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Abstract

The paper presents a fuzzy chamfer distance and its

probabilistic formulation for edge-based visual tracking.

First, connections of the chamfer distance and the Haus-

dorff distance with fuzzy objective functions for clustering

are shown using a reformulation theorem. A fuzzy cham-

fer distance (FCD) based on fuzzy objective functions and

a probabilistic formulation of the fuzzy chamfer distance

(PFCD) based on data association methods are then pre-

sented for tracking, which can all be regarded as reformu-

lated fuzzy objective functions and minimized with iterative

algorithms. Results on challenging sequences demonstrate

the performance of the proposed tracking method.

1. Introduction

This paper focuses on edge-based visual tracking. Previ-

ous work on edge-based tracking includes contour tracking

with Kalman filters [5], particle filters [17], EM algorithms

[22], and edge template based tracking with the chamfer

distance (CD) [24] or the Hausdorff distance (HD) [15].

The CD and the HD were initially used for feature-based

object recognition [14, 16, 23, 11], where the CD was em-

ployed for object detection in [11] and the HD was used

with efficient algorithms based on the distance transform

(DT) [7] to locate objects under translation [14], translation-

scaling [16] and affine transform [23]. A probabilistic for-

mulation of the HD was presented in [20] where a likeli-

hood was proposed for ML matching. A modified HD was

presented in [10]. Edge template based tracking with a par-

tial forward HD was proposed in [15]. Hand tracking with

a multi-channel CD for edge feature, in combination with

skin color feature, was presented in [24]. It can be noted

that usage of the CD/HD in previous work relies on the

DT so that multi-resolution search or particle filters can be

applied. However, for the DT only low dimensional fea-

ture vectors can be used as the complexity of the DT grows

rapidly with the dimensionality of feature vectors. In ad-

dition, the complexity of multi-resolution search or particle

filters also grows rapidly with the dimensionality of state

vectors.

This paper presents a fuzzy chamfer distance and its

probabilistic formulation for edge-based visual tracking.

First, connections of the CD/HD with fuzzy objective func-

tions for clustering [4] are shown using a reformulation the-

orem [13]. A fuzzy chamfer distance (FCD) based on fuzzy

objective functions is then introduced, which can be re-

garded as a reformulated fuzzy objective function and min-

imized with an iterative algorithm. A probabilistic formula-

tion of the fuzzy chamfer distance (PFCD) based on data

association methods is further presented, which can also

be regarded as a reformulated fuzzy objective function and

minimized with an iterative algorithm. It extends the work

in [18], which can be regarded as tracking with a reverse

PFCD, to tracking with a forward PFCD in the same spirit

of the previous work in [15, 20] but in a tractable approach

using iterative algorithms. In addition, the forward and re-

verse FCD/PFCD can be combined for more robust track-

ing using iterative algorithms. Note that for the FCD/PFCD,

the DT is not useful as distances from all model samples to

all measurements have to be computed. Higher dimensional

feature vectors can be employed, as distances of feature vec-

tors only need to be computed once and are then used in

iterative algorithms. Due to a monotonicity property of the

iterative algorithm, it can seek the mode of likelihoods or

posteriors despite high dimensional state space and sharply

peaked likelihoods, which may be difficult for tracking with

multi-resolution search and particle filters.

The organization of the paper is as follows. Fuzzy ob-

jective functions are introduced in Section 2; Tracking with

the FCD/PFCD is presented in Section 3; Results are given

in Section 4 and the paper is concluded in Section 5.

2. Fuzzy objective functions

2.1. Chamfer distance and Hausdorff distance

Chamfer distance Given a set of M points M = {mj}
M

j=1

and a set of N points Z = {zi}
N
i=1, the directed CD from
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M to Z is

DCD(M,Z) =
1

M

M
∑

j=1

d(mj ,Z) (1)

where d(mj ,Z) = min
i

‖mj − zi‖. If M is regarded as a

model and Z as measurements, DCD(M,Z) is the forward

CD from M to Z whereas the reverse CD from Z to M is

DCD(Z,M) after swapping M and Z.

