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Abstract

We present a model-based system for tracking rotating
fluids, and apply it to a laboratory study of atmospheric
circulation. Tracking is accomplished by filtering uncer-
tain and high-dimensional states of a nonlinear general cir-
culation model with optical measurements of the physical
fluid’s velocity. Realtime performance is achieved by using
a nonuniform discretization of the model’s spatial resolu-
tion, and by using time-snapshots of model-state to con-
struct spatially-localized reduced-rank square-root repre-
sentations of forecast uncertainty.

Realtime performance, economical and repeatable ex-
perimentation, and a direct connection to planetary flows
implies that the proposed physical-numerical coupling can
be useful for addressing many perceptual geophysical fluid
dynamics problems. To the best of our knowledge, such a
system has not hitherto been reported.

1. Introduction

We present a coupled physical-numerical system for un-
derstanding rotating fluids1 in the laboratory. This system
contains sensors to take measurements from the physical
fluid, a numerical 3-D fluid-model for forecasting, and in-
ference algorithms that constrain the model with observa-
tions in realtime. Such a system opens up many exciting
possibilities for addressing problems in perceptual geophys-
ical fluid dynamics, including:

Model Parametrization: Using the coupled system, re-
ality can be augmented with numerical quantities that can-
not be observed. Thus it becomes an interactive tool for
developing parametrizations (e.g. effective diffusivity) in
weather and climate modeling.

∗This paper is supported in part by grants NSF CNS 0540248 and NSF
CNS 0540259.

1A rotating fluid is subject to a global rotation, e.g. our oceans and
atmosphere.

Autonomous Observatories: The coupled physical-
numerical system can be used to devise robust planning and
control algorithms for autonomous sampling of the oceans
and atmosphere. Algorithms developed in the laboratory
will have to account for uncertainties very similar to those
in the real world (erroneous models, observations and track-
ing), thus providing a valuable prototyping tool.

Numerical Weather Prediction: Constraining mod-
els with observations is fundamental to ocean state estima-
tion and numerical weather prediction. In these applica-
tions, predictions are made using general circulation models
(GCMs) implementing the discretized governing equations
of fluid motion. We know that when initial conditions are
uncertain, even a perfect model will not predict the atmo-
sphere perfectly [11]. Estimating states and their uncertain-
ties is thus the primary means to constrain a GCM [26].

In this paper, we describe the architecture of the coupled-
physical numerical system. Because it is out of the scope of
this paper to explore all the aforementioned applications, we
focus on the state estimation problem in a fluid dynamical
analog of atmospheric circulation.

1.1. Planet in a Spinning Water Tank

Figure 1 depicts the 500mb heights in a weather map.
The cyclonic and anti-cyclonic pressure features transport
around the globe whilst winds (imagine a dye) flow along
their contours. This Hadley circulation can be simulated in
the laboratory using a well-known differentially-heated ro-
tating annulus experiment [5]. When a spinning annulus’
center is cooled relative to a warm periphery, the water near
the center becomes dense and sinks. Warm waters from the
periphery move in to replenish, thus setting up a radially
overturning circulation. In the presence of Coriolis force
and thermal-wind [16] flow becomes unsteady at strong
temperature differences and high rotation rates, forming ed-
dies and jets like the atmosphere (see Figure 1). Flow fea-
tures form and evolve via an energy-enstrophy cascade[16],
and differ from one physical experiment to the next.

Tracking this laboratory flow is convenient and use-
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Figure 1. Image (a) shows the 500hPa heights for 11/27/06:1800Z
over the northern hemisphere centered at the north pole. Winds
flow along the pressure contours. Image (b) shows a tracer (dye)
in a laboratory analog. The tank is spinning and the camera is
in the rotating frame. Tracer droplets initially inserted at the pe-
riphery (red dye, warm region) and around the central chilled can
(green dye, cold region) has evolved to form this pattern. The lab-
oratory analog and the planetary system are dynamically similar.
We study the state-estimation problem for planetary flows using
the laboratory analog.

ful because repeatable experiments with real data can be
performed using far simpler logistics than the operational
weather-prediction setting. Yet, key challenges associated
with the large-scale problem must also be addressed in the
laboratory: (a) Nonlinearity — the laboratory analog is non-
linear and the numerical model is the same used in plane-
tary simulations. (b) Dimensionality — the size of the state
of the numerical model is of the same order as planetary
simulations. (c) Uncertainty — the initial conditions are
unknown, and the model is imperfect relative to the physi-
cal system. (d) Realtime — forecasts must be produced in
better than realtime. Solutions to these problems can ac-
celerate operational acceptance of new methods as well as
inform estimation and inference in many other coupled sys-
tems.

