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Abstract

This paper presents a novel distributed framework for
multi-target tracking with an efficient data association com-
putation. A decentralized representation of trackers’ motion
and association variables is adopted. Considering the in-
terleaved nature of data association and tracker filtering,
the multi-target tracking is formulated as a missing data
problem, and the solution is found by the proposed varia-
tional EM algorithm. We analytically show that 1) the pos-
teriori distributions of trackers’ motions (the real interests
in terms of tracking applications) can be effectively com-
puted in the E-step of the EM iterations, and 2) the solu-
tion of trackers’ association variables can be pursued un-
der a derived graph-based discrete optimization formula-
tion, thus efficiently estimated in the M-step by the recently
emerging graph optimization algorithms. The proposed ap-
proach is very general such that sophisticated data associ-
ation priori and likelihood function can be easily incorpo-
rated. This general framework is tested with both simula-
tion data and real world surveillance video. The reported
qualitative and quantitative studies verify the effectiveness
and low computational cost of the algorithm.

1. Introduction

Originally from the radar-tracking literature [2,5], multi-
target tracking in video has been actively pursued, while
stays as one of the most challenging topics in computer vi-
sion [6,8,10,12,19] for decades. Multi-target tracking deals
with the state estimation of an unknown number of moving
targets, a theoretical problem with tremendous value in real-
world applications, such as people tracking in video surveil-
lance, sports video annotation, and vision-based HCI.

Fundamentally different from single target tracking,
multi-target tracking algorithm requires a complex data as-
sociation logic to partition the detected measurements to

each individual data source, and establish their correspon-
dence with the maintained trackers. This implies two im-
portant processes that critically decide the success of a
multi-target tracking algorithm, 1) tracker-measurement as-
sociations and 2) tracker filtering, which are in essence
two interleaved properties. On one hand, we have to
know the trackers’ states to obtain good estimation of the
measurement-tracker associations; on the other hand, we
also need to know the accurate measurement-tracker asso-
ciations to correctly filter the trackers.

Common approaches to tackle this problem take a cen-
tralized representation of a joint association vector, which
is then estimated either by exhaustive enumerations, such as
the joint probabilistic data association (JPDA) filter [2, 12]
or probabilistic Monte Carlo optimization [5]. For example,
one of the primary work on multi-target tracking in vision
is studied by [12], where a JPDA filter is leveraged to com-
pute all joint association events between the measurements
(object detections) and trackers. To constrain the number of
events to a manageable level, gating technique [2], i.e., the
early pruning of very unlikely association events, has to be
applied to reduce the computations.

Living in the joint state space of multiple targets,
sampling-based approaches have also been proposed to
model the joint likelihood function, thus estimating the
combined state of all targets directly [6, 8, 10, 19]. Without
resorting to explicitly compute the data association, these
approaches demonstrate the capabilities of tracking multi-
ple targets when complex motions are present. Unfortu-
nately, due to the centralized nature of the joint state rep-
resentation, the complexity of these approaches grows ex-
ponentially in the number of targets to be tracked. [18] pro-
posed to work in a decentralized state space to tackle multi-
target tracking. Though the primary focus there is to ad-
dress the “coalescence” problem in a distributed fashion,
their method is lack of a principled way to address the prob-
lem of identity switch (data association).

Motivated to solve the computational challenges of the
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existing methods due to the centralized representation on
either data association vector, state variable or both, we pro-
pose a novel distributed framework for multi-target tracking
with an efficient computation on data association and state
estimation. A decentralized representation on both track-
ers’ motion states and association variables is adopted. To
model the interleaved nature of data association and tracker
filtering, the multi-target tracking is formulated as a miss-
ing data problem, and the solution is found by the proposed
variational EM algorithm. Rigorous derivation of the algo-
rithm arrives an interesting solution that analytically shows
1) the posteriori distributions of trackers’ motions (the real
interests in terms of tracking applications) can be effectively
computed in the E-step of the variational EM iterations, and
2) the solution of trackers’ association variables can be pur-
sued under a derived graph-based discrete optimization for-
mulation, and can be efficiently estimated in the M-step by
the recently emerging graph optimization algorithms, such
as max-product belief propagation and its advances [16].