The thresholded directed CD, which is more robust to

outliers, is given by

Dδ
CD(M,Z) =

1

M

M
∑

j=1

min (δ, d(mj ,Z)) (2)

where δ is a distance threshold. Likewise, if M is regarded

as a model and Z as measurements, Dδ
CD(M,Z) is

the thresholded forward CD from M to Z whereas the

thresholded reverse CD from Z to M is Dδ′

CD(Z,M) with

reverse threshold δ′.

Hausdorff distance The directed HD is [14]

DHD(M,Z) = max
j

d(mj ,Z) (3)

If M is regarded as a model and Z as measurements,

DHD(M,Z) is the forward HD from M to Z whereas the

reverse HD from Z to M is DHD(Z,M). The symmetric

HD is DHD(M,Z) = max (DHD(M,Z), DHD(Z,M)).

To be more robust to outliers, a partial HD is often used

instead and the directed partial HD is

D
q
HD(M,Z) = qth

j

d(mj ,Z) (4)

where q ∈ [0, 1] and qth

j

d(mj ,Z) denotes the qth quan-

tile value of {d(mj ,Z)}M

j=1 in ascending order and it be-

comes the maximum if q = 1 and the median if q =
1
2 . Likewise, if M is regarded as a model and Z as

measurements, D
q
HD(M,Z) is the forward partial HD

with quantile q and D
q′

HD(M,Z) is the reverse partial

HD with quantile q′. The partial HD is Dq,q′

HD(M,Z) =

max
(

D
q
HD(M,Z), Dq′

HD(Z,M)
)

.

2.2. Fuzzy objective functions for clustering

Fuzzy c-means (FCM) clustering FCM was presented in

[4] with an objective function

JFCM (Z,M;Q) =
N
∑

i=1

M
∑

j=1

qr
i,jd(zi,mj)

subject to
M
∑

j=1

qi,j = 1

(5)

where Z = {zi}
N
i=1 are N samples, M = {mj}

M

j=1 are M

prototypes, d(zi,mj) is the distance from sample zi to pro-

totype mj , Q =
{

{qi,j}
M

j=1

}N

i=1
, qi,j is the membership of

sample zi in the jth cluster and r ∈ [1,∞) is a weighting

exponent called the fuzzifier.

To minimize JFCM (Z,M;Q), it can be shown that

qi,j =
d(zi,mj)

1
1−r

M
∑

k=1

d(zi,mk)
1

1−r

mj =

N
∑

i=1

qr
i,jzi

N
∑

i=1
qr

i,j

(6)

Noise clustering (NC) NC was proposed in [9] to make

clustering more robust to noise. In NC, noise is considered

as a separate class and is represented by a prototype that has

a constant distance δ to all samples. The objective function

of NC is

JNC(Z,M;Q) =
N
∑

i=1

[

qr
i,cδ +

M
∑

j=1

qr
i,jd(zi,mj)

]

subject to qi,c +
M
∑

j=1

qi,j = 1

(7)

where qi,c is the membership of sample zi in the noise clus-

ter. To minimize JNC(Z,M;Q), it can be shown that

qi,j =
d(zi,mj)

1
1−r

M
∑

k=1

d(zi,mk)
1

1−r +δ
1

1−r

qi,c = δ
1

1−r

M
∑

k=1

d(zi,mk)
1

1−r +δ
1

1−r

(8)

mj =

N
∑

i=1

qr
i,jzi

N
∑

i=1

qr
i,j

(9)

and if δ → +∞, NC reduces to FCM.

2.3. Reformulated fuzzy objective functions

The reformulation theorem was introduced in [13] by

Hathaway and Bezdek to convert an original objective func-

tion J to an unconstrained objective function R. According

to the reformulation theorem,

• (Q̂, M̂) globally minimizes J ⇒ M̂ globally minimizes

R

• M̂ globally minimizes R ⇒ (Q̂, M̂) globally minimizes

J

• (Q̂, M̂) locally minimizes J ⇒ M̂ locally minimizes R

• M̂ locally minimizes R ⇒ (Q̂, M̂) locally minimizes J

With the reformulation theorem, it can been shown that

the reverse CD, reverse thresholded CD and partial reverse

HD are all special cases of reformulated fuzzy objective

functions of FCM, NC and fuzzy c-least qth quantile of



squares (FCLQS) clustering respectively.

