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Abstract

This paper provides a new perspective on human mo-
tion analysis, namely regarding human motions in video as
general discrete time signals. While this seems an intuitive
idea, research on human motion analysis has attracted lit-
tle attention from the signal processing community. Sophis-
ticated signal processing techniques create important op-
portunities for new solutions to the problem of human mo-
tion analysis. This paper investigates how the deformations
of human silhouettes (or shapes) during articulated motion
can be used as discriminating features to implicitly cap-
ture motion dynamics. In particular, we demonstrate the
applicability of two widely used signal transform methods,
namely the Discrete Fourier Transform (DFT) and Discrete
Wavelet Transform (DWT), for characterization and recog-
nition of human motion sequences. Experimental results
show the effectiveness of the proposed method on two state-
of-the-art data sets.

1. Introduction

Vision-based human motion analysis has received grow-
ing interest, based on a wide range of potential applica-
tions such as visual surveillance and human-machine inter-
faces. Generally, motions fall under two distinct categories,
namely composite motions that can be divided into differ-
ent temporal segments and primitive motions that cannot be
further decomposed. This paper focuses on primitive mo-
tion recognition from short videos, which is an important
first step towards the problem of action segmentation and
profiling in long videos.

Background and motivation: Human motion recogni-

*This work is partially supported by the ARC Discovery Project (Grant
No. DP0663196)

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

tion remains a challenge due to variations in both the envi-
ronment (which determines the quality of visual clues ex-
tracted from videos) and the motion itself (which exhibits
spatial and temporal variations due to subjects with differ-
ent physical characteristics, motion styles and speeds). Ac-
cordingly, motion characterization and recognition are cen-
tral to the interpretation of human motions.

Various visual features have been used to describe mo-
tion formation, e.g., trajectory-based features [10, 1] from
tracking of positions, velocities and joint angles; intensity-
based features such as local descriptors of interest points
[12] and optical flow [5]; and silhouette-based features such
as motion history images [3] and silhouette (or contour)
volumes [2, 18]. Feature tracking is not yet well solved
for unconstrained human motions due to the great variabil-
ity in shape and articulation of the human body. Features
based on intensities depend heavily on the imaging condi-
tions. Human motions can be considered as temporal vari-
ations of moving silhouettes (or shapes) [3, 2, 16]. In this
paper, we use information that can be derived from space-
time silhouettes to characterize moving shape dynamics. In
particular, we embed dynamic silhouette data using a new
graph embedding framework, i.e., Kernel Locality Preserv-
ing Projections (KLPP) [6], to simultaneously address the
high-dimensionality and non-linearity of articulated and de-
formable moving shapes.

Different strategies have been proposed for motion mod-
eling and recognition, which fall into three major cate-
gories: template-based methods [12, 1, 3] convert time-
varying features into a static pattern (i.e., template) for com-
parison to pre-stored prototypes during recognition; direct
sequence matching uses techniques such as Hausdorff dis-
tance [8], Dynamic Time Warping (DTW) [15] and spa-
tiotemporal correlation [5] on time-varying features with-
out further feature extraction; and state-space methods ei-
ther use linear models such as ARMA (Autogressive Mov-



ing Average) models [15] or graphical models such as
HMMs (Hidden Markov Models), CRFs (Conditional Ran-
dom Fields) and their variants [13, 10, 16] to model mo-
tions. However, direct sequence matching has high com-
putational cost. The motion is not described by an ex-
plicit form, so it is necessary to compute pairwise dis-
tances between a test sequence with all stored sequences
during recognition, which is impractical for large data sets.
State-space models generally involve complex mathemati-
cal and statistical computation. Our method falls into the
first category. From a general perspective, human motions
in video can be regarded as discrete time signals, reflecting
temporal variations in observations of interest across im-
age frames. Therefore it is intuitive to use digital signal
processing techniques for extracting the signal properties.
The DWT (Discrete Wavelet Transform) and DFT (Discrete
Fourier Transform) have been widely studied and used in
the signal processing community [9]. However, to the best
of our knowledge, they have received little or no attention
in the context of vision-based human motion recognition.
Hence an important open question is how to characterize
and recognize human motions by means of available signal
transform techniques.