There are many benefits brought by the proposed ap-
proach. Firstly, computationally wise speaking, the in-
volved computations for obtaining the optimal data asso-
ciation and motion filtering are greatly reduced compared
to the centralized approaches, such as [2, 12, 14], which
makes the algorithm well scalable to track large number of
targets. Secondly, the proposed algorithm enjoys tremen-
dous generalization flexibilities such that sophisticated data
association modeling and likelihood function can be easily
incorporated. Thirdly, the parallel nature of the graph-based
data association optimization makes it particularly suitable
to run the algorithm in a distributed computational archi-
tecture, a very appealing feature to apply the algorithm in
real-world applications.

Unified under this general framework, both simulation
data solved by a Kalman Filter and real-world surveillance
videos tackled by a part-based Particle Filter are presented,
where both the Kalman Filter and the Particle Filter are em-
bedded into the proposed variational EM iterations. The
reported qualitative and quantitative studies verify the ef-
fectiveness and low computational cost of the algorithm.

2. Problem Formulation

To ease the exposition, let us firstly consider a basic case
of multi-target tracking problem. More complicated model-
ing, such as complex data association priori and part-based
object representation, as well as some practical issues, such
as tracker initialization and termination, will be addressed
in later sections.

2.1. Missing Data Formulation

Denote the mt detected measurements at the cur-
rent frame t by Zt, which is composed with Zt =

{z1,t, . . . , zmt,t}. The measurement data collected over
frames is depicted by Zt, and Zt = {Z1, . . . , Zt}.

We take a distributed representation for the set of M
trackers. Each tracker i, where i represents the tracker iden-
tifier and i ∈ {1, . . . ,M}, has two unknown variables to
be estimated, {ai,t, xi,t}. ai,t denotes the association vari-
able of tracker i, and takes values from the discrete set
{0, 1, . . . ,mt}. The tracker i can associate itself with ev-
ery possible measurement zai,t,t from Zt, or associate with
nothing ai,t = 0, indicating the missing detection of the
target i or target leaving (disappearing) from the field. The
motion state of each tracker i is described by xi,t.

at = {a1,t, . . . , aM,t}, xt = {x1,t, . . . , xM,t} col-
lect the associations and motion states of all maintained
trackers. In essence, multi-target tracking algorithm deals
with the problem of estimating the posteriori probability
p(xt, at|Zt). However, due to the heavily interleaved nature
of (at, xt), jointly estimating p(xt, at|Zt) is very challeng-
ing. Instead, we propose to estimate the marginal posteriori
over one variable and treat the other one as hidden under
the missing data formulation, and solve the problem by a
variational EM algorithm [7].

Between xt and at, which one should be chosen as the
missing variable? Though previous literature usually treats
association variables at as missing [13, 15], we believe bet-
ter justifications existing to support xt as missing. By treat-
ing xt as missing, firstly, we can immediately have a contin-
uously increased estimation of the probabilistic distribution
over xt in the E-step of the EM iterations, which is actu-
ally the real interest of target tracking; secondly, as we shall
demonstrate later that in the M-step the point estimate of the
association variable at can be effectively and efficiently op-
timized by the recently emerging graph-based optimization
techniques, such as multi-way graph cut algorithm [3] and
max-product belief propagation algorithm [16].

We thus formulate the multi-target tracking as a max-
imum a posteriori (MAP) estimation problem of the data
association variables at as follows

a∗t = arg max
at

E(at) = arg max
at

log p(at|Zt) (1)

Such a marginal posteriori p(at|Zt) is obtained by integrat-
ing over the unknown motions of the trackers, xt (missing
data), i.e.,

a∗t = arg max
at

log

∫
xt

p(at, xt|Zt)dxt (2)

From the Jensen’s inequality, a Q(xt) function can be in-
troduced to break the above logarithm of the integral into a



more manageable lower bound energy function as

a∗t = arg max
at

log

∫
xt

Q(xt)
p(at, xt|Zt)

Q(xt)
dxt

≥ arg max
at,Q(xt)

∫
xt

Q(xt) log
p(at, xt|Zt)

Q(xt)
dxt

= arg max
at,Q(xt)

Ẽ(at, Q(xt))

(3)

where the equality holds only when the optimal association
a∗t is found and Q(xt) = p(a∗t , xt|Zt). Maximizing the
original objective function E(at) can be achieved by itera-
tively maximizing the lower bound function Ẽ(at, Q(xt))
over its two unknown properties, at and Q(xt) [7].