Fuzzy c-means clustering and chamfer distance

Substitute qi,j in equation (6) into equation (5), the

reformulated objective function of FCM is

RFCM (Z,M) =
N
∑

i=1

[

M
∑

j=1

d(zi,mj)
1

1−r

]1−r

=
N
∑

i=1

Hr
FCM (zi,M)

(10)

where Hr
FCM (zi,M) =

[

M
∑

j=1

d(zi,mj)
1

1−r

]1−r

is proportional to the generalized mean (GM)

of distances from sample zi to prototypes M,

F−1

(

M
∑

j=1

hjF (d(zi,mj))

)

,
M
∑

j=1

hj = 1 where

F (x) = x
1

1−r is a polynomial and hj = 1
M

.

Note that if r → 1+, then H1
FCM (zi,M) =

min
j

d(zi,mj) is the minimum distance from zi to

M. So if M is regarded as a model whereas Z as mea-

surements, RFCM (Z,M) is equivalent to the reverse CD

DCD(Z,M).

Noise clustering and thresholded chamfer distance

Substitute equation (8) into equation (7), the reformulated

objective function of NC is

RNC(Z,M) =
N
∑

i=1

[

δ
1

1−r +
M
∑

j=1

d(zi,mj)
1

1−r

]1−r

=
N
∑

i=1

Hr
NC(zi,M)

(11)

where Hr
NC(zi,M) =

[

δ
1

1−r +
M
∑

j=1

d(zi,mj)
1

1−r

]1−r

is

also proportional to the GM of distances from sample zi to

all prototypes, M and the prototype of the noise cluster.

Note that if r → 1+, then H1
NC(zi,M) =

min

(

δ,min
j

d(zi,mj)

)

is the thresholded minimum

distance from zi to M. So if M is regarded as a model

whereas Z as measurements, RNC(Z,M) is equivalent to

the thresholded reverse CD Dδ
CD(Z,M).

Fuzzy c-least qth quantile of squares (FCLQS) clus-

tering and Hausdorff distance Fuzzy c-least median of

squares (FCLMS) clustering was proposed in [19] and the

reformulated objective function of FCLMS is

RFCLMS(Z,M) = median
i

(Hr
FCM (zi,M))

Median can be replaced by the qth quantile and it becomes

fuzzy c-least qth quantile of squares clustering,

R
q
FCLQS(Z,M) = qth

i

(Hr
FCM (zi,M))

where if q = 1
2 FCLQS reduces to FCLMS. If r →

1+, H1
FCM (zi,M) = min

j
d(zi,mj) and regard M as a

model whereas Z as measurements, then R
q
FCLQS(Z,M)

is equivalent to the partial reverse HD D
q
HD(M,Z). How-

ever, there are no corresponding original objective functions

of FCLMS and FCLQS that can be minimized analytically

as those of FCM and NC. Some heuristical iterative opti-

mization algorithms or the genetic algorithm [19, 12] are

used for minimization.

3. Fuzzy chamfer distance and its probabilistic

formulation for visual tracking

Before introducing the fuzzy chamfer distance and its

probabilistic formulation for visual tracking, state vector,

measurements and models for tracking are described. State

vector is denoted as x(t) = [x(t) y(t) a(t) b(t)]
T

where

[x(t) y(t)]
T

is the spatial position of an object center, a(t)
and b(t) are the width and height of the object respectively.

A second order auto-regressive model is employed as the

dynamical model, x(t) = A1x(t − 1) + A2x(t − 2) +
B0w(t), where w(t) is Gaussian noise N (w(t);0, I).

3.1. Measurements and Models

Edge measurements are first detected by the Canny edge

detector [8]. The gating procedure of Probabilistic Data

Association (PDA) is then applied. A validation region is

computed based on the predicted state vector using the dy-

namical model, so only measurements from within the val-

idation region of the predicted state vector are used [2],

which are denoted as Z = {zi}
N
i=1 where N is the num-

ber of measurements, zi =

[

ui

vi

]

, ui = [xi, yi]
T

and

vi = θi ∈ [0, 2π) are the spatial position and the orienta-

tion of the ith edge measurement respectively.

