
Boosting Adaptive Linear Weak Classifiers for Online learning and Tracking

Toufiq Parag
Dept of Computer Science

Rutgers University
Piscataway, NJ 08854

Fatih Porikli
Mitsubishi Electric Research Labs

Cambridge, MA 02139

Ahmed Elgammal
Dept of Computer Science

Rutgers University
Piscataway, NJ 08854

Abstract

Online boosting methods have recently been used suc-
cessfully for tracking, background subtraction etc. Conven-
tional online boosting algorithms emphasize on interchang-
ing new weak classifiers/features to adapt with the change
over time. We are proposing a new online boosting algo-
rithm where the form of the weak classifiers themselves are
modified to cope with scene changes. Instead of replace-
ment, the parameters of the weak classifiers are altered in
accordance with the new data subset presented to the on-
line boosting process at each time step. Thus we may avoid
altogether the issue of how many weak classifiers to be re-
placed to capture the change in the data or which efficient
search algorithm to use for a fast retrieval of weak classi-
fiers. A computationally efficient method has been used in
this paper for the adaptation of linear weak classifiers. The
proposed algorithm has been implemented to be used both
as an online learning and a tracking method. We show quan-
titative and qualitative results on both UCI datasets and sev-
eral video sequences to demonstrate improved performance
of our algorithm.

1. Introduction

Studies on online learning algorithms originated in com-
putational learning community. The initial algorithms train
several experts based on the labeled samples arriving se-
quentially and later combine the predictions of these experts
to categorize any new example. The algorithms popular to
the machine learning researchers like the weighted majority
algorithm or winnow algorithm, as discussed by Littlestone
and Warmuth in [11] and by Littlestone in [10] respectively,
belong to this family1. Both the weighted majority and win-
now algorithms works as a committee of hypotheses to clas-
sify target samples. The popular (offline) Adaboost classi-
fier [7] resembles these classifiers in the sense that it also

1A more detailed discussion on online learning algorithms is provided
by Blum in [3]

combines several ‘weak’hypotheses in classifying new ob-
servations. An online version of the boosting classifiers in
has been recently proposed in a relatively recent study by
Oza et.al [12].

Online learning algorithms can be immediately applied
to the object tracking scenario. The tracker employs an on-
line learning method to learn the object from frames arriv-
ing sequentially and then apply the classifier to detect the
target in the next frame. Recently, the work of Avidan [2]
and Grabner et.al. [8] has shown impressive results of us-
ing classifier based tracking methods. The classifier based
methods initially learn a binary classifier to distinguish the
object of interest from the (neighboring) background and
then apply it at each new frame to locate the position of the
object. Both the works of [2] and [8] uses AdaBoost [7] or
an online variant of AdaBoost classifier.

Several previous works have addressed object tracking
problem by approximating the distribution of feature re-
sponses representing an object using Kalman Filter [6], Par-
ticle Filter [9], Mean-shift method [5] etc. Density approx-
imation tracking algorithms result in inferior performances
to classifier based tracking algorithms in the cases when the
target appearance undergoes substantial change over time
or when there are similar objects nearby [2]. Results of our
experiments will show how the proposed method is able
to track objects in such scenarios where meanshift tracker
fails.

One important issue to resolve in classifier based track-
ers is how to adapt with scene change and remain capa-
ble of identifying the object correctly. We should keep in
mind that both the background and the object of interest
may change with time. The previous studies [2, 8] replace
a subset of current weak classifiers with a new one to cope
with scene changes. Ensemble tracking [2] does not up-
date the weak classifiers themselves. Instead at every frame,
it replaces some of the older weak classifiers with several
new weak classifiers. Grabner’s online boosting method [8]
models the feature densities by simple Gaussians and up-
date their parameters at each frame using Kalman filtering
method. Even if we assume that a Gaussian distribution is

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

sufficient to model feature densities (which is usually not
the case), the updating mechanism soon becomes compli-
cated and slow if we wish to use higher dimensional weak
classifiers. Furthermore, the method of [8] immediately
throws away any weak classifier generating an error greater
than or equal to 50%. To fill up the space evacuated by the
leaving weak classifier, the methods in both [2] and [8] have
to search a large subset of weak classifiers for replacement.