Our coupled-system operates by filtering states of the
MIT General Circulation Model [13, 12] with optical mea-
surements of the physical fluid’s velocity. Tracking is in
realtime, achieved by using a nonuniform discretization of
the model’s spatial resolution, and by using time-snapshots
of model-state to construct spatially-localized reduced-rank
square-root representations of forecast uncertainty. To the
best of our knowledge, this is the first such system in exis-
tence. It is in routine use and data-sets are readily available
to other researchers.

In the remainder of this paper, we relate to other work
(Section 2), and present the coupled system components:
the observatory (Sections 3 and 4), the numerical model
(Section 5) and the estimation scheme(Section 6). A dis-
cussion of experimental results follows2 (Section 7).

2Supplementary material includes high-resolution versions of figures
and pointers to video.

2. Related Work

Thermally-driven rotating flows [10, 21, 5, 4, 14] are
well-known analogs of large-scale circulation. It is a ro-
bust experiment, easily conducted in the laboratory, and has
been used to study a variety of physical phenomena includ-
ing geostrophic turbulence [14], convection [10], baroclinic
instability [20], and chaos [21], and as a test-bed for evalu-
ating the utility of numerical models [22, 8]. In more recent
work [20], numerical studies are combined with laboratory
experiments to study heat transport and effort has been afoot
to study prediction and predictability problems [27]. To the
best of our knowledge, however, this is the first coupled ob-
servation/numerical system of a laboratory experiment to
operate in realtime.

For simulation, we chose the MIT GCM [13, 12] because
it is readily available and belongs to the same class of mod-
els used in ocean and atmosphere simulations on a large-
scale [6].

For estimation, several possibilities were explored. Vari-
ational [3, 26] inference was not amenable to realtime per-
formance. Sequential estimation is appropriate, but smooth-
ing [17, 9, 7, 18] is not. In filtering, nonlinearity pre-
cludes the use of the Kalman filter [9] and the state’s high-
dimensionality precludes use of the extended Kalman fil-
ter [9] as well as the particle filter [2] as well as its localized
variants [24]. The ensemble Kalman Filter [7] is thus used
and comparisons to a variety of similar filters [15], and the
particle filter [2] have been conducted. We adapt the ensem-
ble filter by localizing it and using snapshots [23] to produce
multiple samples per simulation.

3. Observatory for the Annulus Experiment

Figure 2. The observatory consists of a physical system including
a rotating table on which a tank, camera and control system for
illumination are mounted. The computational part consists of a
measurement system for velocimetry, a numerical model, and an
estimation system, as described more fully in the text.

The observatory, illustrated in Figure 2, has a physical



and computational component. For the annulus experiment,
the physical component consists of a perspex annulus of in-
ner radius 8cm and outer radius of 23cm, filled with 15cm
of water and situated rigidly on a rotating table. A robotic
arm by its side moves a mirror up and down to position
a horizontal sheet of laser light at any depth of the fluid.
Fluorescent particles (Dantec Dynamics, sg 1.03g/cc) are
homogenized in saline water of equal density and respond
to incident laser illumination. They appear as texture in the
12−bit, 1K × 1K images (Figure 4) taken from an Imperx
camera. These images are transferred out of the rotating
frame using a Hitachi fiber-optic rotary joint (FORJ). The
actual configuration of these elements is shown in a photo-
graph of our rig in Figure 3. The observation rig is carefully
mounted and tested for vibrations (the camera must shake
by less than 0.1o to have less than 10% motion noise).

Figure 3. The apparatus consists of (a) the rotating platform, (b)
the motorized mirror, (c) the tank, (d) electronics, (e) a rig on
which a camera is mounted, (g). Laser light comes from direc-
tion (f) and bounces off two mirrors before entering the tank. The
fiber optic rotary joint (FORJ) (h) allows images to leave the rotat-
ing frame and is held stably by bungee chords (i). The square tank
prevents the laser light from bending at the annulus interface.

