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Abstract

We propose a novel meshless deformable model for in
vivo cardiac left ventricle (LV) 3D motion estimation. As a
relatively new technology, tagged MRI (tMRI) provides a di-
rect and noninvasive way to reveal local deformation of the
myocardium, which creates a large amount of heart motion
data which requiring quantitative analysis. In our study, we
sample the heart motion sparsely at intersections of three
sets of orthogonal tagging planes and then use a new mesh-
less deformable model to recover the dense 3D motion of the
myocardium temporally during the cardiac cycle. We com-
pute external forces at tag intersections based on tracked
local motion and redistribute the force to meshless parti-
cles throughout the myocardium. Internal constraint forces
at particles are derived from local strain energy using a
Moving Least Squares (MLS) method. The dense 3D mo-
tion field is then computed and updated using the Lagrange
equation. The new model avoids the singularity problem
of mesh-based models and is capable of tracking large de-
Jformation with high efficiency and accuracy. In particular,
the model performs well even when the control points (tag
intersections) are relatively sparse. We tested the perfor-
mance of the meshless model on a numerical phantom, as
well as in vivo heart data of healthy subjects and patients.
The experimental results show that the meshless deformable
model can fully recover the myocardium motion in 3D.

1. Introduction

Tagged Magnetic Resonance Imaging (tMRI) is a non-
invasive way to track the in vivo myocardial motion during
cardiac cycles. tMRI data is acquired by creating regional
magnetic perturbations in the object, which are displayed in
MR image as stripe-like darker tag structures embedded in
relatively brighter myocardium. Tags are material proper-
ties so that they deform as the heart contracts and relaxes
during the cardiac cycle. Myocardial motion in one direc-
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tion can be quantitatively measured by tracking the defor-
mation of tags that are initially in the perpendicular direc-
tion. For heart study, usually tags are created in three sets
of mutually orthogonal tag planes, two of which are per-
pendicular to the short axis (SA) image plane and one to
the long axis (LA), to form 2D tag grids in the myocardium
for both views of the heart. Using appropriate mathemat-
ical approaches, we can retrieve 2D displacement fields in
these image planes by tracking the deformation of tag grids.
Compared to the conventional MRI which can only cap-
ture the global cardiac function measurements such as the
ventricular volumes, tagged MRI can be utilized to recover
local heart wall motion within the myocardium and derive
potentially critical clinical information such as local torsion,
shearing, and strain.

Deformable models have been widely used for the car-
diac motion reconstruction from tagged MRI. Park et al.
[11, 12, 13] presented deformable models combining spa-
tially varying parameter functions to track the left ventricle
(LV) motion. Haber et al. [6] and Park et al.[14, 15] further
extended parameter functions to recover the right ventricle
(RV) motion and conduct 4D cardiac functional analysis us-
ing Finite Element Methods (FEM). Spline models based
on FEM have also been used to reconstruct the geometry
of LV and RV by Declerck et al. [5] and Young [19]. Yan
et al. used a Boundary Element Model (BEM) to extract
local shape and motion properties of the myocardium[18].
Mclnerney and Terzopoulos [8] developed a FEM surface
model which can track large deformation of LV. The FEM
reconstructs a complex and irregular shape or motion by
dividing the object mesh into a number of discrete regu-
lar shaped small elements, in which the local deformation
and strain are computed using interpolation of base func-
tions defined at mesh nodes. In general, FEM based de-
formable models have a good performance in recovering
small and smooth local deformation. However, volumetric
approaches based on FEM are vulnerable to element degen-
eration. When element shapes become irregular the object
has to be remeshed in order to keep the motion reconstruc-



tion going. The remesh procedure is tedious and does not
always guarantee returning a mesh with the optimal struc-
ture. Our volumetric model based on meshless deformable
methods properly addresses this problem.