The primary contribution of this paper is an adaptation
scheme for the weak classifiers themselves to conform with
the changes over time. Similar to the method of ensemble
tracking [2], we combine linear weak classifiers, learned
in a least square fashion, and learn incrementally (online
boosting). However, we neither replace weak classifiers for
each data set nor do we throw out any weak classifier during
training phase. Instead, the proposed method modifies the
internal parameters of the base learners for the final clas-
sifier to blend with the change as long as the base learner
has an error rate below 50%. The online boosting algo-
rithm described in this paper uses linear regressors as the
base learners. The adaptation scheme does not require us
to keep the previous examples in the memory and does not
need complex filtering techniques. This paper also demon-
strates how the adaptation process can also ‘forget’previous
observations.

In the previous studies of online boosting that [2, 8], it
has not been guaranteed that, interchanging a fixed num-
ber of weak classifiers will be able to identify and capture
the change in pattern induced by new samples. Therefore,
the number of weak classifiers to be replaced is an exter-
nal parameter to these methods and the choice of such pa-
rameter is still unresolved. Furthermore, the time complex-
ity of these methods will also increase with the increase in
the number of base learners to be replaced. The proposed
method, instead of replacement, keeps modifying the form
of as many hypotheses as necessary to adapt to any new
trend in the dataset. Therefore, the proposed method is ca-
pable of identifying the object with substantial change in
the appearance during tracking. We show results where our
algorithm supersedes previous method of tracking for track-
ing such objects in the results section. Our method also pro-
duces comparable performance w.r.t. its offline counterpart
in classifying the UCI data.

The paper is organized as follows. We start with describ-
ing offline and online boosting algorithms in sections 2.1
and 2.2 respectively. sections 3 and 4 illustrates the least
square fitting of linear regressors, how to modify them to
cope with new data and how to incorporate these linear
functions into online boosting. With a brief description
of how to apply online boosting for object tracking in sec-
tion 5, section 6 analyzes the performance of the proposed
algorithm. Finally, we summarize our findings in Section 7.

2. Background and Related Work

2.1. Offiline Boosting

Boosting was proposed as a classification algorithm
in [7]. Any input x ∈ RL is categorized as one of the
classes 1 or -1 using the sign of the function H(x). The
function H : RL → {−1, 1}, also known as the strong
classifier, is a linear combination of several other functions
fk(x), k = 1, 2, · · ·K.

H(x) = sign
� KX

k=1

ckfk(x)

�
. (1)

The functions f(x) : RL → {−1, 1}, known as the base
learners or weak classifiers in the boosting literature, are
also classifier functions except (as their name implies) they
do not possess a high rate of accuracy. It has been proved
in [7] that, even if the individual performances of the weak
learners are barely satisfactory (error rate > 50%), their
combination could be highly effective in terms of error.

The AdaBoost classifier is trained in an iterative fashion
on the whole dataset X̃ ∈ RN×(L) and their correspond-
ing labels ỹ ∈ {−1, 1}N . First, each of the samples are
imposed a uniform boosting weight w0

i = 1
N and w0 =

[w0
i]Ni=1 such that

∑
i wi = 1. Then, at k-th step the the al-

gorithm searches the f(x) producing the lowest expected
error w.r.t. the boosting weights w. The mixing weight
for the linear combination given in Eqn 1 is calculated by
ck = 1

2 log 1−εk

εk . In the next iteration of boosting, the

weights are modified by wk+1
i = wk

i exp(ckyif
k(xi))

Zk so that
the examples missed by fk(x) receives a higher weight.
The weights are then normalized by Zk to maintain w as
a probability vector. In the following description, we will
omit the the superscripts of wk and f(x) unless when they
seem essential for precise description.