2.2. Equivalence To the Variational Analysis

The above missing data formulation can be explained
from the variational analysis point of view [7]. In fact, if we
can assume that the correct data association variable a∗t is
available as a known model parameter, the optimization of
Ẽ(a∗t , Q(xt)) is then only carried out over the unknown dis-
tribution Q(xt). It is equivalent to minimize the Kullback-
Leibler (KL) divergence between Q(xt) and posteriori dis-
tribution p(xt|a∗t , Zt) because

Q∗(xt) = arg max
Q(xt)

∫
xt

Q(xt) log
p(a∗t , xt|Zt)

Q(xt)
dxt

= arg max
Q(xt)

∫
xt

Q(xt) log
p(a∗t , xt|Zt)

Q(xt)
dxt − log p(a∗t |Zt)

= arg min
Q(xt)

KL(Q(xt) ‖ p(xt|a∗t , Zt))

(4)

where since a∗t is known, log p(a∗t |Zt) becomes a constant,
thus when plugged into the equation, does not change the
optimality condition. Q(xt) is called a variational distri-
bution, and is an approximate distribution to p(xt|a∗t , Zt).
Thus the problem becomes to find a best approximation
Q(xt) to minimize this KL-divergence. In variational anal-
ysis, if we choose a fully factorized form of Q(xt), i.e.,

Q(xt) =

M∏
i

Qi(xi,t) (5)

we end up with mean field approximation [7], where each
factorial Qi(xi,t) is to approximate the unknown marginal
probabilities p(xi,t|Zt). In reality, since we do not know
the optimal association a∗t before hand, we have to estimate
both Q(xt) and at simultaneously. Such a process is called
as variational EM iterations in literature [7].

2.3. Model Expansion

Given Ẽ(at, Q(xt)) in Eq. 3, further expansion gives:

arg max
at,Q(xt)

Ẽ(at, Q(xt))

= arg max
at,Q(xt)

∫
xt

Q(xt) log p(at, xt|Zt)dxt +H(Q(xt))

= arg max
at,Q(xt)

∫
xt

Q(xt) log p(at, xt|Zt)dxt +H(Q(xt)) + log p(Zt|Zt−1)

= arg max
at,Q(xt)

∫
xt

Q(xt) log p(at, xt, Zt|Zt−1)dxt +H(Q(xt))

(6)

where H(Q(xt)) is the entropy of Q(xt), and p(Zt|Zt−1)
is an added constant once the measurement data is given
and does not change the optimal condition. However, such
a plug-in does bring an interesting chain rule expansion, i.e.,

p(at, xt, Zt|Zt−1) = p(xt|Zt−1)p(at|xt, Z
t−1)p(Zt|at, xt, Z

t−1)
(7)

thus to model the problem, we need reasonable models for
each of the above three distributions 1) prediction proba-
bility p(xt|Zt−1) 2.3.1, 2) priori probability of the associa-
tion variable p(at|xt, Z

t−1) 2.3.2, and 3) likelihood model
p(Zt|at, xt, Z

t−1) 2.3.3. We explain them one by one later.
With the reasonable Markovian assumption, we can sim-

plify p(at|xt, Z
t−1) = p(at|xt) and p(Zt|at, xt, Z

t−1) =
p(Zt|at, xt). Thus, the maximization problem becomes

max
at,Q(xt)

Ẽ(at, Q(xt)) = max
at,Q(xt)

H(Q(xt))

+

∫
xt

Q(xt) log[p(xt|Zt−1)p(at|xt)p(Zt|at, xt)]dxt

(8)

2.3.1 Motion Prediction, p(xt|Zt−1)

p(xt|Zt−1) is the motion prediction model of the trackers

p(xt|Zt−1) =

∫
xt−1

p(xt|xt−1)p(xt−1|Zt−1)dxt−1 (9)

This joint motion posteriori p(xt−1|Zt−1) can be suit-
ably approximated via the product of its marginal
components p(xi,t−1|Zt−1), i.e., p(xt−1|Zt−1) ≈∏M

i=1 p(xi,t−1|Zt−1). Recall that the optimal Q-function
Q∗i (xi,t−1) for tracker i from frame t− 1 is a good approx-
imation of the tracker’s motion posteriori p(xi,t−1|Zt−1),
and also employ an independent dynamics models
p(xt|xt−1) =

∏M
i=1 p(xi,t|xi,t−1), the joint motion

prediction term p(xt|Zt−1) can then be simplified as the
following factorized form

p(xt|Zt−1) ≈
M∏

i=1

∫
xi,t−1

p(xi,t|xi,t−1)Q
∗
i (xi,t−1)dxi,t−1

(10)



2.3.2 Association Priori, p(at|xt)

Conditioned on the motions xt, p(at|xt) is the priori prob-
ability of the association variable at = {a1,t, . . . , aM,t}. It
imposes constraints on preventing infeasible data associa-
tion behaviors, such as the situation that two trackers asso-
ciate themselves to a single measurement. With a proper
modelling of this term, we will end up with a valid partition
of the measurement data into different trackers.