The computational aspects of the observatory are also
shown in Figure 2. A server acquires particle images and
ships them to two processors that compute optic-flow in par-
allel (Figure 2, labeled OBS). Measured velocity vectors are
passed to an estimation program (Figure 2, labeled DA) that
combines them with model forecasts to estimate new states.
These estimates become new initial conditions for the mod-
els. We now go on to discuss individual components of this
system.

4. Visual Observation

We spin up the rotating platform at the desired period
(between 3s and 12s). After twenty minutes or so the fluid
comes into solid body rotation. The inner core is then
cooled using a chiller (see Figure 4). Circulation forms
within minutes as the flow becomes unsteady and baroclinic
instability[16] sets in.

Figure 4. The camera’s view of the rotating annulus in visible light
(top-left), the laser illuminating the tank (top-right). The camera’s
view in laser light shows particles (bottom). Notice shadow due to
the chiller in the middle. High-resolution version of this figure is
in attachment.

Figure 5. Observed horizontal velocities (green) at 100 mm above
the bottom of the tank after circulation has formed. Maximum flow
speeds are of the order of 2cms−1 .

Once cooling commences, we turn off the lights and
turn on the continuous wave 1W 532nm laser, which emits
a horizontal sheet of light that doubles back through a
periscope mounted on the robot to illuminate a horizontal
sheet of the fluid volume (see Figure 4). The imaging sub-
system in the rotating frame observes the developing flow
using a camera looking down at the annulus. The ultra-



small particles move with the flow and thus, optic flow on
successive image-pairs is used to measure the horizontal
component fluid velocity. An example is shown in Figure 5.

Observations are gathered over several levels repeatedly.
The mirror moves to a fluid level, the system captures im-
ages, flow is computed, and the mirror moves to the next
level and so on. Note that a complete scan takes a few sec-
onds and thus the model-state corresponding to a volumet-
ric observation is some what uncertain. In section 6 we will
incorporate this uncertainty in estimation.

5. Numerical Model

We use the MIT General Circulation Model [12, 13] to
solve the equations of an incompressible Boussinesq fluid
in hydrostatic balance. The governing equations are:

∂�vh

∂t
= Gvh

− 1
ρ0

∇hp horiz. momentum(1)

∇h�vh +
∂w

∂z
= 0 continuity (2)

∂p

∂z
+ gρ = 0 hydrostatic balance (3)

∂θ

∂t
= Gθ thermodynamic (4)

Here, the three-dimensional velocity is denoted by �v =
[�vh; w] where �vh is the horizontal velocity, w is the verti-
cal velocity and ∇

h
is the horizontal gradient operator, p is

the pressure, assumed to be in hydrostatic balance with the
mass field, g is the acceleration due to gravity, ρ = ρ(θ)
is the density with ρ0 a constant reference value and θ is
the temperature. The term Gvh

in the horizontal momen-
tum equation includes inertial, Coriolis and frictional terms;
Gθ is the corresponding term in the thermodynamic equa-
tion and includes advection and thermal diffusion. Explicit
forms of the G’s are discussed in detail in [13, 12].

No-slip boundary conditions are assumed on all solid
boundaries and a linearized free surface is adopted. The
temperature at the outer wall of the tank is held constant; at
the inner core it is set to an observed vertical profile taken
from a separate experiment (see Figure 6(b)). The bottom
boundary is assumed to be thermally-insulating.