Meshfree particle methods, which are also known as
meshless methods, were first introduced to deal with the
modeling of objects with cracks and surface discontinuities
(Belytschko et al. [1]) and have been later applied in graph-
ical motion simulation (Muller et al. [10]). The meshless
method simulates the deformation of an object by comput-
ing the motion at a set of discrete points inside the object
boundary. Muller et al. [10] proposed an approach derived
from continuum mechanics to simulate object deformation.
Their approach used the MLS to compute the spatial deriv-
atives of the displacement field and then used the result-
ing strain energy to compute the elastic forces on the point
cloud representing the object of interest. Another element-
free elastic model has been proposed to track the human
body motion from silhouette information in Choi [4]. When
the shape or the motion to be tracked is complicated, the
time cost of meshless methods is usually expensive for the
convergence, and they require a dense input of external
forces for accurate motion tracking. We address this prob-
lem with the global deformation of deformable models.

To efficiently address the problem of large deformation
tracking, we propose a new meshless deformable model
which integrates parameter functions with meshless meth-
ods, i.e., the meshless method is tightly embedded into the
framework of deformable models developed by Metaxas et
al. [9]) as the source of internal forces. We use the new
meshless model for 3D cardiac motion reconstruction from
tMRI data. In the 3D motion reconstruction procedure, first
we segment the heart in SA and LA images using a machine
learning based method (Zhen et al. [16]), then the meshless
deformable model is simultaneously registered onto SA and
LA images. Intersections of tag grids are extracted from
tMRI using Gabor filters to be the control points, which are
the sources of external forces for the meshless deformable
model. The internal forces are computed using the MLS
method to simulate the elasticity of the myocardium. We
compute the global deformation by calculating the parame-
ters in local neighborhoods called phyxels and integrating
over the whole volume of the myocardium. The local de-
formation can be recovered accurately from sparse tagged
MR images using the new meshless model without being
overly smoothed by interpolation. The global deformation
parameters will help the model to get out of local minima
during dense motion reconstruction when the tags are rela-
tively sparse for the task.

We demonstrated the strength of the meshless de-
formable model as an approach for 3D cardiac motion re-
construction from tMRI by testing its performance on a
numeric phantom and in vivo cardiac images. The exper-

imental results showed a good convergence between our
dense motion reconstruction and the underlying ground
truth. Moreover, the analysis revealed the difference be-
tween normal and pathological cardiac motion.

Our paper is organized as follows: section 2 introduces
the framework of the new meshless deformable model; sec-
tion 3 presents the deformation results on a numerical phan-
tom and then elaborates its medical application on tagged
MRI analysis; in section 4 we draw the conclusions.

2. Meshless Deformable Models

In Metheless Deformable Models, an object under study
is interpreted as particles with parameterized representa-
tion. The deformation of the object, viewed as the move-
ment of point clouds, is reconstructed globally and locally
using the Lagrange equation. In meshless methods, each
particle and its neighboring particles are grouped into a
phyxel with a kernel function. The global deformation of
an object is described by the parameter functions and can
be obtained by integrating the global motion contribution
at each phyxel over the volume during a small time interval.
The velocity is calculated using the Lagrange equation. The
elasticity of the object is simulated by adding the internal
force term, which is derived from local strain energy, into
the Lagrange equation. We use a iterative framework to re-
cursively estimate the global and local deformation in order
to reconstruct the dense 3D motion in the LV myocardium.

2.1. Model Initialization

In meshless deformable models, objects are represented
as the points sampled inside the object boundary.The co-
ordinates of these points in the world coordinate system
are transformed into a model-centered coordinate system,
and represented as parameter functions. The transformation
from the model-centered coordinate system ¢ to the world
coordinate system is z = c+ Rp, where c is the coordinates
where the origin of the model-centered coordinate system
is located in the world coordinate system, and R is the rota-
tion matrix describing the orientation of ¢. p can be further
decomposed into two parts p = s + d, to incorporate global
and local deformation.