Aim and contributions: The aim of this paper is to in-
vestigate how to build signal-transform-based feature ex-
traction for moving shape dynamics that can support char-
acterization and recognition of human motions from videos.
To address the nonlinearity and high-dimensionality of dy-
namic shape data, KLPP is adopted to embed shapes into
a low-dimensional subspace, in which a motion sequence
is mapped to a multi-dimensional discrete temporal signal.
A Fourier Transform (FT) or Wavelet Transform (WT) is
then applied to extract the signal properties which provide
a compact motion description. Experimental results on two
recent data sets demonstrate the effectiveness and efficiency
of our method.

Our main contributions are summarized as follows:

e We investigate the use of shape deformations of hu-
man silhouettes as discriminating motion features, and
demonstrate the applicability of KLPP for learning a
low-dimensional embedding space of dynamic data.

e We exploit the appropriateness of DFT/DWT for hu-
man motion characterization and recognition. More-
over, DFT/DWT provide a general framework that can
be used to characterize the time evolution of any set of
features including the deforming silhouettes here.

e Experimental results validate the feasibility and merits
of the proposed method. The combination of dynamic
shape manifolds plus DFT/DWT-based signal charac-
terization achieves competitive results on state-of-the-
art data sets compared with other algorithms.

e The proposed method has several ideal properties: 1) it
is easy to understand and implement, while very effec-
tive and efficient; 2) it does not need complex feature
tracking; 3) it avoids the use of computationally expen-
sive spatiotemporal matching and state-space models;
4) the use of motion descriptors reduces the original
temporal classification problem into a static classifica-
tion one, enabling the use of any existing efficient sta-
tic classifier; and 5) as a non-statistical method, large
training data are not required. Each example charac-
terizes the motion type, and the discriminative features
can be derived from the example itself.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the DFT and DWT. Section 3 details the
proposed method. Experimental results are provided in Sec-
tion 4, prior to conclusions in Section 5.

2. DFT and DWT

The transformation of signals to the frequency domain
often provides a more effective representation and a more
computationally efficient approach to processing of sig-
nals compared to time domain processing. To put our
method into context, we briefly review two widely-used sig-
nal transforms, namely DFT and DWT (discrete versions
of FT and WT). Both express the signal as coefficients in
a function space spanned by a set of basis functions. For
FT, the basis contains only the complex exponential func-
tion representing sinusoids, while the basis of WT consists
of infinitely many scaled and shifted versions of a mother
wavelet function. More details can be found in [7, 9].

DFT: The Fourier transform measures global frequen-
cies of a signal. Let (¢),t = 0,1,--- ,n — 1 be a n-point
discrete signal. The DFT of x(¢) is defined by
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where j = \/—1. The signal energy is defined as the sum of
the energies at each point of the signal. According to Par-
seval’s theorem, Y7 |(t)[> = Z?;é | X ¢|?. To obtain
real-time computation, a fast Fourier Transform (FFT) is of-
ten used which makes use of the symmetry properties of a
DFT. If n is an integer of the power of 2, the computation
complexity of the FFT is O(nlogn).

Signals are often real-valued in most real applications.
Accordingly, except for X representing the DC component
of the signal, X are complex numbers and represent the
amplitudes and phase shifts of a decomposition of the sig-
nal into sinusoid functions, satisfying X,,_y = X7 , f =
1,---,n — 1, where the asterisk denotes complex conju-
gation. That is, the FT of a real-valued signal is symmet-
ric | X, —f| = |Xy|, i.e., every amplitude at the beginning




except the first one also appears at the end. So the first
[(n+1)/2] DFT coefficients completely encode the signal.