Finite difference forms of the above equations are solved
in cylindrical coordinates, as shown in Figure 6(a), the nat-
ural geometry for representing flow in an annulus. In the
experiments reported here the domain is divided into 23
bins in radius (0.65cm/bin) and 120 bins in azimuth (3o

bins). The vertical coordinate is discretized using 15 levels
non-uniformly distributed over the 15cm depth of the fluid,
as shown in Figure 6(b). The MIT-GCM discretizes vari-
ables on an Arakawa C-grid [1]. Momentum equations are
time-stepped using a second-order Adams Bashforth tech-
nique and, in the calculations presented here, θ is advected

Figure 6. (a) The computational domain is represented in cylindri-
cal coordinates. (b) Depth is discretized with variable resolution to
enhance resolution near the bottom-boundary. The lateral bound-
ary conditions on temperature are obtained by interpolating sparse
temperature measurements on the boundary. The bottom boundary
condition is one of zero heat flux. (c) Random initial conditions
are used for the interior temperature field, shown here at a given
level.

with an upwind-biased direct space-time technique using a
Sweby flux-limiter [25]. The treatment of vertical transport
is implicit. A 2-D equation for the surface pressure field is
solved at each time-step using a conjugate gradient method
ensuring that the flow remains non-divergent.

Figure 7. The planar velocity of a model forecast (in yellow) is
shown with observed velocity (green) at a height of 100mm from
the bottom of the tank at the beginning of an estimation experi-
ment. Maximum flow speeds are of order 2 cms−1.

The model is started with a random temperature field to
initiate hydrodynamical instability. A 2-D horizontal slice
is shown in Figure 6(c). In Figure 7 the model horizon-



tal currents are overlaid on the observed velocities after
suitably registering the domain geometry to the physical
tank. Despite an obvious uncertainty in initial conditions
and other approximations, the model is capable of capturing
the gross character of flow observed in the physical fluid,
such as typical flow speeds and scales. However, as is to be
expected, many flow details are different and observations
must be used to constrain the evolving state of the model.

6. State Estimation

We develop a two-stage hybrid filter to sequentially
reduce uncertainty in state estimates. Define �Xt =
[�vh(t); �θ(t)] to be the state3 at a discrete time t, and �Yt as
measurements, assumed to arise from from a linear obser-
vation equation �Yt = H �Xt +�νt and �νt ∼ N (�0,Rt = σ2

oI).
Further, we define �Xf

t to be the model forecast, with er-
ror covariance Pf

t . Note that in the experiments here, state
dimension is N = 124200 (see Section 5).

In the first stage, initialization, the large bias between
model and observation resulting from starting the model
from a random initial condition (Figure 6) is reduced by us-
ing a Gaussian-spline to represent forecast error-covariance.
This error-covariance is not propagated across time and
domain-decomposition is employed to solve the filter equa-
tions.

In the second phase, tracking, the ensemble Kalman fil-
ter [7] is adapted to estimate both states and their uncertain-
ties. In this formulation, multiple model simulations (Sec-
tion 5) are used to forecast an ensemble of states. These
S � N samples form a reduced-rank square-root ap-
proximation of the forecast error-covariance, from which
a Kalman-update can be computed rapidly [7]. Further,
the model is never linearized, covariance is never propa-
gated explicitly, and the estimated state is a weakly nonlin-
ear combination of the forecast ensemble. Unlike the parti-
cle filter, no re-sampling is necessary because the states are
directly updated.

For high-dimensional and nonlinear systems, a large
number of Monte-Carlo simulations may be necessary to rid
the forecast uncertainty from spurious correlations. How-
ever, the complexity of filtering grows as the square of the
ensemble size and it is also not economical to conduct many
numerical simulations. We address these issues using snap-
shots to produce many samples per simulation and localiz-
ing filtering to eliminate long-range correlations.

6.1. Initialization

The initialization phase commences after a single simu-
lation is spun-up from a random initial condition to remove

3The state for estimation consists of the horizontal velocities and tem-
perature. Vertical velocity is implicit, pressure is diagnostic and salinity is
unrepresented.

transients. Initialization consists of four steps, executed in
sequence for a few estimation cycles:

1. Interpolation in the vertical. An interpolation func-
tion of horizontal velocities and temperature is estimated
from the forecast. Let �vf

h [i, j, k] be the forecast horizon-
tal velocity at grid node i, j, k in the radial, azimuthal and
vertical directions respectively. Let �vf

h [i, j] be the column-
vector of forecast velocities at all Nz = 15 vertical levels at
i, j and let �vfo

h [i, j] be the corresponding vector of horizon-
tal velocities at the No < Nz observed vertical levels. Sim-
ilarly construct vectors �θf [i, j] and �θfo[i, j] from the fore-
cast temperatures. Using samples in the forecast field, learn
the matrices Λv and Λθ by solving �vf

h [i, j] = Λv�vfo
h [i, j]

and �θf
h [i, j] = Λθ

�θfo
h [i, j].