2.2. Online boosting

The underlying idea for development of online boosting
classifier is to learn incrementally. We wish to build the
classifier in an environment where the samples arrive one
after another as opposed to batch learning, where the whole
dataset is available to learn from. The work by Oza et.
al. [12] models the sequential arrival of samples by a Pois-
son distribution. Each of the weak classifiers of the pool
is learned and updated on each sample k times in a row
where k is a random number generated by Poisson(λ). If
any example is misclassified by a base learner, the Poisson
parameter (λ) increases. Therefore, the next base learner
will concentrate more on learning the misclassified sample
due to a large value of k. The value of Poisson parameter λ
is also accumulated to calculate the mixing weights of the
hypotheses (e.g. ck in Eqn 1).

However, Oza et.al. did not discuss much about how
to update these weak hypotheses. Grabner et. al. [8] in-
troduced online boosting algorithm to the vision commu-
nity and showed results on different problems. To update
the weak hypotheses, the authors of [8] proposes to incre-
mentally model the sample distribution with the help of a
Kalman filter [13]. Their implementation also replaces a
set of weak classifiers with a new one. Replacing a set
of base learners with a new set has also been proposed by
Avidan [2]. Avidan’s work was primarily concentrated on
tracking using a boosting method that adapts to the change
in scenes by adding new members and removing the old
ones from the weak classifier pool. In this work, we only
update the linear weak classifiers (learned in a Least Square
method) to cope with the new data samples. The following
subsections describe the update procedure of weak classi-
fiers and how they are incorporated in boosting framework.

3. Adaptive Linear Weak Classifier
3.1. Weighted Linear Regressor

Let us suppose X ∈ RN×(L+1) is the data matrix where
there are N observations x ∈ RL (the last column of X is a
vector of all ones that is used for calculating the intercept).
The corresponding labels for these examples are stored in
y ∈ {−1, 1}N . To solve a linear relation Xβ̂ = y by
least squares method, we have to minimize the error func-
tion (y − Xβ̂)T (y − Xβ̂). If the different samples have
different importance weights quantified by the vector w, as
they do in AdaBoost, we have to minimize the error func-
tion (y−Xβ)T W (y−Xβ) where W is a diagonal matrix
with w on its diagonal. The linear coefficients β that mini-
mizes the error is given by the following expression.

β = (XT WX)−1XT Wy. (2)

Denoting the quantities XT WX , XT Wy as P ∈
RL+1×L+1 and s ∈ RL+1 respectively, the expression can
be abbreviated as β = P−1s. The base learners we used in
this study are linear classifiers f(x) : RL → {−1, 1}. The
response of f(x) is calculated as follows:

f(x) =

�
1, if [xT 1] β > 0;
−1, otherwise.

(3)

3.2. Adaptive Linear Regressor
As we mentioned earlier, our weak learners recalculate

their parameter values for each new data subset. Let Xτ

denote the examples seen so far up to frame t and βτ de-
note the parameters (linear coefficients) of the regressor we
learned from Xτ . Then, for a new subset Xν , the new
value of the linear coefficients βτ+1 should be learned on
Xτ+1 = [XT

τ XT
ν]T and yτ+1 = [yT

τ yT
ν]T by the linear

regression .
βτ+1 = P−1

τ+1sτ+1. (4)

Here, Pτ+1 = XT
τ+1Wτ+1Xτ+1, sτ+1 =

XT
τ+1Wτ+1yτ+1, Wτ+1 =

�
Wτ 0
0 Wν

�
where Wν

is a diagonal matrix having the boosting weights on the
new samples wν on its diagonal. It can be easily verified
that, since Xτ+1 = [XT

τ XT
ν]T and yτ+1 = [yT

τ yT
ν]T ,

the two quantities required for computing βτ+1 can be
decomposed and expressed as a recursive summation of
previous and new samples:

Pτ+1 = XT
τ WτXτ + XT

ν WνXν = Pτ + Pν

sτ+1 = XT
τ Wτyτ + XT

ν Wνyν = sτ + sν . (5)

We are describing in the next section how to calculate Pτ+1

and sτ+1 without storing all the previous examples seen so
far.