DWT: Wavelet transforms measure frequencies at dif-
ferent time resolutions. A wavelet is a smooth and quickly
vanishing oscillating function with good localization in both
frequency and time. A wavelet family is a set of functions
generated by dilations and translations of a mother wavelet

Vn(t) = 27/2(2t — k), j k€L 2)

The function % is the orthogonal wavelet if 1), j, is the or-
thogonal basis of L%(R), satisfying (¢ k, Vim) = ;1 -
Ok.m. The signal z:(t) can be represented as

2(t) = cjutk(t) 3)
gk

where ¢; , = (¥ (), z(t)) is called the wavelet coefficient
of (t). The WT provides high frequency resolutions at low
frequencies and high time resolutions at high frequencies.
The DWT has been widely used in denoising and com-
pression of images and signals [7, 9]. In the case of the
DWT, a time-scale representation is obtained using digital
filtering techniques. In the pyramidal algorithm of Mallat
[7], the signal is analyzed at different frequency bands by
decomposing the signal into coarse approximation and de-
tail information. The approximation is then further decom-
posed using the same decomposition step. This is achieved
by successive high-pass and low-pass filtering of the sig-
nal.The resulting DWT coefficients describe the signal in
terms of an approximation of the original signal, plus a set
of details that range from coarse to fine. The trend of the
signal is preserved in the approximate part, while the local-
ized changes are kept in the detail parts. For the DWT using
the Haar wavelet, the computational complexity is O(n).

3. Methodology
3.1. Extraction of moving shapes

The shape changes captured in individual silhouettes
over time naturally provide information about the motion
being performed. The use of silhouettes has several advan-
tages: 1) silhouettes are simple and intuitive while contain-
ing rich shape information of a moving human; 2) silhou-
ettes are easier to extract than to detect/track body parts;
and 3) binary silhouettes are insensitive to texture and color
within the foreground region. This step aims to convert mo-
tion information in raw video to an associated sequence of
shape features, which implicitly reflect motion dynamics.

Given a motion video V with T frames I, ie., V =
[I1,12, -+ ,Ir], an associated sequence of moving silhou-
ettes S = [S1,Sa, - -+, S7] can be obtained by motion seg-
mentation techniques. For simplicity, we use the following
two methods to describe each silhouette, as illustrated in
Figure 1.
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(a) Normalized silhouette images
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(b) Shape Fourier descriptors

Figure 1. Extraction and representation of moving shapes

Normalized silhouette image (NSI): The size and po-
sition of the foreground region vary with the distance of
the human from the camera, the human size and the mo-
tion being performed. Silhouette images are thus centered
and normalized on the basis of keeping the aspect ratio of
the silhouettes so that the resulting images contain as much
foreground as possible, do not distort the moving shape, and
have the same dimensions of ny X ns. Accordingly, each
NSI can be denoted by an h = n; X ny dimensional vector
fxgr in a row-scan manner.

Shape Fourier descriptor (SFD): A human shape can
be described by N points { (o, v0), -+, (Un—1,VN—1} On
the silhouette’s outer-contour, denoted in form of centered
complex coordinates, i.e., w; = (p; — pe) +J - (Vi — ve),
where (p;,v;),4 = 0,1,--- , N — 1 are the pixel coordi-
nates of the ¢-th pixel along the silhouette boundary and
(e, Ve ) is the shape centroid, i.e., . = % Zﬁgl iy Ve =
% Zi]\i_ol v;. The DFT is applied to [wq, - - - ,wn—1] to gen-
erate Fourier coefficients {0, 21, -+, Qn_1}. The result-
ing SFD is an h = N — 2 dimensional vector fspp =
(1922/10], -+, |2nv—1|/]$21 ), which is invariant to trans-
lation, scale and rotation.

