mλ can be computed using

Eq. (14) with cost O(rN). The cost of computing M ′T
λ

M ′

λ

straightforwardly, as is done in [15], is O(Nn2). Signifi-

cant savings can be obtained if we precompute the correla-

tion matrices Rij = Rji = M ′T
i M ′

j + M ′T
j M ′

i , for i 6= j,

and Rii = M ′T
i M ′

i , where i, j = 0, . . . ,m, similarly to [3];

note that each of the Rij is a (n+4)×(n+4) matrix. Then:

M ′T
λ

M ′

λ
≈ R00 +

r
∑

i=1

λi

(

Ri0 +

i
∑

j=1

λjRij

)

(15)

This means that M ′T
λ

M ′

λ
can be computed in O(r2n2)

cost, which usually is much better than the O(Nn2) of

the straightforward approach. For the adapted algorithms

(r > 0), the system matrix M ′T
λ

M ′

λ
changes and thus we

should add the O(n3) cost of matrix inversion. Taking

all contributions into account, the cost per iteration of the

adapted rank-r procedure is O
(

r2n2 + (n + r)N + n3
)

;

note that for the unadapted project-out algorithm (r = 0)

the matrix inverse can be precomputed and thus the cost per

iteration is O
(

n2 + nN
)

.

3.2. Adaptation Through Mean Template Update

Adapting the AAM fitting matrix through the motion

template adjustment technique just described compensates

for the departure of the target image texture from the

model’s mean texture. With the order-r algorithm we are

allowed utilizing the first r eigen-textures to decrease the

mismatch. An alternative approach we pursue here is bring-

ing the mean template texture A0 itself nearer to the target

images, as illustrated in Fig. 3.

By observing Eqs. (14) and (15) one realizes that the er-

ror of the order-r algorithm will be negligible if all param-

eters λi for i > r can get sufficiently small. In particular,

if all neglected coefficients are zero, then the algorithm is

exact. This implies that for our order-r algorithm replacing

the original mean texture vector A0 with its adapted version

A′

0 = A0 +
m

∑

i=r+1

λiAi (16)

completely eliminates the approximation error. In case that

we pre-compute the correlation matrices Rij , we need to

update those of them that depend on the mean texture A′

0

Figure 3. By updating the mean template texture from A0 to A′

0,

where A′

0 is nearer to the target images but still lying in the orig-

inal affine space A0 + span{Ai}, the model’s representational

power remains the same. The benefit is that the motion template

mismatch of the order-r algorithm can be reduced.

Procedure Complexity

Fitting iteration O
(

r2n2 + (n + r)N + n3
)

Template update O
(

m(m− r)n2
)

Table 1. Computational cost for a single fitting iteration and the

mean template update for varying adaptation order r. N : number

of texture samples; n/m: number of eigenshapes/eigentextures.

and are involved in the order-r approximation (15):

R′

i0 = Ri0 +
m

∑

j=r+1

λjRij , i = 1, . . . , r

R′

00 = R00 +

m
∑

i=r+1

λi

(

Ri0 +

i
∑

j=r+1

λjRij

)

(17)

The cost of the template update procedure is thusO
(

m(m−

r)n2
)

. Note that this cost decreases as r gets bigger and gets

zero for the simultaneous algorithm (r = m), for which the

template update has no effect. This is exactly the oppo-

site trend to the fitting cost we studied previously, which

increases with the order of the algorithm. We summarize

our complexity results in Table 1.

Note that our approach should not be confused with gen-

eral parametric model adaptation algorithms such as the one

presented in [20]; there the goal is to change the mean tex-

ture vector A0 and eigentextures Ai so that the texture space

spanned by the model changes, adapting to the objects seen

after the training phase of the model. In contrast, the mean

texture update procedure we propose is just a technique that

makes model fitting accurate when using low-rank algo-

rithms, but otherwise leaves the representational power of

the model unchanged.

4. Incorporating Prior Information

Active Appearance Models exhibiting considerable vari-

ability are often used in applications. For example, track-

ing previously unseen faces requires building generic face

AAMs trained on big multi-person face datasets. These

models are necessarily very diverse, comprising a large

number of shape and particularly texture modes. In fitting

such non-specific AAMs to images, minimizing the norm of

the error image is typically inadequate, and incorporating

additional prior information is crucial for regularizing the

solution and improving the robustness of the method. This

prior information is typically either provided by the system

dynamic equation in the context of object tracking appli-

cations, or induced as a static PCA prior parameter model

learnt from the training set.