Figure 1. An example of fully connected pair-wise data association
constraint.

Unlike the traditional formulation that enumerates every
association possibility with a high dimensional joint data
association vector [2, 12, 14], we embed the data associa-
tion constraints (priori) into a graph structure. One type
of this graph-based constraint can be formulated as a fully-
connected but distributed pair-wise graph as shown in Fig-
ure 1, and the corresponding probabilistic model is

p(at|xt) =
1

Zxt

∏
(i,j)∈E

ψ(ai,t, aj,t|xt) (11)

where E denotes the set of neighbors in that we introduce
the constraint, andψ(ai,t, aj,t|xt) is the pair-wise constraint
between ai,t and aj,t. Zxt

is a partition function to make
p(at|xt) a proper probability distribution. In Figure 1, each
circle depicts an association variable of a tracker, and the
edges connecting them represent the existence of pair-wise
association constraints1. A common practice of employing
p(at|xt) is to assume its independence from trackers’ mo-
tions xt [2, 14], i.e.,

p(at|xt) = p(at) =
1

Z

∏
(i,j)∈E

ψ(ai,t, aj,t) (12)

a pure association priori, where the pair-wise constraint is:

ψ(ai,t, aj,t) =

{
0, {ai,t = aj,t 6= 0}
1, otherwise

(13)

Remember that both ai,t and aj,t can choose values from
the discrete measurement set {0, 1, . . . ,mt}, thus the basic
idea of ψ(ai,t, aj,t) is to explicitly avoid the case that two
trackers associate themselves to a single measurement un-
less it is a missing detection or occlusion event ai,t = aj,t =
0. In essence, the association constraint in Eq. 12 enforces
to only generate valid association hypotheses at.

1we intentionally thicken the edge link between (a1,t, a2,t) and the
ones among (a3,t, a4,t, a5,t) to illustrate that the trackers in each of these
two groups are spatially closer to each other, thus “gating technique” [2]
can also be applied here by removing other weaker links.

2.3.3 Likelihood Model, p(Zt|at, xt)

p(Zt|at, xt) is the joint likelihood model of the measure-
ment data Zt, conditioned on (at, xt). Without knowing
at, the joint likelihood p(Zt|xt) can not be factorized, i.e.,
p(Zt|xt) 6=

∏M
i=1 p(zi,t|xi,t). On the contrary, if at is pro-

vided, we can factorize this joint likelihood model, since
we know which measurement data zai,t,t is generated from
each tracker xi,t, i.e., we have

p(Zt|at, xt) =

M∏
i=1

p(zai,t,t|xi,t) (14)

To generate p(zai,t,t|xi,t), firstly we need a reasonable
model for the usual case of p(zai,t 6=0,t|xi,t), i.e., the tracker
i is associating with a valid measurement. The exact
form of this term relies on the domain knowledge. In
Kalman Filtering framework, this measurement model is
defined by a Gaussian distribution [2, 12]; while in the vi-
sual tracking scenario, p(zai,t 6=0,t|xi,t) can also incorporate
any available visual attributes, such as appearance, shape,
etc [6, 10, 17, 19]. Secondly, p(zai,t=0,t|xi,t) needs some
special modelling, where ai,t = 0 means the target followed
by the tracker xi,t is missing detected, occluded, or leaving
the scene [14]2. The value range of this special likelihood
is critical, and a proper setting will not only support the ex-
istence of a tracker to follow a temporarily occluded target
during the occlusion period, but also maintain the tracker to
tolerate missing detections. [9, 14] discussed some princi-
pled ways of making a proper selection of this value.