3.2. Subspace of shape features

Human motion is inherently highly-nonlinear and high-
dimensional. To address the curse of dimensionality and
to find a discriminative data representation, we wish to em-
bed the dynamic shape features into a low-dimensional sub-
space. Spectral methods have recently emerged as a pow-
erful tool for dimensionality reduction and manifold learn-
ing. LPP (Locality Preserving Projection) has been demon-
strated to be superior to PCA (Principal Component Analy-
sis) and LDA (Linear Discriminant Analysis) in image-
based static face recognition [6]. However it remains un-
clear how well linear LPP approximates a nonlinear Lapla-
cian Eigenmap (LE). Here we use the kernel extension of
LPP, i.e., KLPP [6], to address high-dimensionality and
non-linearity of articulated motion data simultaneously.

Given m samples {f;}7, C R" from a training set (£;
can be fygr or fspp), dimensionality reduction aims at find-
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Figure 2. Examples of video projections into multi-dimensional
time series signals in the embedding space

ing {g;}", C R, | < h, where g; can ‘represent’ f;. As-
sume these m samples are represented by a weighted graph
G with m vertices. Let W be a symmetric m X m matrix
with w;;, the weight of the edge joining vertices i and j.
Two kinds of weighting strategies are often used. One is to
use a simple 0-1 rule, i.e., w;; = 1 if and only if vertices ¢
and j are “close”; otherwise 0. The other is the heat func-
tion w;; = e’(”fi’fj“2/7),7' € R. “Close” can be defined
by the k-nearest neighbors. LPP aims to find a transform
matrix E so as to map g; = ET'f;, based on the generalized
eigenvalue problem

FLFTe = \FDF"e 4)

where D is a diagonal matrix whose entries are column (or
row) sums of W, i.e., D;; = Zj wj;. L =D — W is
the graph Laplacian matrix, and F' = [f;, f5,--- ,f,,]. Let
the column vectors ey, - - - , €;_1 be the solutions of (4), or-
dered according to their eigenvalues A\g < --- < A\;_j. The
embedding is represented by
gi=E"f;, E=leg,e1, - ,e_1] (%)
To generalize LPP to the nonlinear case, assume that the
Euclidean space R” is mapped to a Hilbert space H through
a nonlinear mapping function ¢ : R" — H. The eigenvector
problem in the Hilbert space can be written as

[6(F)Lo™ (F)Jv = M¢(F)Dg™ (F)Ju (6)

This can be solved using the following eigenvector problem
KLKa=MKDKa« (7

where K is the m x m Gram matrix with elements K;; =

K(£,£;) = (¢(£:)-6(f;)) and o = a1, v, -+ , | For
a new point f, its projection onto the eigenvectors v* is

m m

(v - o) =Y ol (p(f) - ¢(£) = >l K(£,£) (8)
i=1 i=1

where oy, - - -, ay, are the solutions of (7), and az is the ¢-th

element of the vector a?. Our experiments use the Gaussian

kernel function, i.e., K(fi,f;) = e~ UIE=5517/20%) with a
scale parameter o.

After learning the KLPP-based subspace, one shape se-
quence corresponding to video V' can be projected into a
semantically-meaningful trajectory P in such an embedding
space P = [Py, Py,---, Pr], P; € R', while the tempo-
ral order across frames is preserved explicitly. We regard
such a trajectory P as a form of [-dimensional discrete time
signal. Figure 2 gives two examples, in which only the first
7 dimensions are shown for clarity, and each dimension is
marked using the same color.

3.3. Characterization of shape dynamics

We can represent the i-th dimension of an /-dimensional
trajectory P by x'(t),t = 0,1,---,n — 1,5 = 1,--- L.
Since the DC component of a signal is useless to represent
the signal shape, we normalize the signal to normal form to
remove its effect by 2¢(t) = (z%(t) — x%) /e, where ¢ and
e? are respectively the mean and standard deviation of the
signal x%(t). By using an appropriate transformation of a
signal, our aim is to identify redundant components of the
signal that can be discarded without significant loss of in-
formation. We consider several schemes to obtain compact
descriptors that can be used to describe motion trajectories.