3.3. Weak Classifier Memory
Based on the decomposition provided in the previous

section, to update the parameter βτ+1, we only need to store
a matrix and a vector of sizes L + 1× L + 1 and L + 1 re-
spectively and compute the two quantities Pν , sν only for
the new samples. The simplistic form of Eqn 5 suggests that
we can also discard the quantities (i.e. ‘forget’ them) relat-
ing to very old examples if we wish to restrict ourselves to
only the recent changes. So after the algorithm received a
specific number of datapoints, the update equation changes
to the following:

Pτ+1 = Pτ + Pν − Pτ−ω

sτ+1 = sτ + sν − sτ−ω. (6)

The value of ω decides for how long do we wish
to ‘remember’ the contribution of any datapoint to our
method. Obviously, we need to store all the quantities
Pτ , Pτ−1, · · · , Pτ−ω and sτ , sτ−1, · · · , sτ−ω in a queue.
Since the dimensionality L of the data is usually much
smaller than the number of samples Nν in the new set, the
space complexity for this queue is not high.

−60 −40 −20 0 20 40 60 80

−40

−20

0

20

40

60

80

−60 −40 −20 0 20 40 60 80

−40

−20

0

20

40

60

80

−60 −40 −20 0 20 40 60 80

−40

−20

0

20

40

60

80

−60 −40 −20 0 20 40 60 80

−40

−20

0

20

40

60

80

−60 −40 −20 0 20 40 60 80

−40

−20

0

20

40

60

80

−60 −40 −20 0 20 40 60 80

−40

−20

0

20

40

60

80

Figure 1. Adaptation of linear classifier. Top row: without forget-
ting, bottom row: with forgetting.

To visualize how this adaptation scheme works on any
linear classifier, we generated synthetic two-class dataset.
As Figure 1 shows, the blue dots and red circles represent

positive and negative examples respectively. The black line
is the classifier learned by the proposed method with uni-
form weights (W = I). In the first three image of top row,
we are incrementally adding new samples to the dataset and
learning the weak classifier according to the update equa-
tion 5 without forgetting. In three images of the bottom
row, we are also removing the oldest subset and training the
linear classifier by the update equation 6 with forget mech-
anism. It can be easily observed how the linear classifier is
correctly following the changing pattern of the dataset.

3.4. Temporal weighting

According to the update equation 5, all the new samples
have equal importance and hence have the same contribu-
tion towards the modification of β. Therefore, after several
time steps, the weak learner will become biased to the re-
cent samples and contributions of the first set of examples
will be gradually lost. As a result, the resulting classifier
will be unable to classify observations similar to the first
ones. Therefore, in this paper, we scaled the quantities used
in equation 5 with respect to time.

This study uses a temporal weight ρτ (decreasing with
time) on the quantities Pτ and sτ so that the updated values
of them becomes a weighted cumulative sum.

Pτ+1 = Pτ + ρτ Pν

sτ+1 = sτ + ρτ sν (7)

The values of ρτ are predefined and decreases with τ . In
our implementation we used ρτ = exp(−τ/σ) where σ
is a predefined constant. In case of the ‘forgetting’, Pτ−ω

and sτ−ω have to be multiplied by their respective temporal
weights before being subtracted in Eqn 6. But then, all the
P and s in the queue need to be re-weighted so that Pτ−ω+1

receives the largest weight followed by that of Pτ−ω+2 and
so on. Therefore, the new values of P and s becomes

Pτ+1 = Pτ − ρ1 Pτ−ω +

ω−1X
l=1

ρl Pτ−ω+l + ρω Pν

sτ+1 = sτ − ρ1 sτ−ω +

ω−1X
l=1

ρl sτ−ω+l + ρω sν (8)

The effect of temporal weights on online boosting will be
revisited in section 4.