2.4. EM Solution

From above, we understand that the motion predic-
tion p(xt|Zt−1), association priori p(at|xt), and likelihood
p(Zt|at, xt) models all take some factorized or distributed
forms. By plugging them into the expanded objective in
Eq. 8, and also considering the fully-factorized Q-function
in Eq. 5, after some manipulations, we have

{a∗t , Q∗(xt)} = arg max
at,Q(xt)

∑
(i,j)∈E

logψ(ai,t, aj,t) +

M∑
i

H(Qi(xi,t))

+

M∑
i=1

∫
xi,t

Qi(xi,t) log[p(xi,t|Zt−1)p(zai,t,t|xi,t)]dxi,t − logZ

(15)

Based on this objective, our EM solution involves to solve
the following two iterative steps, where the exact computa-
tional forms are presented in Sections 2.4.1 and 2.4.2:

E-Step: Compute a better Q
′
(xt) =

∏M
i=1Q

′

i(xi,t) over
trackers motions xt to maximize Ẽ(at, Q(xt)).

2Though in principle, the proposed framework could assign differ-
ent association indexes to missing detection, occlusion, and disappearing
events, without losing generality, in this paper we do not differentiate these
cases and treat them with a single unified event ai,t = 0.



M-Step: Find a better association a
′

t = {a′1,t, . . . , a
′

M,t}
to maximize Ẽ(at, Q

′
(xt)).

2.4.1 E-Step

Take the partial derivative of the objective in Eq. 15
over Qi(xi,t), and enforce the constraint that each
Qi(xi,t) must be a valid probabilistic distribution, i.e.,∫

xi,t
Qi(xi,t)dxi,t = 1 we obtain the E-step updating equa-

tion for each tracker i

Q
′
i(xi,t) ∝ p(zai,t,t|xi,t)p(xi,t|Zt−1) (16)

which has almost the same form of filtering solution for
single-target tracking, i.e., the combination of prediction
model and likelihood function. The only difference is that
the measurement data zai,t,t used to filter xi,t is conditioned
on the association variable ai,t, which has to be estimated
from the following M-step. Note that the above E-step up-
dating is composed with M independent updating equa-
tions, where each one is for an individual tracker. It reflects
that the E-step computation is indeed distributed.

2.4.2 M-Step

For M-step, we find an updated set of association variables
at = {a1,t, . . . , aM,t} to increase the objective given the
already updated Q

′
(xt) from E-step

a
′
t = arg max

at

∑
(i,j)∈E

logψ(ai,t, aj,t)

+

M∑
i=1

∫
xi,t

Q
′
i(xi,t) log p(zai,t,t|xi,t)dxi,t

(17)

where all terms unrelated to at are removed. Define the
following two items fi,j(ai,t, aj,t) and gi(ai,t)

fi,j(ai,t, aj,t) = ψ(ai,t, aj,t)

gi(ai,t) = exp{
∫

xi,t

Q
′
i(xi,t) log p(zai,t,t|xi,t)dxi,t}

(18)

which are the functions of (ai,t, aj,t) and ai,t respectively.
Also notice that the optimality condition does not change if
an exp operation is applied to an objective function. The
objective in Eq. 17 then is further written as

a
′
t = arg max

at

∏
(i,j)∈E

fi,j(ai,t, aj,t)

M∏
i=1

gi(ai,t) (19)

Remind that {a1,t, . . . , aM,t} are from a discrete value
set, therefore both fi,j(ai,t, aj,t) and gi(ai,t) can be pre-
computed before the M-step optimization. Eq. 19 refers to
one of the most standard forms of optimization problems
that can be solved by many emerging algorithms. Consider-
ing the involved graph structure of the problem as shown in

Figure 1, efficiently approximate solutions exist, such as the
multi-way graph cut algorithm [3], the max-product belief
propagation (BP) [16]. In our implementation, we use the
max-product BP to obtain the optimal solution a

′
(k) in this

arbitrary graph structure. The BP algorithm and its variants
are distinguished with their distributed and parallel compu-
tational paradigm, thus the derived M-step updating is also
bestowed with this distributed computation via the use of
max-product BP.

Through above EM analysis, it is clear that both E-step
(motion filtering) and M-step (data association) enjoy the
distributed and parallel computational nature, which assures
us to claim that the proposed algorithm is essentially a dis-
tributed solution compared to existing methods. The effi-
ciency and effectiveness of M-step (BP algorithm) were ex-
tensively addressed in literature [7,16], and the efficiency of
E-step is directly reflected by the individual filtering equa-
tion of each tracker.