DFT-based motion descriptors: For the real-valued
signal 7°(t), we compute its DFT coefficients X® =
[XE, X4, .-+, X _,]. After signal normalization, the first
coefficient Xy = 0. We may use its amplitude spectra | X |
by selecting the first #(r < [n/2]) coefficients to represent

the signal, i.e., A" = [|X7|,|X3|,--,|X1[. The result-

7
ing motion descriptor is an [ x r dimensional vector, i.e.,
MO = (A

The use of only the amplitude of DFT coefficients makes
AW shift-invariant according to the shift theorem of DFT.
However, the phase information may be useful for describ-
ing the signal. We also directly use the DFT coefficients to
represent the signal, i.e., A'”) = [Xi, X3 .-, X!], leading
to the motion descriptor M (2) = {Al@)}ézl.

DWT-based motion descriptors: A commonly used
wavelet, i.e., Haar wavelet, is chosen in our experiments for
the following reasons: it allows good approximation with a
subset of coefficients; it can be quickly computed with the
complexity O(n); and the Haar wavelet transform can be
seen as a series of averaging and differencing operations on
a discrete time signal, leading to simple coding.

Assume the signal #%(t) € R™ is located in the scale
J(J = logn). After decomposing *(¢) at a specific scale
j € {0,---,J — 1}, wavelet coefficients can be repre-
sented as ¢;(&°(t)) = {a,d},---,d5_}. af is called
the approximation coefficient which is the projection of
@*(t) and df,--- ,d’_, are the wavelet coefficients repre-
senting detail information of (). The approximation co-
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Figure 3. Illustration of DFT and DWT of a 64-point signal z(t)

efficients within lower scales correspond to the lower fre-
quency part of the signal. The first few coefficients of
co(2%(t)) (i.e., full decomposition) corresponding to the low
frequency part can be viewed as a noise-reduced signal, thus
using these coefficients will retain most of the information
in the signal. We select the first r coefficients of co(2%(t))

as the signal feature AES), creating the motion descriptor
M® = {Az(‘g) 2:1-

Wavelet-based representation may be performed on dif-
ferent time and frequency resolutions. It is thus possible to
measure the signal at different resolutions concurrently. We
also keep all the approximation coefficients within a spe-
cific scale j as the signal features, ie., A§4) = [a;] which
retain the entire information of #%(¢) at a particular level of
granularity. The task of choosing the first few wavelet coef-
ficients in case of AE?’) is thus circumvented by choosing a
particular scale j in this case, and the time dimension of the
signal is reduced to r = 27. The resulting motion descriptor
is MW = {4V}

Figure 3 shows examples of the DFT and DWT of a
64-point signal in its normal form (a), from which we can
see that the symmetric energy spread of the DFT coeffi-
cients suggests that most energy is preserved in the low-
frequency and high-frequency coefficients but not in the
mid-frequency ((b) and (c)), and the hierarchical energy
of the DWT coefficients suggests that most energy is pre-
served in the low resolution coefficients (f). This suggests

that it is reasonable to keep the first few coefficients with
most energy to represent the signal sketch. Such motion
descriptors have several advantages: 1) most of the energy
of the signal can be represented by only a few coefficients,
which greatly reduces time dimensionality; 2) approximate
coefficient representations of the signal in case of DWT pre-
serve time order information to some degree ((d) and (e)); 3)
discarding partial detail parts of DWT coefficients or rela-
tively middle-frequency DFT coefficients acts as denoising;
and 4) DFT and DWT have fast computation algorithms,
and the availability of motion descriptors converts the orig-
inal multi-dimensional time series classification problem to
a relatively easier static classification problem.

3.4. Recognition of shape dynamics

Although many methods exist for static classification
problems, we choose the simplest Nearest-Neighbor (NN)
classifier because our main concern is to examine the dis-
criminatory powers of our motion descriptors.