2. Estimating Horizontal Velocities at observation
layers. Horizontal velocities are estimated at each observed
layer (ko ∈ {k1 . . . kNo}) of the fluid separately. At every
location i, j on the horizontal grid (Nr = 23 × Nφ = 120)
of an observed layer, we estimate the horizontal velocity
from forecasts and observations using a spatial context of
dimensions N l

r radially and N l
φ azimuthally. The estima-

tion is written as:

Cij = Pf
i H

T
ij(HijP

f
i H

T
ij + Rij)−1 (5)

�va
h[i, j, ko] = �vf

h [i, j, ko] + Cij [�v
o,ijko

h − Hij�v
f,ijko

h ](6)

The vector �vf
h [i, j, ko] is the forecast horizontal veloc-

ity at location i, j, ko, �va
h[i, j, ko] is the corresponding esti-

mated horizontal velocity, �vf,ijko

h is the vector of forecast
horizontal velocities in a N l

r ×N l
φ area centered4 at i, j, ko,

and �vo,ijko are available observations in the same area. The
local forecast covariance Pf

i (size 2N l
rN

l
φ×2N l

rN
l
φ) is gen-

erated using a two-dimensional Gaussian. It only varies
radially (so as to account for annulus borders) but not in
depth ko or azimuth j. Each local observation operator Hij

selects locations where observations are valid in the corre-
sponding N l

r × N l
φ region. The matrix Rij is the corre-

sponding observational uncertainty.
3. Estimating Temperature at observation layers.

Once the horizontal velocities �va
h[i, j, ko] are estimated at

each grid node of observed layers, we compute temperature
θa[i, j, ko] by solving an elliptic equation from the diver-
gence of thermal-wind [16], which is:

∂�vh

∂z
=

gα

2Ω
k̂ ×∇θ (7)

The temperature boundary conditions are obtained from cli-
matological measurements (see Section 5) and α is the coef-
ficient of thermal expansion and k̂ is the vertical unit-vector.

4. Estimate Full State. The precomputed vertical in-
terpolation models are applied to the estimated horizon-
tal velocity and temperature. Thus we estimate �va

h[i, j] =
4Except near annulus boundaries, where the window is off-center.



Λv�vao
h [i, j] and �θa[i, j] = Λθ

�θao[i, j], where these vectors
are defined analogously to step 1 (but using the estimated
fields).

The estimated fields become the new state �Xt = [�va
h; �θa]

for the next forecast. These four steps are repeated for a
few estimation cycles and then switch to a flow-dependent
ensemble tracking method that can both estimate states and
their uncertainties, discussed next.

6.2. Tracking

Throughout the tracking phase, steps 1, 3, and 4 remain
the same and thus are not discussed again. The only dif-
ference between initialization and tracking is the process
of constraining horizontal velocities at observed layers and
the fact that tracking is designed to produce an evolving es-
timation uncertainty. For tracking, we use a variation of the
ensemble Kalman filter in the following way:

Creating the Ensemble: The two prominent sources of
uncertainty are the thermal boundary condition that drives
the numerical system and flow uncertainty arising from
time-staggered observations and numerical integration.

To model these, we use the output of the initialization
step to drive Nb > 1 simulations, each utilizing a thermal
boundary condition perturbed from the climatological pro-
file (see Section 5) to have a steeper or shallower lapse rate
at the inner core.

Additionally, to capture flow uncertainty we use snap-
shots [23] and save the state every few time steps in during
forward integration of a simulation. If we suppose that the
state X [�x + �v∆t] at position �x is random due to timing er-
rors ∆t or flow uncertainty �v between simulation and phys-
ical flow, an ensemble of samples X [�x + ∆�x] drawn from
∆�x ∼ N (E[�v∆t], σt) captures this uncertainty. As shown
in [19] the sample covariance captures spatial correlations
projected onto the flow.