3. Model Generalizations
3.1. Part-based Object Representation

The description so far considers a simple object model,
where we assume a holistic-based object classifier is avail-
able to detect the target, such as pedestrians in surveil-
lance application [4]. The holistic-based detector works fine
when targets are moving in isolated mode or under minor
occlusions. It is, however, not suitable to deal with large
mutual occlusions. Though in theory the likelihood model
p(zai,t=0,t|xi,t) can support the existence of a tracker dur-
ing occlusion, this likelihood is more suitable to the situ-
ation of full occlusion. Under partial occlusion, it makes
more sense to leverage the minor but still visible part infor-
mation of the occluded target. Therefore, an object detector
with part-based representation [17] is better pursued.

Given a K-part decomposition of the object, such as
human samples illustrated in Figure 4, where K = 3
stands for head-shoulder, torso, and legs [17], K detec-
tors are trained by collecting the training data of each cor-
responding part. The association variable of a tracker is
now formed by K parts, i.e., ai,t = (ai,1,t, . . . , , ai,K,t),
where each ai,k,t, k ∈ K describes an association that as-
signs a part detection from the corresponding part detector
to tracker i. The motion state of the tracker is still xi,t.
Conditioned on xi,t and association variable ai,t, the like-
lihood function p(zai,t,t|xi,t) in Eq. 14 is modelled by the
product of its component likelihoods, i.e., p(zai,t,t|xi,t) =∏K

k=1 p(zai,k,t,t|xi,t). The association priori in Eq. 12 be-
comes p(at) = 1

Z

∏
(i,j)∈E

∏K
k=1 ψ(ai,k,t, aj,k,t). This

part-based model generalization does not change the Q-
function computation in Eq. 16 in E-step, while the only
extra computations induced are in M-step. Rather than solv-
ing one graph optimization defined in Eq. 19, K graph op-



timizations need to be carried out to obtain the optimal part
associations a

′

i,t = (a
′

i,1,t, . . . , , a
′

i,K,t) simultaneously.

3.2. Depth-based Association Priori

In Section 2.3.2, we mentioned that it is common to as-
sume the association priori as p(at|xt) = p(at), i.e., at

independent of xt [2, 14]. In general, this pure associ-
ation priori p(at) is effective. In practice, when xt can
benefit more from the scene, we may build a better asso-
ciation priori than the one in Eq. 13 by keeping the de-
pendencies of at on xt. One possible form is p(at|xt) =∏

(i,j)∈E p(ai,t, aj,t|xi,t, xj,t). We replace ψ with p and
drop the partition function Zxt , to explicitly note that each
pair-wise constraint p(ai,t, aj,t|xi,t, xj,t) holds its own nor-
malization.

Figure 2. An illustrative example of depth-based pair-wise associ-
ation constraint.

For example, if scene geometry is available, a tracker can
run in 3D space. The motion state of each 3D tracker con-
tains depth information. Let xi,t < xj,t denote the motion
hypothesis that tracker i is closer to the camera than tracker
j. Illustrated in Figure 2, two rectangle boxes (solid-red and
dash-green) represent a configuration of two trackers i and j
with xi,t < xj,t, and four detections Zt = {z1,t, . . . , z4,t}
are returned. Conditioned on xi,t < xj,t, the four detec-
tions firstly are partitioned into, Z1

t = {z1,t, z2,t, z3,t} and
Z2

t = {z4,t}, depending on whether a detection is covered
by the projection of the front tracker i. With xi,t < xj,t, all
valid pair-wise association constraints p(ai,t, aj,t|xi,t, xj,t)
are listed in the table of Figure 2, where

√
represents an al-

lowable association, while X means not. From the table, we
see that besides the common constraint {ai,t = aj,t 6= 0},
all configurations with aj,t = 4 become unacceptable, since
the tracker hypothesis says that xi,t < xj,t. Such a depth-
based association priori will affect the EM solutions on both
E-step and M-step. Without describing the details, we sim-
ply write down the changed EM iterations

E-step, the iterative solution of Q-function becomes

Q
′
i(xi,t) ∝

∏
j∈N(i)

exp{
∫

xj,t

Qj(xj,t) log p(a
′
i,t, a

′
j,t|xi,t, xj,t)dxj,t}

×p(zai,t,t|xi,t)

∫
xi,t−1

p(xi,t|xi,t−1)p(xi,t−1|Zt−1)dxi,t−1

(20)

where the updating of Qi(xi,t) takes each neighbor’s
Qj(xj,t) into consideration.