Let y'(t),i = 1,--- 1l represent each dimension trajec-
tory of one test sequence in the embedding space, zfl(t) is
the corresponding trajectory signal of the g-th reference mo-
tion sequence, and their motion descriptors are respectively
M, and M., where M can be any one of M), M2,
M®) and M. We measure their dissimilarity by the
Euclidean distance, i.e., s, = || M, — M_q||. To incorporate
time shifting, especially since motion video alignment has
not been solved (e.g., in the case D-II in our experiments),
we modify the similarity measure to

5y :mbin||M§ ~ M. |l b=1,-,n—1 9)
where Mé’ represents the corresponding motion descriptor
of the circularly shifted signal 3’ (¢ — b) of 3 (¢). Note that
for M), this process is not needed according to the shift
theorem of the DFT. The test sequence is classified as the
class label ¢, of the g-th reference motion sequence with
the lowest dissimilarity value, i.e., cest = arg min, sy.

4. Experiments

Standard evaluation databases are unavailable in the area
of human motion analysis. We select two recent databases
to evaluate the proposed method, which are appreciably
sized in terms of the number of persons, motions and video
sequences, as shown in Figure 4.

4.1. Evaluation video databases

Maryland dataset (D-1) [14] includes 10 actions per-
formed by one person, 10 instances per action, thus 100
sequences in total. These actions are respectively pick-up-
object, jog-in-place, push, squash, wave, kick, bend-to-the-
side, throw, turn-around, and talk-on-cell-phone. This data
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Figure 4. Examples of motion videos in the data sets used

set is used to examine the effect of the temporal rate of ex-
ecution on motion recognition, as discussed in [14].

Weizmann dataset (D-11) [2] is initially composed of 81
low-resolution videos, including 9 actions performed by 9
different people. These actions are respectively run, walk,
jump-jack, jump-forward-on-two-legs, jump-in-place-on-
two-legs, gallop-sideways, wave-two-hands, wave-one-
hand. Together with a later added action (i.e., skip), there
are 10 actions per subject, in total 90 sequences. Compared
to D-I, D-II is more realistic and challenging, including
inter-person variations due to different physical structures,
motion styles and performing speeds.

4.2. Experimental procedure and data processing

To obtain an unbiased estimation of accuracy on small
data sets, we perform a series of leave-one-out recognition
experiments. For each data set, each time we leave one se-
quence out for testing, and use the remaining for training.
For D-I, the start and end of each motion are basically con-
sistent in each sequence, so we do not consider time shift-
ing. In D-II, people perform each motion multiple times in
a continuously repetitive manner (except for bend). Each
video generally includes 2 ~ 4 full cycles of atomic mo-
tions, which allows us to compute each motion’s duration
by periodicity analysis. The real video length is selected
as the duration for bend, while for other actions, we select
two complete cycles from the middle part of each original
video for our experiments. When selecting cycles, we do
not, and need not, temporally assign an onset and ending
for each class of action. Accordingly we need to consider
time shifting when computing the sequence similarity.

These two data sets are provided with silhouette masks.
The quality of these masks is generally good, but many de-
fects are also present, e.g., shadows, partially missing body
parts, etc. We center and normalize silhouette images into
64 x 48 resolution, leading to h = 3072 for the NSI rep-
resentation. We sample N = 128 points along the silhou-

Correct Classification Rates
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o