4. Combining adaptive linear regressors for
online boosting

Similar to the previous studies [12, 8], we apply the Ad-
aboost training algorithm (modified) on every new subset of
data Xν . All samples in Xν are assigned uniform weights.
For each new subset Xν of data and their labels yν , we cal-
culate the updated value of βj

τ+1 (using Eqn 7 or Eqn 8 de-
pending on whether or not we wish to forget) of j-th weak

hypothesis f j(x) to determine which f j(x) can most suit-
ably conform itself with the changes. This base learner is
immediately included in the strong classifier and the boost-
ing weights w are updated accordingly. For rest of the hy-
pothesis, βτ is not updated to βτ+1 until they are found to
be the one generating minimum error w.r.t wν and included
in the strong classifier.

We also added some modifications to the original boost-
ing method to incorporate the adaptive linear regressors as
the weak learners for online boosting. The following para-
graphs will describe these changes to Adaboost.
Need-based inclusion of base learners: We start the learn-
ing process with K base learners. The initial data subset is
used to train few of the K available base classifiers until all
samples are adequately learned. We claim that, when the
sum of boosting weights wν of the new samples decreases
below a threshold, the examples need not be learned by any-
more hypothesis . So, we stop training new weak learners
when total weight is below a specific value and the remain-
ing of the base learners remain dormant in the pool of weak
classifiers. The same strategy has been followed for conse-
quent datasets Xν and their labels yν . At k = 1, instead of
updating the linear base classifiers, first we apply them on
the samples in Xν to determine if any of the present learn-
ers can already classify them accurately or not. The update
equation is enforced only when the minimum classification
error with the current set of learners is not zero and there-
fore, the importance weight is significantly large.
Updating Boosting weights w: Every example receives
the weight w0

i = 1, i = 1, 2, · · ·N initially in our al-
gorithm. We update the weights of the weak classifiers
based on the performance of the weak classifier chosen in
the latest iteration. But, if we normalize the importance
weights after a perfectly correct classification (all samples
were classified accurately), wi, i = 1, 2, · · · , Nν will retain
their previous values and their sum will not fall below the
specified threshold. Therefore, the proposed online boost-
ing method does not normalize the importance weight after
updating.
Effect of temporal weighting: It may appear to the reader
that, since we are using a temporal weight decreasing with
time, after several time step the new datapoints would not
have any influence on the boosting algorithm. To compre-
hend why that does not happen, it is important to understand
an important fact that not every classifier has a chance to
observe each of the samples. This is due to the fact that,
we stop training weak learners whenever wT

ν 1 decreases
below a specific threshold. Therefore, the new subset ar-
riving at time t = 10 may not be the τ = 10th subset that
f j(x) (where 1 ≤ j ≤ K) experienced. Recall that, we
are decreasing the value of ρ according to the value τ which
denotes the number of subset the corresponding weak clas-
sifier has actually learned on.

OnlineBoost
For each subsetset of new data Xν and their labels yν

1. Start with uniform distribution wν and dontLearn = 1.

2. for k = 1, 2, · · ·K
(a) if dontLearn = 0 then WeakLearn(wν).
(b) errj = CalcResp(fj , Xν).
(c) fk = fj∗ where j∗ = arg minj errj .

(d) ck = 1
2

log 1−errj∗

errj∗

(e) ∀wi∈wν wi = wi ∗ exp(−ck yif
k(xi)).

(f) if wT
ν 1 < wth then dontLearn = 1.

(g) if errk > 0.5 ignore Xν ,yν and return.

WeakLearn(wν)
1. Compute new quantities Pτ+1 and sτ+1.

2. Learn βτ+1 according to Equation 7 or Equation 8.

CalcResp(fj , Xν ,wν) returns errj

1. λj
corr = λj

corr +
P

i wiδ(f
j(xi), yi) and

λj
miss = λj

miss +
P

i wi(1− δ(fj(xi), yi))
where xi ∈ Xν , yi ∈ yν and wi ∈ wν .

2. errj =
λ

j
miss

λ
j
corr+λ

j
miss

.

3. cj = 1
2

log 1−errj

errj .

Note: Here 1 is a vector of all ones and δ(a, b) = 1 when a = b and
δ(a, b) = 0 otherwise.

Table 1. Algorithm: Boosting with Linear Adaptive Classifier.