The edge-based object model M includes a contour

model Mcon = {mcon,j}
Mcon

j=1 =

{[

ucon,j

vcon,j

]}Mcon

j=1

,

which consists of Mcon contour sample points, and a edge

model Medge = {medge,j}
Medge

j=1 =

{[

uedge,j

vedge,j

]}Medge

j=1

,

which consists of Medge edge pixels inside the object con-

tour. An ellipse can be used for head tracking and more

complex contours can be represented by B-splines [6, 3].

Let M = {mj}
M

j=1 =
{

{mcon,j}
Mcon

j=1 , {medge,j}
Medge

j=1

}

,

M = Mcon + Medge and later on for brevity, it will not be



specified whether mj is from the contour model or the edge

model.

3.2. Tracking with the fuzzy chamfer distance

Given N measurements Z = {zi}
N
i=1 and M model

samples M = {mj}
M

j=1, the forward FCD from M to Z

is defined based on the weighted sum of generalized means

with a polynomial function F (x),

DF
FCD(M,Z)

=
M
∑

j=1

βj

[(

ωc(δ)
1

1−r +
N
∑

i=1

ωid(mj , zi)
1

1−r

)]1−r

(12)

where ωc +
N
∑

i=1

ωi = 1, d(mj , zi) = ‖mj − zi‖
2
Σ

=

(uj − ui)
T Σ−1

u (uj − ui) + (vj − vi)
T Σ−1

v (vj − vi) as-

suming covariance Σ =

[

Σu 0

0 Σv

]

, βj is the weight

of the jth model sample and
M
∑

j=1

βj = 1. Note that if let

r → 1+, βj = 1
M

and ωc = ωi = 1
N

, then DF
FCD(M,Z) =

1
M

M
∑

j=1

min
(

δ,min
i

d(mj , zi)
)

reduces to the thresholded

forward CD Dδ
CD(M,Z).

By swapping the model and measurements, the reverse

FCD is defined as

DR
FCD(Z,M)

=
N
∑

i=1

αi

[(

πc(δ
′)

1
1−r +

M
∑

j=1

πjd(zi,mj)
1

1−r

)]1−r

(13)

where if r → 1+, αi = 1
N

and πc = πj = 1
M

, then

DR
FCD(Z,M) = 1

N

N
∑

i=1

min

(

δ′,min
j

d(zi,mj)

)

reduces

to the thresholded reverse CD Dδ′

CD(Z,M).
To track with the FCD, model M is dependent on

state vector x(t) with the aim to minimize the FCD, so

M(x(t)) = {T (mj ,x(t))}M

j=1, where the transformed

jth model sample T (mj ,x(t)) =

[

Tu(uj ,x(t))
vj

]

,

Tu(uj ,x(t)) is the spatial transformation of the spatial po-

sition of the jth model sample whereas feature vector vj is

assumed to be unchanged.

The forward and reverse FCD can be combined by a

weighted sum and regarded as a reformulated objective

function for ML estimation,

RML
FCD(x(t)) =

wF

2σ2
F

DF
FCD(M(x(t)),Z) + wR

2σ2
R

DR
FCD(Z,M(x(t)))

(14)

where wF and wR are weights for the forward and reverse

FCD respectively, σF and σR are constants. The equiva-

lent original objective function based on the reformulation

theorem is

JML
FCD(F,Q,x(t)) =

wF

2σ2
F

M
∑

j=1

βj

[

ω1−r
c fr

j,cδ +
N
∑

i=1

ω1−r
i fr

j,id(T (mj ,x(t)), zi)

]

+ wR

2σ2
R

N
∑

i=1

αi

[

π1−r
c qr

i,cδ
′ +

M
∑

j=1

π1−r
j qr

i,jd(zi, T (mj ,x(t)))

]

subject to fj,c +
N
∑

i=1

fj,i = 1 and qi,c +
M
∑

j=1

qi,j = 1

(15)

Prior can also be incorporated and the reformulated ob-

jective function with the prior for MAP estimation is

RMAP
FCD (x(t)) = RML

FCD(x(t)) + 1
2 ‖x(t) − x̃(t)‖2

P̃(t)

(16)

and the equivalent original objective function is

JMAP
FCD (F,Q,x(t)) = JML

FCD(F,Q,x(t)) + 1
2 ‖x(t) − x̃(t)‖2

P̃(t)

(17)

where x̃(t) = A1x̂(t − 1) + A2x̂(t − 2), P̃(t) ≈ B0B
T
0

are the predicted state vector and covariance respectively.