The motion pattern shared by all particles can be de-
scribed as global deformation, such as rigid transformation,
scaling and twisting. We interpret s in a polar coordinate
system or a cylindrical coordinate system, which has a few
parameters indicating the global features of the model. Here
we use the polar coordinates as our example. The model-
centered coordinates of a particle e can be written in the
polar coordinate (o, 3, w)

aycos(a)cos(f3)

ascos(a)sin(f) (1

azsin(a)

e = way
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Figure 1. The flowchart of the motion reconstruction.
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Figure 2. The meshless deformable model

where o € [-7, 7] varies vertically, 3 € [—m,7) varies

horizontally, the transmural factor w € [0, 1] is defined in
a way that it equals to 1 on model’s epi-surface, and 0 at
model’s centroid. In the LV reconstruction, usually we de-
fine € [—7, %] runs from apex to the base of the LV.
3 € [—m,m) is horizontal, starting and ending at the infe-
rior junction of LV and RV. Consider when there is twisting,

the global deformation can be represented as s = T'(e):

e1cos(p) — easin(yp)

s=| e1sin(p)+ eacos(p) )
€3
where ¢ = wrsin(a). Global parameters ¢, =

(ao, a1, as, a3, 7), including scale ag, radii in three direc-
tions a1, as, as, and a twisting factor 7. Note that the global
coordinates s is a function of the point’s polar coordinates
(a, B, w), and the global parameters ¢s:

s = (s, (o, B, w)) 3)

Meshless method does not take each single particle as a
unit when computing the interaction and dynamics of the

particle clouds. A particle and its neighboring particles are
grouped into a sphere phyxel with a kernel function. After
the object deforms for a while, the shape of a phyxel may
become long and narrow. When we detect ill-shaped phyx-
els, we can either re-sample particles or regroup particles
into regular shaped phyxels based on different conditions.
The mass and other values of a phyxel is distributed around
each particle via the following polynomial kernel:

s (R =3 ifr<h
Wirh)={ 0 otherwise )
where r is the distance to the center particle and & is the
current support radius of the kernel. The kernel is normal-
ized by dividing by constant [ W (|z — x|, h)dx. During
the motion estimation, for each particle ¢ we compute the
average distance 7; to its 10 nearest neighbors and set the
h = 3r;. The value of h for each phyxel updates every five
iterations in motion estimation. The neighborhood of a par-
ticle is computed and stored in a hash table to speed up the
motion reconstruction [17].

2.2. Lagrangian Dynamics

Considering the deformation potential energy functional
E(x) and the (Rayleigh) dissipation functional F(z) =

% fQ 7y|#|?, the Lagrangian equation for the model is
oF
ox

recall the definition of x as the displacement of a structure,
& is the velocity, and f.,; is the external force. By defining
the damping matrix D and the internal force f;,; = —0,&
The equation can be rewritten as

Dz = femt + fint (6)



In this paper we define the damping matrix D be diagonal
and constant over time. The internal force is only consid-
ered in local deformation.

The velocity of a point in world coordinates can be cal-
culated as

& = ¢+Rp+Rp D
= ¢+BO+Rs+Rd
where B = 9(Rp)/00; and $ = [0s/0qs]gs = Jqs. J
is the Jacobian of the model-centered coordinates with re-
spect to the global deformation parameters at each phixel.
In the model expressed in equation (1) and (2), ds/0qs =
(0s/0a,0s/0T) = ((0s/0e)(0e/Da),Ds/0T), where a =
(ao, ai, az, ag).
Equation 7 can be written in the form

i=[ B RJR|§=Lg 8)

where J = (J1, ..., Jn), ¢ = (¢, 0, s,d), and n is the number
of points in the object. We can omit the local deformation
d in the stimation of global parameters so that the velocity
of the global variables g, = (c, 6, s) can be calculated by
combining formula 6 and formula 8.

qg = fqg = / feth 9)
Q

The external forces f.,; on global parameters are inte-
grated over the volume

fqg :/QfextL:(fcafévfs) (10)
where

fc - fext (11)

Q
fo= | fe:B (12)

Q
fs= [ fex:RJ (13)

Q

The integration over the volume can be interpreted as the
sum of the integrals over each phyxel in the volume. The
integration of f in the phyxel centered at point x is

/ fdw =" fW (|2 — o), h) (14)
phyxel .

The weights of particles in phyxels are pre-computed
during each initialization procedure and saved for later use.