So, for the subset that was fed to the online boosting al-
gorithm at time t, it will be the τ1-th and τ2-th new subset
for two hypothesis f j1(x) and f j2(x) respectively. There-
fore, even if for some weak learner the temporal weight ρτ1

is very small, for other classifier f j2x, the weight ρτ2 will
be substantially large. Nonetheless, at some point of time,
when the value of τ is large for all the base learners, any
new subset will not receive the necessary attention. This is
exactly the time when we should start ‘forgetting’to make
room for new observations.

Calculating ck : The linear coefficients cj combining the
base learners are determined using the overall performance,
that is, the overall classification accuracy (or error) on the
whole set of training examples. These quantities are cumu-
latively stored into λj

corr (λj
miss.) where λj

corr accumulates
the summation of boosting weights of samples correctly (in-
correctly) classified. For details on these quantities, please
refer to [12]. We need to keep in mind that, when we are
‘forgetting’a subset, their corresponding λj

corr and λj
miss

also need be discarded. The complete algorithm for pro-
posed method of boosting adaptive linear weak hypotheses
is stated in Table 1.

5. Application to tracking

An online learning method can be readily applied for
tracking objects in a video. Avidan used a modified ver-
sion of AdaBoost[2] for tracking objects in consecutive im-
ages. We have closely followed the implementation of [2]
to apply our online boosting algorithm for tracking. The tar-
get is identified in the first frame by the smallest rectangle
Rinner containing only the object itself. Then a larger rect-
angle Router is selected around the inner rectangle Rinner

to mark the background pixels. All the pixels in Rinner are
considered as positive examples (i.e. yi = 1) and all the
pixels in rectangleRouter are considered as negative exam-
ples (i.e. yi = −1) for learning. In the next frame, the
boosting classifier is applied on all the pixels in Router to
generate the responses the strong classifier. A meanshift al-
gorithm [4] is applied to determine the new location of our
target on this response image (also called the confidence
map). Once the meanshift algorithm converges, two new
rectangles Rinner and Router are redrawn around the new
location to label the pixels and the strong classifier is re-
trained using the new data subset and their labels.

6. Experiments and Results

6.1. Synthetic data

The 2D synthetic data of N = 440 samples was gener-
ated from a mixture of Gaussians as shown in the top-left
image of Figure 2. The blue ‘*’and red ‘+’s denote the
positive and negative examples respectively. We passed a
pair of positive and negative examples to the proposed on-
line boosting algorithm at a time. Since we do not wish to
forget any observations, weak learner memory is not used.
The learned classifier was tested on another test dataset gen-
erated from the same mixture of Gaussians.

Fig 2 visualizes how the weak classifiers are being gen-
erated and modified according to the changes on these syn-
thetic dataset. We are using only K = 10 base learners
for this illustration. Each hypothesis correspond to a line in
Fig 2. Initially, with t < 20, the algorithm tends to gen-
erate new weak classifiers and add them to strong classifier
to learn the new examples (top row of Fig 2). Then, when
there are no more hypothesis left unused, the base learners
start adapting to the changes (as can be seen in 2nd row
of Fig 2). Once the algorithm received sufficient samples,
the set of weak classifiers are stabilized and remains almost
unchanged till we finish learning (last row). One can eas-
ily notice how the the converged forms of the classifier are
separating the boundaries of two classes.

To compare the performance of the online boosting
method, we generated the classification error on the same
dataset produced by an off-line Adaboost algorithm with
logistic function as the base learner. We used the AdaBoost

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

positive data
negative data

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Weak classifier set at t =4

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Weak classifier set at t =23

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Weak classifier set at t =53

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Weak classifier set at t =202

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Weak classifier set at t =440

Figure 2. Synthetic 2D data (top-left image) and gradual adapta-
tion of weak classifier at times t = 4, 23, 53, 202, 440.

implementation of machine learning software Weka [14].
The total number of weak classifier for online and offline
boosting was the same. Although we expect any online
learning algorithm to exhibit inferior performance to that of
its offline counterpart, the proposed algorithm works much
better than the offline boosting for this synthetic dataset (as
shown in the first row of Table 2).