M-step, the M-step objective in Eq. 19 does not change,
while the way of pre-computing fi,j(ai,t, aj,t) is modified

fi,j(ai,t, aj,t)

= exp{
∫

xi,t,xj,t

Q
′
i(xi,t)Q

′
j(xj,t) log p(ai,t, aj,t|xi,t, xj,t)dxi,tdxj,t}

(21)

where an integral evaluated over the motions of pair-
wise trackers (xi,t, xj,t) are needed to pre-compute
fi,j(ai,t, aj,t).

Compared to the basic forms of EM steps in Section 2.4,
depth-based association priori induces extra integral com-
putations over any pair-wise trackers. Though challeng-
ing to compute, the proposed solution is still much more
manageable than existing methods that leverage the depth-
based scene geometry, where an exhaustive sampling over
the joint state space of all trackers is required [6, 10, 19].

4. Experiments
The proposed algorithm is evaluated against both sim-

ulation data and real-world surveillance video. Please
note for all experiments, a fully-connected pair-wise graph
is adopted, i.e., no gating technique [2] is employed to
prune the computation. Due to the decentralized nature of
the tracker, tracker initialization and termination are very
straight-forward. An established tracker i terminates if it is
not associating with any valid measurement for n consec-
utive frames. Any unassociated measurement after the EM
iterations will initialize a temporarily new tracker, which
will be maintained and confirmed to be an established one
only if it survives for m frames.

4.1. Simulation Results

We firstly examine the algorithm on challenging simu-
lation sequences, and compared against a JPDA filter [2].
Simulation provides a controllable setting to have a fair
comparison. Because both motion dynamics in Eq. 10 and
likelihood model in Eq. 14 are assumed to be Gaussian,
Kalman Filter is directly applied here to compute the E-step
in Eq. 16, i.e., the Q-functionQi(xi,t) is completely charac-
terized by the state estimate and state covariance in Kalman
Filter setting [2]. The integral computation in the term of
gi(ai,t), required during M-step optimization, can also be
analytically computed by observing Q

′

i(xi,t) is a Gaussian
and log p(zai,t,t|xi,t) is only a quadratic form. Therefore,
except the max-product belief propagation involved in the
M-step, every remaining step lives in the Kalman Filter
world. Two important parameters in the simulation are 1)
λc, the density parameter of Possion clutter model, which
we set λc = 5, and 2) Pd, target detection rate, which is



set to Pd = 0.9 in our experiments. Two snapshots of run-
ning our algorithm on a simulation sequence to track three
targets are shown in Figure 3.

Figure 3. Two snapshots of running the proposed algorithm to
track three targets in a simulation setting. Three tracked targets
are highlighted with the history trajectories, and circle dots are
clutters.

Algorithm (fps) M=3 M=5 M=7 M=9
Ours 33.6 26.8 15.3 6.4
JPDA 28.3 9.5 2.1 0.35

Table 1. Average running time of the proposed approach v.s.
JPDA.

We implemented the JPDA filter with the same Kalman
Filter setting. By increasing the number of ground truth tar-
gets to track, the average running time of both algorithms
are recorded for the comparison of computational complex-
ity. Table 1 shows the average frame rates of two algo-
rithms on tracking 3, 5, 7, 9 targets respectively. As can
be observed from the table, the reduced computational cost
gained by the proposed algorithm over JPDA becomes more
and more obvious with the number of targets increased,
which clearly demonstrates the scalability of the proposed
algorithm to handle large number of targets.

4.2. Part-based Person Tracking

Figure 4. Positive samples of part-based human dataset. Top: legs;
Middle: torso; Bottom: head-shoulder.

The proposed approach is also applied to tracking walk-
ing people in challenging real-world surveillance videos
(CAVIAR) [1], where ground truth data is available en-
abling the quantitative performance evaluation. A part-
based person representation, as discussed in Section 3.1,
is used, where the part detectors are trained based on our
adaptations of the well known SVM classifier with the His-
togram of Oriented Gradient features [4]. Some represen-
tative positive samples are shown in Figure 4. Directly ap-
plying the learned classifiers produces many false alarms.

Since the 3D site geometry is available in CAVIAR data,
human height constraint is leveraged to reduce the classi-
fiers’ false alarm rates.