The forecast ensemble is therefore constructed as a mix-
ture of two distributions, one representing boundary con-
dition uncertainty (multiple simulations) and the other due
to uncertainty in flow (snapshots during the model integra-
tion). Assuming there are Ns snapshots and Nb simulations,
we have an ensemble of S = NsNb forecast samples. These
samples are used for estimation, discussed next.
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Figure 8. The estimation using the ensemble Kalman filter is lo-
calized within estimation windows E, influenced by observations
from overlapping spatial-context windows C.

Localized estimation. Horizontal velocities are esti-
mated in an estimation window E of size Ne

r × Ne
φ at

ie, je, ko, using forecasts and observations in a spatial con-
text window C that is indexed by location ic, jc, ko and of
size N c

r ×N c
φ (Figure 8). Estimates over an entire horizontal

layer are produced by tiling it with estimation windows (no
overlap). Note, however, that adjacent estimation windows
share substantial spatial context, as shown in Figure 8.

Let Vf,iejeko be the 2Ne
r Ne

φ × S matrix representing
forecast horizontal velocities of S ensemble members co-
incident with the estimation window E at ie, je, ko, and
Vf,icjcko be the 2N c

rN c
φ × S matrix of forecast horizon-

tal velocities of S ensemble members coincident with the
context window C at ic, jc, ko. Also, let Ṽ(··· ) represent
the deviation of each column from the column-mean of
V(··· ). Using the observations Vo,icjcko and forecasts in
the context window selected by Hicjc to construct the trans-
formation ℵicjcko , we may express the analysis ensemble
Va,iejeko as:

Va,iejeko = Vf,iejekoℵicjcko (8)

ℵicjcko =
[
HicjcṼ

f,icjcko

]T

C−1
icjcko

∆Vicjcko(9)

∆Vicjcko = Vo,icjcko − HicjcV
f,icjcko

Cicjcko = HicjcṼ
f,icjcko

[
HicjcṼ

f,icjcko

]T

+

Ṽo,icjcko

[
Ṽo,icjcko

]T

= JicjckoJ
T
icjcko

(10)

Jicjcko = HicjcṼ
f,icjcko + Ṽo,icjcko (11)

To compute ℵicjcko , the matrix Cicjcko can be inverted
implicitly using the square-root Jicjcko . In practice only the
estimate corresponding to the last snapshot of the current
forecast of each simulation is necessary to launch the next
forecast, therefore ℵicjcko need only be S×Nb in size, with
an appropriately ordered ensemble.

7. Estimation Experiment

For the experiments presented here, the reference den-
sity ρ0 ≈ 1037kgm−3, the rotation rate is Ω = 1.15rad/s,
the annulus width L = 0.15m, the mean fluid depth D =
0.15m, and the mean temperature difference of fluid across
annulus ∆T = 6K (measured separately). The viscosity is
ν = 10−6m2s−1, the thermal diffusivity κ = 10−7m2s−1,
and the thermal expansion coefficient α = 3 × 10−4K−1.
Thus, the Ekman number E = ν

2ΩD2 = 1.9 × 10−5, the
thermal Rossby number Rθ = gα∆TD

Ω2L2 = 0.09, the Prandtl
number Pσ = ν

κ = 10. These numbers imply that ex-
pect flows of 2cms−1 can be expected and there exists a
10s interval within which the forecast-observe-estimate cy-
cle must be completed, and this is achieved handily.

Experiment starts when chiller is turned on. In about
300s circulation is established (Figure 5). The model is



Figure 9. The estimated velocity field at a time t = 100s for an en-
semble member at 100mm above the bottom of the tank is shown
(yellow). Observations at this layer are shown in (green).
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Figure 10. The RMS-error between forecast and observed veloci-
ties at all observed locations as a function of time.

started (with chiller) from a random initial condition and
climatological thermal-boundary condition shown in Fig-
ure 6. It is stepped forward for 300s to remove transients
and form a circulation (Figure 7). The model performs in
better than realtime. On one processor of an Altix-350 we
can carry out a 10-second simulation in 8-seconds, due in
large part to the non-uniform discretization of the domain
using variable vertical levels.

Unconstrained, model waves have the wrong phase and
incorrect amplitudes and velocities can be as much as twice
the observed velocities. Velocity observations are acquired
by sampling particle images 125−250ms apart using LaV-
ision’s DaVis software. Flow is computed in 32 × 32 win-
dows with a 16 pixel uniform pitch across the image. It
takes one second to acquire and compute the flow of a sin-
gle 1K × 1K image pair by distributing the computation
across two 2.8GHz processors.