Dataset Training Size of Proposed Offline
set test set % correct % correct

synthetic 440 + 440 440 + 440 94.43 72.61
ionosphere 75 + 75 150 + 51 84.07 83.08

breast cancer 100 + 100 112+257 90.24 91.32
diabetes 130 + 130 138 + 370 63.18 72.63

spam 500 + 500 1313 + 2288 87.67 89.58

Table 2. Classification rates on synthetic and UCI data

6.2. UCI datasets

We followed the same strategy we used for synthetic data
on UCI [1] datasets ‘ionosphere’, ‘breast cancer’, ‘dia-
betes’and ‘spam’. First, each of these datasets were sepa-
rated into training and testing subsets. Then, training sam-
ples were supplied to the learning algorithm in pairs of a
positive and a negative example and none of the observa-
tions were ‘forgotten’. The results, using both the proposed
online boosting method and the offline AdaBoost imple-
mentation of Weka on several UCI datasets are given in
Table 2. Both online and offline boosting classifiers com-

prise K = 30 bse learners for all dataset but ‘spam’. Since
‘spam’dataset is considerably larger than others, the total
number of base learners used to learn it was K = 50. The
results suggests that we can have competitive performance
by online boosting with adaptive linear weak classifiers for
real datasets too.

6.3. Tracking examples

For tracking, we processed the images of video follow-
ing the procedures used in Avidan’s work [2]. As described
in section 5, the samples within the inner rectangle Rinner

were regarded as positive examples and that within Router

were considered as negative examples. In all the following
experiments, the features used to represent the pixels were
only R, G, B values.

The total number of weak learners used in all the track-
ing examples is 8. We fixed a the number of previous frames
that we wish to ‘remember’and discarded earlier observa-
tions from the data. The queue length for weak learner
memory was ω = 15, i.e., the learners ‘forgets’everything
happened before 15 frames. The temporal weights are cal-
culated with σ = 3. The procedure for outlier detection
of [2] was also followed in our implementation. In what
follows in this section, we will show some image sequences
where the proposed method outperforms the meanshift [4]
and ensemble trackers [2] respectively.
Comparison with meanshift:Figures 3 (a), (b) and (c)
compare the performance of the proposed online boosting
algorithm to a meanshift tracker. Our first dataset (as shown
in Figure 3) (a) contains images of a police car chase. At a
certain stage of chasing, the car being chased (also the ob-
ject which we are tracking) completely turns around and
then tries to flee again in another direction. We show in
Figure 3(a) that even though meanshift tracker was able to
track the car after the collision, if fails to follow the object
due to an occlusion by roadside pole and trees. But, our
online learning adapts itself to the changes very rapidly and
tracks it correctly. Since the current implementation of our
algorithm can not modify the target window according to
rotation or scale changes in the object, the target window
was not redrawn according to the new appearance of the
object.

The second dataset were recorded by a moving camera.
In Figure 3(b), three vehicles with similar appearances cross
each other in the opposite direction. While the meanshift
tracker confuses the target truck with the other one, the pro-
posed learning algorithm remains capable of distinguish-
ing the target. The last comparison (Figure 3(c)) manifests
how our algorithm adapts with illumination change (notice
Frames 38 and 199) whereas meanshift tracker cannot.
Comparison with ensemble tracker: The ensemble track-
ing method [2] cope with the change in scene by replac-
ing a set of base learners with new ones. The number of

Frame 178 Frame 199 Frame 255 Frame 260 Frame 278
(a) Car chase

Frame 112 Frame 264 Frame 279 Frame 296 Frame 350
(b) Vehicles crossing

Frame 16 Frame 33 Frame 40 Frame 49 Frame 70
(c) Illumination change.