o Ll (=111
D-I plus NSI D-l plus SFD D-Il plus NSI D-Il plus SFD

Figure 5. CCRs with respect to different configurations

ette’s outer-contour, leading to h = 126 for the SFD rep-
resentation. Given a training set to learn KLPP, we use
the k-nearest neighbors (k = 15) to construct the affinity
graph and the 0-1 weighting rule to generate the weight ma-
trix W. Computationally efficient spectral regression [4]
is adopted to solve KLPP, in which the Gaussian kernel
function’s argument o is selected as the mean of pairwise
distances of training samples excluding self-dissimilarities.
Each sequence is projected into an [-dimensional trajectory
signal in the embedding space, from which we extract its
r X [-dimensional motion descriptors. To enable fast com-
putation of DFT and DWT, we temporally scaled the trajec-
tory length to n = 64 for D-I and n = 32 for D-II (Ac-
tually the length of each sequence is 80 frames in D-I, and
an average of about 38 frames in D-II). We implement the
nearest-neighbor classifier as a baseline classification. Cor-
rect Classification Rates (CCR) are measured with respect
to both the reduced space dimension I € {1 ~ 30} and the
reduced time dimension r € {1 ~ n/2} simultaneously.

4.3. Classification results and analysis

We report the best results of our method obtained within
the ranges of [ and r in Figure 5. The CCR reported here is
in terms of the percentage of the correctly recognized mo-
tion sequences among all test sequences. For M%), we use
the 3" decomposition scale, i.e., 7 = 8. From Figure 5,
we can conclude that: 1) Space-time shapes are very in-
formative and rich, as demonstrated by the relatively high
classification rates achieved. 2) D-I is more easily classi-
fied. This is probably because the same motions, even from
different instances, are performed by the same person, thus
there are comparatively fewer shape changes among silhou-
ette sequences. 3) D-II is relatively harder to classify be-
cause these motions are performed by different people with
different body builds and motion styles; 4) Overall, the NSI
representation is better than SFD. This may be due to un-
reliability in shape-based representation, especially when
we only describe outer-contours of imperfect silhouettes.
5) Overall, DWT and DFT perform similarly. This seems
to be consistent with the conclusion of Wu et al. [17] that
DFT and Haar DWT are comparable in energy preserva-
tion. 6) The representations of M) and M) are a little
worse in precision than the corresponding M) and M ().
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Figure 6. CCRs vs. reduced space and time dimensions

In summary, our method can effectively recognize the mo-
tion sequences with inter-person and intra-person variations
in both temporal and spatial scales.

The recognition rates are dependent on the reduced space
dimension [ and the reduced time dimension . We show
two examples reflecting CCRs with respect to [ and r in
Figure 6, from which we can see that: 1) Generally when [
is fixed, DFT and DWT perform better as r increases; but
after reaching a peak, CCRs will slightly decrease as r fur-
ther increases. This is probably because when 7 is too big,
though the preserved energy is somewhat increased, it also
introduces considerable noise. 2) When r is fixed, as [ in-
creases, DFT and DWT perform better until CCRs finally
reach a relatively steady curve. 3) Our method does not
need a high space or time dimension to obtain satisfactory
performance, thus leading to low computational cost.

4.4. Comparison of different subspace methods

We compare several unsupervised methods, i.e., PCA,
Kernel PCA [11] and linear LPP [6], to examine which
method is better for learning dynamic shape manifolds. We
report their best results using NSI representations within
Il € {1 ~30}andr € {1 ~ n/2}. From Table 1, we
can see that: 1) Overall, spectral methods (LPP and KLPP)
outperform PCA and KPCA, and KLPP performs best. LPP
and KLPP have relatively more compact visual clustering
effects in the embedding space than PCA and KPCA. This is
probably because they implicitly emphasize natural clusters
in the data by trying to preserve the neighborhood struc-
ture. Although their advantages on these data sets are not
apparent, it could be expected that they would perform well
for larger data sets. 2) Although motion measurements are

CCRonD-I1 (%) CCR on D-II (%)
Methods M® MG M© M®)
PCA 990 990 922 922
KPCA 990  99.0 944 922
LPP 100 100 944 956
KLPP 100 100  97.8 97.8

Table 1. Comparison of different subspace learning methods

inherently nonlinear, linear PCA provides good discrimina-
tion rates, just slightly lower than KPCA and LPP. This is
probably because, although in subspace learning, we treat
each frame shape as an independent sample regardless of
temporal information, in the process of recognition, the ac-
tion is not considered as one single entity but a sequence
of entities, thus the re-introduction of the temporal relation
increases the discriminating power. 3) We do not show a
significant improvement in accuracy using nonlinear KPCA
and KLPP over their corresponding linear PCA and LPP, but
this is not entirely surprising and can be explained. Tempo-
ral information is more important than individual shapes.
These subspace learning methods ignore temporal relations
across frames. However, the preservation of temporal order
information in sequence projection and recognition seems
to compensate for such limitations to some degree.