Introducing prior constraints, the penalized error func-

tional which needs to be minimized becomes

f(q) =
1

2σ2
‖E(q)‖22 + Q(q), (18)

where the error image E(q) is given by Eq. (3) and Q(q) =
1
2 (q−q0)

T Σ−1
q,0(q−q0) is a quadratic penalty correspond-

ing to Gaussian prior with mean q0 and covariance matrix

Σq,0 , respectively. In incremental image matching, we it-

eratively improve f(q). This is straightforward for the for-

wards additive parameter update strategy, where one mini-

mizes f(q + dq) over the forwards-additive parameter up-

date vector dq [9]. In the inverse compositional case, we

minimize f(q + Jqdq) over the inverse-compositional pa-

rameter update vector dq, where the Jacobian matrix Jq

converts the inverse compositional parameter update to its

forwards additive first-order equivalent. The parameter up-

date formula for the maximum aposteriori qMAP is:

qMAP ← Σq,MAP

[

Σ−1
q,0q0+(JqΣqJT

q)−1(qMAP +Jqdq)
]

(19a)

Σ−1
q,MAP = Σ−1

q,0 + (JqΣqJT
q)−1, (19b)

where the least-squares parameter update estimate dq and

the corresponding covariance matrix Σq are the inverse-

compositional domain quantities computed in Section 3.2.

4.1. Including Priors into Flexible Warp­based In­
verse Compositional Algorithms

To utilize the constrained parameter update Eq. (19b),

we need to compute the parameter Jacobian Jq. Concen-

trating on the shape parameters p̃ (since the texture param-

eters λ are updated additively), we need to compute the

(4+n)×(4+n) Jacobian matrix Jp̃ which maps the inverse-

compositional increment dp̃ to its additive first-order equiv-

alent Jp̃dp̃. While [1] has addressed that for the simple case

of globally affine warps, computing it for the more flexible

warps used in AAM has not been reported before.

We start from the approximate relationship W(x; p̃ +
Jp̃dp̃) ≈W

(

W(x;−dp̃); p̃
)

, which holds for all points x

in the image plane to first order in dp̃ [1, 19]. Differientia-

tion w.r.t. dp̃ yields

∂W

∂p̃

∣

∣

∣

(x;p̃)
Jp̃ = −

∂W

∂x

∣

∣

∣

(x;p̃)

∂W

∂p̃

∣

∣

∣

(x;p̃=0)
. (20)

If we apply Eq. (20) for each landmark xl, l = 1, . . . , L,

and then solve for Jp̃, we obtain the least-squares estimate

Jp̃ = −

(

∂W

∂p̃

∣

∣

∣

T

(x1:L;p̃)

∂W

∂p̃

∣

∣

∣

(x1:L;p̃)

)

−1

(

∂W

∂x

∣

∣

∣

(x1:L;p̃)
⊙

∂W

∂p̃

∣

∣

∣

(x1:L;0)

)

, (21)

where ∂W
∂p̃

∣

∣

∣

(x1:L;p̃)
is the (2L) × (4 + n) matrix stacking

the derivatives evaluated on the L landmark positions in the

base shape for shape parameters p̃, and ⊙ denotes an ap-

propriate stacked block-by-block matrix product. Compu-

tation of ∂W
∂p̃

on the landmark points is straightforward. For

the ∂W
∂x

terms, it can be shown that for the often used thin-

plate spline warps [7] most of the cost can be moved to a

pre-computation stage. Overall, computation of the Jaco-

bian Jp̃ is quite efficient, dominated by the formation and

inversion of the system matrix in Eq. (21) with complex-

ity O
(

n2L + n3
)

. Further details are given in the paper’s

online Appendix available from the authors’ web page.

5. Experiments

To evaluate the proposed approach, we have carried out

face matching experiments on both static images and video

sequences using AAMs trained on multi-person datasets.

Our first set of face matching experiments on static im-

ages utilizes the frontal image sets of the XM2VTS database

[21]. This dataset contains frontal images of 295 subjects;

each of the subjects was photographed during 4 different

sessions at approximately 1 month intervals, with 2 im-

ages acquired per session, for a total of 2360 shots. Our

second set of experiments on face tracking in video se-

quences utilizes a 5000 frame long video of a single talking

person, publicly available from the FGnet project (http:

//www-prima.imag.fr/FGnet). All images are in

color and at 720x576 pixels resolution. Markup of 68 facial

landmarks on all images of both the XM2VTS (manual) and

talking face datasets (semi-automatic), also publicly avail-

able from FGnet, facilitates evaluating the matching perfor-

mance of the different fitting algorithms.