Figure 3. Performance comparison (a), (b) and (c) with meanshift tracker. For each output sequence, top row: meanshift tracker, bottom
row: proposed method

weak learners to exchange is an external parameter to the
algorithm. We can not expect that replacing any fixed num-
ber of weak classifiers can always capture the change with
time. This is exactly what happens when ensemble tracker
looses the target object in Figures 4 (a) and (b). In the video
of cars on a city street at night (Figure 4 (a)), the ensem-
ble tracker gets distracted by the rotating red light of the
police car and eventually ends up on another car facing in
the reverse direction. Since we are modifying all the base
learners (if necessary), the online boosting method tracks
the object accurately. In Figure 4(b), the tracker confuses
the tracked person wearing a red jacket with another person
wearing similar attire. The output of the proposed learning

method, as shown in the bottom row(s), clearly exhibits the
robustness of method for both identification and capturing
the changes.

Table 3 displays number of frames of the aforementioned
datasets correctly tracked by the proposed method and other
methods. The number of frames were calculated manually
from the output images. If in any frame, 25% of the target
window does not contain the object (approximately, except
CarChase sequence), we classify the frame as being incor-
rectly tracked. As we can see, in all the videos where the
traditional methods fail, our method can track the target for
almost the full length of the sequence.

Frame 5 Frame 73 Frame 174 Frame 259
(a) Police car at night

Frame 5 Frame 12 Frame 17 Frame 22
(b) Person with red jacket

Figure 4. Performance comparison (a) and (b) with ensemble tracker. For each output sequence, top row: ensemble tracker, bottom row:
proposed method.

Dataset Object meanshift ensemble Proposed
CarChase car 250/285 - 285/285

VehiclesCrossing car 260/395 - 390/395
IlluminationChange person 38/76 - 92/92

PoliceCarNight car - 40/290 280/290
PersonRedJacket person - 10/45 45/45

Table 3. Frames exactly tracked by the proposed & other methods

7. Conclusion
This study proposes a new online boosting by continu-

ous updating of weak classifiers. Results on artificial and
real datasets shows the better performances achieved for
both online learning and object tracking purposes by the
proposed method than that of previous methods.

Acknowledgement: This research was partially funded by NSF CAREER
award IIS-0546372 and Mitsubishi Electric Research Labs.

References
[1] A. Asuncion and D. Newman. Uci machine learning repository,

2007. UC Irvine, School of ICS. 6

[2] S. Avidan. Ensemble tracking. In CVPR, pages 494–501, 2005. 1, 2,
3, 5, 6

[3] A. Blum. On-line algorithms in machine learning. Online Algo-
rithms: The State of the Art, LNCS 1442, 1998. 1

[4] D. Comanciu, R. Visvanathan, and P. Meer. Kernel-based object
tracking. TPAMI, 25(5):564–575, 2003. 5, 6

[5] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-
rigid objects using mean shift. In CVPR, 2000. 1

[6] F. Dellaert and C. Thorpe. Robust car tracking using kalman filtering
and bayesian templates. In Conference on Intelligent Transportation
Systems, 1997. 1

[7] Y. Freund and R. E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of Computer
and System Sciences, 55(1):119–139, 1997. 1, 2

[8] H. Grabner and H. Bischof. On-line boosting and vision. In CVPR,
pages 260–267, 2006. 1, 2, 3, 4

[9] M. Isard and A. Blake. Condensation – conditional density propaga-
tion for visual tracking. IJCV, 29(1):5–28, 1998. 1

[10] N. Littlestone. Redundant noisy attributes, attribute errors and linear
threshold learning using winnow. In Fourth Annual Workshop on
COLT, pages 147–156. Morgan Kaufmann, 1991. 1

[11] N. Littlestone and M. K. Warmuth. The weighted majority algorithm.
Information and Computation, 108(2):212–261, 1994. 1

[12] N. Oza and S. Russell. Online bagging and boosting. In Artificial
Intelligence and Statistics, pages 105–112, 2001. 1, 2, 4, 5

[13] G. Welch and G. Bishop. An introduction to kalman filter, 1995.
Tech Report., Univ of NC-CH, Dept of Computer Science. 3

[14] I. H. Witten and E. Frank. Data Mining: Practical machine learning
tools and techniques, 2nd Edition. Morgan Kaufmann, San Fran-
cisco, 2005. 6