Filtering, stage one, is then turned on. The robotic arm
scans the fluid, observing it at No = 5 different levels and
observations of the whole fluid volume are available ev-
ery 5 seconds to constrain the numerical model. We set
Rij = σ2

oI and σo = 1.2mm/s, by assuming a 0.5 pixel
uncertainty in optic-flow calculations per image pair. The
covariance Pf

i is constructed as an un-normalized Gaussian
with standard deviations 1×5 (radially by azimuthally) with
extent N l

r = 5 × N l
φ = 10, and scaled by an amplitude of

σb = σo ∗ 2 to account for poor model skill. Note that each
Cij is of size 2 × 100 and is constructed a priori5.

The observation operator Hij rejects grid points in
the the shadow region or where velocities are more than
3cm/s(e.g., see shadow-region boundaries in Figure 5).
Stage one terminates when the average error between fore-
cast and observed velocities is less than 1.5 ∗ σo, which
corresponds to about 3 estimation cycles. In stage-2, mul-
tiple simulations(Nb = 3) start from the stage-1 model-
state, with steeper, shallower or equal inner boundary-
temperature vertical lapse rates than the climatological pro-
file (Figure 6). During forward simulation, Ns = 5 snap-
shots of the model-state are extracted in the last Ns model
seconds. The final forecast (at t = 10s) is used to construct
the vertical interpolation functions per simulation. Obser-
vations extracted over the immediately preceding 5 sec-
onds are used to produce an updated ensemble. We choose
N c

r = 11, N c
φ = 21, Ne

r = 5 and Ne
φ = 11 for the localized

estimation and the observational uncertainty is identical to
stage-1. A single estimation (all four steps) with S = 15,
runs on a 2.8GHz processor in under 1.6s. The final (fore-
cast) time estimated model-states are used to initialize the
next 10s forecast for each simulation.

Figure 9 shows the estimated horizontal velocities and
observations after 10 estimation cycles, corresponding to
the last snapshot of a simulation with climatological ther-
mal boundary condition (Figure 6). Note that the model is
well adjusted and beautifully infills velocities in the shadow
region.

Figure 10 shows the evolving root mean square (RMS)
error between the forecast and observation over 30 estima-
tion cycles in a 300 second experiment6. The model veloc-
ities come close to the observations within the inherent un-
certainty (σo = 1.2mm/s) to which observations are rep-
resented. Indeed both the amplitudes and phase are in good
agreement as can be seen in Figure 9. Repeated experimen-
tation with different regimes shows that it takes approxi-
mately 10 rotation periods or six estimation cycles before
the model adjusts itself to be consistent with the observa-
tions. After 20 estimation cycles, we turn it off. As ex-
pected the error between forecasts and observations grows,
and saturates in around 10 cycles.

5A large number of matrices Cij are identical, saving storage costs.
6Because the truth is unknown, we use the likelihood as the diagnostic.



8. Conclusions

The coupled realtime system for studying rotating fluid-
flows is robust and scalable. Visual flow calculations, nu-
merical simulations and localized filtering are highly par-
allelizable, and snapshots reduce the number of numerical
simulations per sample.

The hybrid filtering algorithm uses a flow-free prior
that allows subsequent use of reduced-rank flow-dependent
covariances. Localization prevents spurious long-range
correlations. Mixing snapshots and thermal boundary-
condition perturbations is also very useful. In fast unsteady
flows, snapshots capture the dominating flow-uncertainty.
In nearly steady flows, the boundary-condition uncertainty
dominates.

There is also room for improvement. Multi-resolution
and adaptive approaches can improve performance. Whole-
field laser-induced fluorescence can be used to constrain
with temperature measurements. A new periscope with a
rotating mirror and stationary paraboloid will improve the
scan speed many fold and allow denser observation.

Even without these improvements, our observatory is re-
markably versatile. The system is easy to replicate, data
sets are readily available and it is used routinely in our lab-
oratory. For rotating fluids, such a system has not been
achieved before.
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