For AAM fitting on static images, we have trained a

model on 150 faces (those without facial hair/glasses) in

XM2VTS’s first session. We use a color AAM sampled

at 3000 points, resulting in N = 9000 texture samples in

the finest scale. Performing PCA analyses and retaining

80% of the shape variance and 95% of the texture vari-

ance has yielded n = 11 and m = 87 shape and texture

modes, respectively. During fitting, 3 scales of a gaussian

pyramid are used, stopping at each scale after a maximum

of 10 parameter updates or when the maximum shape dis-

placement between consequtive iterations gets less than 1

pixel. We test the performance of the different algorithms

on 166 images of the second session (those without facial

Use Adaptation Pt-Pt Conv. Mean Fit

Prior Order r Error Freq. # Iter Speed

(pix.) (%) (fps)

no

0 10.30 66.8 5.20 4.5

m/2 9.12 71.6 4.79 2.6

m 8.58 74.1 4.79 1.7

yes

0 4.84 97.2 4.05 3.0

m/2 4.61 98.9 3.08 2.5

m 4.56 98.9 3.12 1.8

Table 2. XM2VTS face matching results.

hair/glasses). Following [10], we systematically displace

the model’s mean shape from the ground-truth position by

[−20,−10, 0, 10, 20] pixels in the x−direction and simi-

larly in the y−direction (25 displacements for each of the

166 images, totaling 25 × 166 = 4150 runs for each of

the algorithms). We report the mean point-to-point error

(in pixels) of each landmark of the converged shape from

its ground-truth position (averaged over the L landmarks

and all runs), the frequency of convergence, defined as the

proportion of searches with error less than 10 pixels, the

mean number of fine-scale iterations before convergence,

and the speed of the search (in frames/sec). Timings refer

to our Matlab implementation on a 2.2 GHz laptop com-

puter. Some critical sub-routines have been implemented

as MEX files; most notably, since AAM fitting necessitates

repeated image resampling, i.e. computing I(W(x,p)) for

each iteration of the algorithm, this has been implemented

using OpenGL and is GPU-accelerated. We conducted the

experiment once without using a prior constraint, and once

with a PCA-based prior on the shape and texture param-

eters. Three values for the adaptation order-r have been

used, namely r = 0 (project-out), r = m/2, and r = m
(simultaneous). The results are summarized in Table 2. We

see that on this challenging dataset using a prior constraint

vastly improves the AAM fitting robustness, raising the fre-

quency of search convergence from around 70% to nearly

99%. Increasing the order-r of motion template adaptation

also improves performance, but to a smaller extent. It is

also notable that constrained models also converge in fewer

iterations. Regarding the efficiency of the algorithms, the

computational overhead of using a prior model is milder

than that of increasing the adaptation order-r.

The same XM2VTS-trained AAM model described

above was also utilized for face tracking on the talking face

sequence. At the first frame and also whenever the search

diverged (mean point-to-point error more than 10 pixels)

the model was (re-)initialized with the ground truth shape,

otherwise the result on the previous frame was used as ini-

tial condition. Only the finest resolution AAM model was

utilized. For this experiment, we evaluate the performance

of the r = 0,m/2 models both with and without the tem-

plate update adaptation technique. When template updating

Use Adaptation Pt-Pt Conv. Mean Fit

Pri- Templ. Order Error Freq. # Iter Speed

or Update r (pix.) (%) (fps)

no

no
0 9.49 71.3 5.67 8.1

m/2 8.72 81.4 4.30 5.3

yes
0 7.80 97.2 2.67 8.7

m/2 7.99 93.2 3.84 5.6

n/a m 7.76 97.7 2.59 5.1

yes

no
0 6.62 98.7 2.89 6.3

m/2 7.36 98.3 2.37 5.5

yes
0 6.92 99.2 2.09 6.7

m/2 6.93 99.2 2.24 5.5

n/a m 6.94 99.2 2.43 4.3

Table 3. Talking person face tracking results.

is enabled, we fit with the fully adapted r = m model every

20 frames, and then update the template using this reliable

fit result (we found that updating the template after fitting

with the reduced rank model gives significantly worse re-

sults). We report in Table 3 the same summary statistics as

in the previous experiment. The efficiency of the template

update strategy is impressive: the r = 0 model in conjunc-

tion with the update strategy is almost indistinguishable in

performance from the fully adapted model r = m, while

being significantly faster than it. Moreover, since the up-

dated r = 0 model also converges much more rapidly than

its non-updated counterpart, it is also faster than it on av-

erage, more than amortizing the overhead of the template

update step. This suggests that the combination of the very

efficient r = 0 model with the template update strategy is

particularly well-suited for real-time object tracking.