Replacing the velocity in the Lagrangian equation (6)
with the velocity of parameters in equation (8), we can up-
date the parameters using an explicit iterative scheme

Qi1 = q + (fg)dt (15)

2.3. Meshless Methods

The internal forces are calculated by meshless methods
as the derivatives of the strain energy, which is computed
from strain and stress. To compute strain, the deformation
gradient is computed per phyxel with MLS (Lancaster and
Salkauskas [7]). MLS minimized the weighted difference
between the observed displacement of a particle and the
displacement approximated by its neighbors with first order
accuracy

e= E (1 — uj)w;j, where @ = u; + acg;-Vu
J

x; (16)

Components of the displacement gradient Vu at node ¢
can be computed as (for example, the x component):

Vg |z =AY Zj (Uw (.7) — Ug (i))mijwij7
T a7
where A = Zj xijxijwij

There are more points within the support radius of a ker-
nel than in one element of FEM, and points inside a kernel
are predefined not to be co-planar or co-linear, so that the
possibility that A in equation (17) is singular can be ne-
glected.

Given the initial position of a phyxel g = (z,y,2) in a
world coordinate and the displacement u(t) = (ug, uy, u,)
at time t, the current position of the phyxel in the deformed
model is z(t) = o + u(t). The Jacobian of this mapping is

14+ g, Ug,y Ug, -
_ T _
J=I+Vu = Uy, 2 1+ uy,y Uy, 2
Uz g Uszy 14w,

(18)
Given the Jacobian .J, the Lagrangian strain tensor € of
the phyxel is

e=JTJ—-1)=Vu+Vul +Vuvu?  (19)
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Figure 3. The deformation of a phyxel

The stress o depends on the strain € as

o="Ce (20)
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Figure 4. Deformation on phantom(from left to right): initial, scaling, rotation, twisting, combination of three deformation.

where C is a rank six matrix containing the Young’s modu-
lus and Poisson ratio for material property control.
The strain energy stored around phyxel ¢ can be com-

puted as

1
U, = %5(51' - 0) (21

where v; is the volume of the phyxel.

The force on particle j, which is caused by the deforma-
tion of phyxel ¢, can be computed as the derivative of the
strain energy

fj = _Vuj U, = —’UiO'iVuJEi (22)

The internal force on point ¢ is the negative sum of all f; of
its neighbors ;.

finti == _ 1 (23)
J

3. Experimental Results
3.1. Test on Phantom

We test the meshless deformable model with a numeric
phantom. The results are displayed in Figure 4. Particles
are sampled between two nested cylinders (the phantom).
We draw external forces from the corresponding locations
of control points in the template and the target. To test the
performance of the meshless model with sparse sampling,
we reconstruct the motion several times using different pro-
portions of the control points. Our results show that the
model can reconstruct dense motion field with scaling, ro-
tation, twisting, and the combination of all three. Using the
phantom with a radius of 15 millimeters (mm) and a height
of 30 mm, the model fits the ground truth with discrepancy
less than 0.1 mm within 5 seconds. The model converges to

the target even when we only use part of the control points.
Figure 5 displays the number of iterations versus the pro-
portion of control points we use for the reconstruction. The
blue line shows the average number of iterations taken to
achieve the same accuracy threshold in motion reconstruc-
tion. It takes about 40 iterations when all sample points are
used as control points and the model can still converge to the
same accuracy level using 10% of all control points within
160 iterations. This feature enables the model to track de-
formation when control points are relatively sparse, which
is common for tMRI data.
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Figure 5. The number of iterations versus the proportion of control
points.