4.5. Comparison of different recognition algorithms

We compare several recent motion recognition algo-
rithms, especially those using the same evaluation data sets.
Blank et al. [2] utilized the solution to the Poisson equation
of space-time silhouette volume to extract various shape
properties for action classification. Veeraraghavan et al.
[14] learned a function space of time warping for each ac-
tivity. Wang and Suter [16] used factorial CRF to model
and recognize actions. Ali et al. [1] used chaotic invari-
ants of motion trajectories for action recognition. Unlike the
sequence-based evaluation methods in [1, 16], the method
in [2] used a sliding window with a fixed size to extract
space-time cubes for tests. We cite the results reported by
these algorithms in Table 2, in which D-II* means a subset
of D-II without the skipping action (i.e., 81 videos). It can
be seen that our method performs better than that of [1] and
achieves comparable results to [16, 14, 2]. The advantages
of our method are the simplicity and reliability of extraction
and characterization of motion features, avoiding explicit
tracking for feature extraction (and, hence, their complex-
ities and brittleness) and the use of computationally com-
plex state-space models. In particular, the computational
efficiency of the signal transforms used is very competitive.

4.6. Discussion

We have conducted additional experiments to assess the
effects of parameter settings. For n; X nq, we found that



Methods Data sets ~ Accuracies
Veeraraghavan(06 [14] D-I 100%
Wang07 [16] D-I 100%
Our method D-1 100%
BlankO05 [2] D-IT* 99.6%
Ali07 [1] D-IT* 92.6%
Wang07 [16] D-II 97.8%
Our method D-II 97.8%

Table 2. Comparison of different recognition algorithms

128 x 96, 96 x 72 and 64 x 48 made little difference. For
N, 64, 128 and 256 also gave similar results. When us-
ing k-nearest neighbors to construct the affinity graph in
KLPP, we found that &k can be reliably selected in the range
of 10 ~ 25. How to set an optimal o in the Gaussian ker-
nel function is an open question. We empirically set it to
be the mean value of the pairwise distances and obtained
satisfactory results. For n, we found that 16, 32, 64, and
128 perform similarly on current data. These observations
suggest that our method is insensitive to parameter settings.
The Discrete Cosine Transform (DCT) is another form of
signal transform technique, which is a Fourier-related trans-
form similar to DFT, but using only real numbers. Exper-
iments using DCT gave similar results to DFT. Although
the time-frequency localization property of DWT suggests
wavelet representation of signals may bear more informa-
tion than that of DFT, experimental results on current data
sets show little difference. We also tried several other or-
thogonal wavelets and observed that Haar wavelets far out-
perform Daubechies and Coiflet wavelets in accuracy, as
well being computationally less expensive. This means that
not all wavelets are suitable for analyzing motion data de-
rived from short shape sequences since the effectiveness of
the power concentration of a particular transform depends
greatly on the nature of time signals.

Current work only focuses on short video analysis in-
cluding atomic motions. We plan to extend this work to
automatic action segmentation and detection in long videos
containing composite motions. How to detect transient
changes between temporal segments and how to perform
subsequence matching are issues for future research.

5. Conclusion

This paper describes an effective approach to silhouette-
based motion recognition. The method investigates human
silhouette deformations during the articulated motion as
discriminating features to implicitly capture moving shape
dynamics. In particular, the method exploits the applicabil-
ity of DFT and DWT for characterization and recognition
of human motion sequences. Experimental results based on
state-of-the-art data sets have validated our method.
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