The reformulated objective functions (14) and (16)

can be iteratively minimized via original objective func-

tions (15) and (17) as follows,

Update F and Q Given fixed x(k−1)(t), mini-

mize JML
FCD(F,Q,x(t)) or JMAP

FCD (F,Q,x(t)). Let

Tu(uj ,x(t)) = Wjx(t) is Jacobian of the transformation,

at iteration k, F(k) and Q(k) can be computed by

f
(k)
j,i ∝ ωid(zi, T (mj ,x

(k−1)))
1

1−r f
(k)
j,c ∝ ωcδ

1
1−r

f
(k)
j,c +

M
∑

j=1

f
(k)
j,i = 1

q
(k)
i,j ∝ πjd(zi, T (mj ,x

(k−1)))
1

1−r q
(k)
i,c ∝ πcδ

′ 1
1−r

q
(k)
i,c +

N
∑

i=1

q
(k)
i,j = 1

(18)

Update x(t) Given fixed F(k) and Q(k), minimize

JML
FCD(F,Q,x(t)) or JMAP

FCD (F,Q,x(t)). At iteration k,

x(k)(t) is given by

x
(k)
ML(t) =

[

M
∑

j=1

WT
j Σ̃

(k)−1

u,j Wj

]−1 [
M
∑

j=1

WT
j Σ̃

(k)−1

u,j ũ
(k)
j

]

x
(k)
MAP (t) =

[

P̃−1(t) +
M
∑

j=1

WT
j Σ̃

(k)−1

u,j Wj

]−1

×

[

P̃−1(t)x̃(t) +
M
∑

j=1

WT
j Σ̃

(k)−1

u,j ũ
(k)
j

]

(19)

where ũ
(k)
j =

wF βj

σ2
F

N
∑

i=1

(

f
(k)
j,i

)r
ω1−r

i
uj+

wRπ
1−r
j

σ2
R

N
∑

i=1

αi

(

q
(k)
i,j

)r
uj

wF βj

σ2
F

N
∑

i=1

(

f
(k)
j,i

)r
ω1−r

i
+

wRπ
1−r
j

σ2
R

N
∑

i=1

αi

(

q
(k)
i,j

)r



(a) Initial estimation (b) Final estimation
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Figure 1. Iterative update where edge measurements are marked

in yellow. (a) Initial estimation. (b) Final estimation. (c) FCD

decreases monotonically.

and Σ̃
(k)
u,j = Σu

wF βj

σ2
F

N
∑

i=1

(

f
(k)
j,i

)r
ω1−r

i
+

wRπ
1−r
j

σ2
R

N
∑

i=1

αi

(

q
(k)
i,j

)r
.

Note that distances of orientation features only need to be

pre-computed once, which then can be used in the iterations

to improve the speed. The iterative update is shown in Fig.

1, where r = 2, wF = 1, wR = 1 and the reformulated

objective function of the combined forward and reverse

FCD decreases monotonically.

3.3. Tracking with a probabilistic formulation of the
fuzzy chamfer distance

This section presents a probabilistic formulation of the

FCD. Based on similarities between the function F (x) of

the GM and the kernel function of SVM, a nature exten-

sion is to replace the polynomial function in the FCD with

a Gaussian. Actually the probabilistic formulation of the

forward FCD (forward PFCD) is based on the likelihood

of PDA with amplitude information (PDA-AI) [1] to track

M independent model samples, where the orientation fea-

ture can be regarded as amplitude information. The PDA-AI

likelihood for the jth model sample is [1]

pj(Z, N |x(t)) = µF (N)(1−PDPG)
V N

N
∏

i=1

p0(vi) + µF (N−1)PD

NV N−1

×
N
∑

i=1

N (ui;Tu(uj ,x(t)),Σu)Kv,j(vi;vj ,Σv)
∏

k:k 6=i

p0(vk)