6. Conclusion

We have proposed two enhancements to inverse-

compositional AAM fitting algorithms, which significantly

improve the fitting performance of models exhibiting sig-

nificant appearance variation, such as AAMs trained on

multi-subject human face images. Especially for tracking

in video, the proposed algorithms give clearly better results

than previous approaches, while still being very efficient.

References

[1] S. Baker, R. Gross, and I. Matthews. Lucas-Kanade 20 years

on: A unifying framework - Part 4. Technical Report CMU-

RI-TR-04-14, Robotics Institute, CMU, 2004.

[2] S. Baker and I. Matthews. Equivalence and efficiency of im-

age alignment algorithms. In Proc. CVPR, volume 1, pages

1090–1097, 2001.

[3] A. Batur and M. Hayes. Adaptive active appearance models.

IEEE Tr. on Image Proc., 14(11):1707–1721, 2005.

[4] J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani. Hi-

erarchical model-based motion estimation. In Proc. Europ.

Conf. on Comp. Vision, pages 237–252, 1992.

[5] M. J. Black and A. D. Jepson. Eigentracking: Robust match-

ing and tracking of articulated objects using a view-based

representation. Int. J. of Comp. Vision, 26(1):63–84, 1998.

[6] V. T. Blanz and T. Vetter. Face recognition based on fitting a

3D morphable model. IEEE Tr. on PAMI, 25(9):1063–1074,

2003.

[7] F. L. Bookstein. Principal warps: Thin-plate splines and

the decomposition of deformations. IEEE Tr. on PAMI,

11(6):567–585, 1989.

[8] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appear-

ance models. IEEE Tr. on PAMI, 23(6):681–685, 2001.

[9] T. F. Cootes and C. J. Taylor. Constrained active appearance

models. In Proc. ICCV, volume 1, pages 748–754, 2001.

[10] T. F. Cootes and C. J. Taylor. An algorithm for tuning an

active appearance model to new data. In Proc. BMVC, 2006.

[11] D. DeCarlo and D. Metaxas. Optical flow constraints on de-

formable models with applications to face tracking. Int. J. of

Comp. Vision, 38(2):99–127, 2000.

[12] F. Dellaert and R. Collins. Fast image-based tracking by

selective pixel integration. In Proc. of ICCV Workshop on

Frame-Rate Vision, 1999.

[13] R. Donner, M. Reiter, G. Langs, P. Peloschek, and

H. Bischof. Fast active appearance model search us-

ing canonical correlation analysis. IEEE Tr. on PAMI,

28(10):1690–1694, 2006.

[14] M. Gleicher. Projective registration with difference decom-

position. In Proc. CVPR, pages 331–337, 1997.

[15] R. Gross, I. Matthews, and S. Baker. Generic vs. person

specific active appearance models. Image and Vision Comp.,

23:1080–1093, 2005.

[16] G. Hager and P. Belhumeur. Efficient region tracking with

parametric models of geometry and illumination. IEEE Tr.

on PAMI, 20(10):1025–1039, 1998.

[17] N. J. Higham. Accuracy and Stability of Numerical Algo-

rithms. SIAM, 2 edition, 2002.

[18] M. J. Jones and T. Poggio. Multidimensional morphable

models: A framework for representing and matching object

classes. Int. J. of Comp. Vision, 22(2):107–131, 1998.

[19] I. Matthews and S. Baker. Active appearance models revis-

ited. Int. J. of Comp. Vision, 60(2):135–164, 2004.

[20] I. Matthews, T. Ishikawa, and S. Baker. The template update

problem. IEEE Tr. on PAMI, 26(6):810–815, 2004.

[21] K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maitre.

Xm2vtsdb: The extended m2vts database. In AVBPA, 1999.

[22] S. Romdhani and T. Vetter. Efficient, robust and accurate

fitting of a 3D morphable model. In Proc. ICCV, pages 59–

66, 2003.

[23] J. Saragih and R. Goecke. A nonlinear discriminative ap-

proach to AAM fitting. In Proc. ICCV, 2007.

[24] H.-Y. Schum and R. Szeliski. Construction of panoramic

image mosaics with global and local alignment. Int. J. of

Comp. Vision, 16(1):63–84, 2000.

[25] S. Sclaroff and J. Isidoro. Active blobs: region-based, de-

formable appearance models. Comput. Vis. Image Underst.,

89:197–225, 2003.

[26] R. Szeliski. Image alignment and stitching: A tutorial.

Found. and Trends in Comp. Graphics and Vision, 2(1):1–

104, 2006.