The tracker we applied is a 3D tracker. In our implemen-
tation, motion state of each tracker contains person’s ground
plane location and height information. The 3D knowledge
also enables the system to use the depth-based data associ-
ation priori in Section 3.2. The likelihood computation of
each 3D tracker in Eq. 14 involves three steps, i.e., the pro-
jection of tracker’s 3D bounding box to 2D image, collect-
ing the corresponding parts’ color histograms from the pro-
jected 2D bounding box, and then matching against the tar-
get part-based histogram models acquired and maintained
during the tracker’s lifespan. Due to such high nonlinearity,
Kalman Filter becomes invalid, thus we adopt Particle Filter
to run the tracker, i.e., the variational probability Qi(xi,t)
is represented by a weighted particle set, and all the inte-
gral computations in previous sections become summations.
Figure 5 shows our system results on one of the representa-

(a) Detection results by running the part-based SVM-HoG classifiers. Blue:

head-shoulder detections; Green: torso detections; Red: leg detections.

(b) Tracking results of the proposed method with the depth-based association priori.
Figure 5. Detections and tracking in a crowded environment. Se-
quence 1: see the supplemental video for details.

tive CAVIAR videos. The top row illustrates sample images
of part-based detections after 3D geometric screening. The
corresponding tracking results are shown at the bottom row
of Figure 5. A unique ID is assigned to each tracker. It
is clear that most of the people in these images have been
successfully tracked, while only one of them, pointed out
at the bottom-right image of Figure 5, is miss-tracked pri-
marily due to a long period of occlusion, and then gets re-
initialized with a new tracker ID after occlusion is complete.
Figure 6 shows another interesting results. Thanks to the
part-based target representation, a newly established tracker
quickly picks up a person, pointed out in the figure, when
the person is only partially presenting in the scene.

To measure the system performance, quantitative studies
are conducted. We measures the track-level performance,
i.e., answering the question of how well we track targets.
To measure this performance, we need to find the assign-
ments between system generated tracks and ground truth
tracks [1]. We solve this complex track-level assignment



(a) Detection results by running the part-based SVM-HoG classifiers. Blue:

head-shoulder detections; Green: torso detections; Red: leg detections.

(b) Tracking results of the proposed method with the depth-based association priori.
Figure 6. Detections and tracking in a crowded environment. Se-
quence 2: see the supplemental video for details.

problems using greedy method. Once the assignments are
returned, two quantitative measures proposed in [11] are
computed, 1) track completeness factor (TCF), which mea-
sures on average what temporal ratio of a ground truth track
is covered by system generated tracks. An ideal TCF score
is 100%, i.e., successfully track a target during its complete
lifespan. 2) track fragmentation factor (TFF), which tells
on average how many system tracks are used to match one
ground truth track. This factor implicitly correlates with
the system’s performance on keeping target identity dur-
ing tracking. An ideal TFF score is 1. Table 2 reports the
system performance using TCF and TFF on five selected
CAVIAR videos. As shown by the TFF scores in the Ta-
ble, our system reliably maintains target identity, consid-
ering the extremely challenging scenarios in CAVIAR data
(See the Supplemental Video Submission for Details).

Seq ID #1 #2 #3 #4 #5
# of Frames 1604 1520 1649 1376 1589

TCF 77.7% 81.2% 71.7% 80.3% 75.8%
TFF 1.35 1.18 1.67 1.23 1.33

Table 2. The track-level performance measure of the proposed ap-
proach. See text for details

In terms of computational efficiency, as supported by
our theoretical studies in Section 2.4 and Section 3, the
complexity of the proposed tracking algorithm is approxi-
mately quadratic to the number of targets being tracked, i.e.,
O(M2), due to the use of part-based representation in Sec-
tion 3.1 and depth-based association priori in Section 3.2,
which still saves tremendous computational cost compared
to the joint state space approaches. More specifically, with-
out counting the computations of running the part-based de-
tections for all frames, the average running speed of the
tracking algorithm itself is around 8fps for a moderately
crowded scene on a Pentium 4-M 3GHz machine.

5. Conclusions
A novel distributed framework for multi-target tracking

is proposed, where both trackers’ motion and association
variables take a decentralized representation. Formulate the
multi-target tracking as a missing data problem, we ana-
lytically show that the posteriori distributions of trackers’
motions and the optimal solution of trackers’ data associa-
tions can both be iteratively computed in a variational EM
framework. The tremendous generalization flexibility of the
proposed method has also been shown.
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