3.2. Reconstruction of Cardiac Motion

Tagged MR images were obtained from a Siemens Trio
3T MR scanner with 2D grid tagging. The 3D tagged MR
image set we used consisted of a stack of 8§ SA image se-
quence equally spaced from the base to the apex of LV, and



3 LA images which are parallel to the long axis (LA) and
with 60 degree angles in between, as shown in Figure 6

Figure 6. The setting of MRImages: 8 SA parallel images are
placed with equally space from apex to base. 3 rotated LA im-
ages are taken with 60 degree angles in between.

g
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Figure 7. Registered LV on SA images

To register the model with the image data, we detected
a set of landmarks, 50 per SA slice and 400 in total, on the
myocardial contours based on local curvature. The land-
marks were then matched between image contours and the
corresponding slices of the model. The matched point pairs
provided long range external forces for the convergence of
the meshless deformable model and the image data. The
LA and SA were previously registered using rigid registra-
tion based on the spatial information in the dicom header
file. The boundary of the registered heart is displayed in
Figure 7.

The automatic tracking of tag intersections was critical
in preprocessing since it provided the external forces on the
control points in the meshless deformable model. As intro-
duced in Chen et al. [2, 3], a Gabor filters bank was im-
plemented to generate corresponding phase maps for tMRI
images. A Robust Point Matching (RPM) module has been
integrated into the approach to avoid false tracking results
caused by through-plane motion and irregular tag spacing.
Tracked tag intersections are shown in Figure 8.

We reconstructed the motion of a normal heart (Figure
9) and a hypertrophied heart (Figure 10). The heart motion
in a cardiac cycle is complicated. To simplify the display,

Figure 8. The intersections of grid tagging lines tracked by gabor
filters

3D motions are decomposed into three components corre-
sponding to LA, radial and circumferential directions (Fig-
ure 9). Figure 9 (b), the largest movement of the LV we
observed is the shortening along the LA direction. The cen-
troid of the LV moves toward the apex during the systole.
Figure 9 (c), the magnitude of radial contraction in the free
wall is larger than the radial contraction in the septum. The
twisting of the LV is displayed in Figure 9 (d). The upper
half of the LV from base to middle rotates clockwise and
the lower half of the LV from apex to middle rotates counter
clockwise.

(a) (b)

(© (d)

Figure 9. (a) The LV of a normal heart at the end of diastole is take
as the initial state; (b)(c)(d) are the LV of a normal heart at the end
of systole. (b) shows the displacements along long axis; (c) shows
the displacements in radial direction; (d) shows the displacements
in circumferential direction.

The hypertrophic heart has thicker wall. The motion
magnitude of the hypertrophic heart is smaller than that of a



normal heart. The contraction and relaxation of the hyper-
trophic heart takes longer time in a cardiac cycle as shown
in Figure 11 - 16. We denote the distance from the model
center to the apex as the LA radius in this paper. The length
unit is set to millimeters; the angle unit is set to degrees;
and the time axis is proportional to one cardiac cycle.

(©) (d)

Figure 10. (a) The LV of a hypertrophied heart at end diastole is
taken as the initial state; (b)(c)(d) are the LV of a hypertrophied
heart at end systole. (b) shows the displacements along long axis;
(c) shows the displacements in radial direction; (d) shows the dis-
placements in circumferential direction.
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Figure 11. Average radius in SA from apex to base in a normal
heart beating cycle

4. Conclusions and Discussion

We have presented a new meshless deformable model for
tracking of the complex 3D motion of myocardium. Our
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Figure 12. Long Axis motion in a normal heart beating cycle
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Figure 13. Twisting angles from apex to base in a normal cardiac
cycle
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Figure 14. Average radius in SA from apex to base in a hypertro-
phied cardiac cycle

model can track the translation, rotation, scaling, twisting,
and local deformation simultaneously. The model avoids
time consuming remeshing procedure by simulating the vol-
ume with particles and phyxels. The comparison between
our results and the ground truth of the numerical phantom
demonstrated the robust motion reconstruction performance
of the model, even with sparse external forces. The experi-
ments on in vivo tMRI data prove the strength of the model
against motion complexity, image artifacts, and noises. The
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Figure 15. Long Axis motion in a hypertrophied cardiac cycle
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Figure 16. Twisting angles from apex to base in a hypertrophied
cardiac cycle

new meshless model is time efficient compared to conven-
tional meshless methods. In the future we are going to sys-
tematically validate the 3D cardiac motion reconstruction
from tMRI.
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