∝ ωcpc +
N
∑

i=1

ωiKj(zi;T (mj ,x(t)),Σ)

(20)

where PD is the detection probability, PG is the gat-

ing probability, V is the gating volume, µF () is the

probability mass function of the number of false de-

tections [2], p0(v) is the probability that v is from

clutter and a uniform distribution p0(v) = p0 is used,

ωc = 1 − PDPG and ωi = 1−ωc

NPG
, pc = λp0

N
for Poisson

false detection model or pc = p0

V
for non-parametric

false detection model, Kj(zi;T (mj ,x(t)),Σ) =
N (ui;Tu(uj ,x(t)),Σu)Kv,j(vi;vj ,Σv) and Kv,j()
for the contour model or the edge model was given in

[18]. Note that it is indeed in the form of the GM where

F (x) = Kj(x) and hi = ωi.

So the joint likelihood for all M model samples is

LF (x(t)) =
M
∏

j=1

pj(Z, N |x(t))

=
M
∏

j=1

[

ωcpc +
N
∑

i=1

ωiKj(zi;T (mj ,x(t)),Σ)

] (21)

Note that it is similar to the probabilistic formulation of the

HD [20, 21] in which the likelihood is

L(x(t)) =

M
∏

j=1

[

ωcpc + (1 − ωc)N (z∗j ;T (mj ,x(t)),Σ)
]

(22)

where z∗j = min
i

d(T (mj ,x(t)), zi) is a nearest neigh-

bor measurement of the transformed model sample

T (mj ,x(t)). However all measurements are involved in

the likelihood (21) similar to the FCD (12).

It is also similar to the likelihood used for contour track-

ing with the CONDENSATION algorithm [17] where mea-

surements Z(x(t)) are restricted to be on normal lines of

contour samples and are a function of the state vector x(t)
which is a drawback from the perspective of Bayesian in-

ference. Now measurements are fixed in the likelihood (21)

and are not restricted to be on normal lines of contour sam-

ples due to the employment of the orientation feature and

model samples now include not only contour samples but

also edge pixels inside.

In practice the independent assumption is not valid if

model samples are close to each other and model samples

may be weighted to emphasis matching of model samples

with higher weights, the likelihood becomes

LF (x(t)) =
M
∏

j=1

pj(Z, N |x(t))βj

=
M
∏

j=1

[

ωcpc +
N
∑

i=1

ωiKj(zi;T (mj ,x(t)),Σ)

]βj (23)

where βj is the weight for the jth model sample.

The likelihood based on Probabilistic Multi-Hypothesis

Tracker (PMHT) in [18] can be regarded as a reverse PFCD,

LR(x(t)) =
N
∏

i=1



πcp
′
c +

M
∑

j=1

πjKj(zi;T (mj ,x(t)),Σ)





αi

(24)

A reformulated objective function combining the likelihood

of the forward PFCD (23) and the likelihood of the reverse

PFCD (24) is

RML
PFCD(x(t)) = − wF

2σ2
F

logLF (x(t)) − wR

2σ2
R

logLR(x(t))

(25)

and the equivalent original objective function for ML esti-



mation is

JML
PFCD(x(t)) =

−
M
∑

j=1

βj

[

N
∑

i=1

fj,i log
ωiKj(zi;T (mj ,x(t)),Σ)

fj,i
+ fj,c log ωcpc

fj,c

]

−
N
∑

i=1

αj

[

M
∑

j=1

qi,j log
πjKj(zi;T (mj ,x(t)),Σ)

qi,j
+ qi,c log

πcp′

c

qi,c

]

subject to fj,c +
N
∑

i=1

fj,i = 1 and qi,c +
M
∑

j=1

qi,j = 1

(26)

Rather than the ML estimation in [20], the prior is impor-

tant for tracking and can be incorporated into the posterior,

which is equivalent to a reformulated objective function

RMAP
PFCD(x(t)) = RML

PFCD(x(t)) + 1
2 ‖x(t) − x̃(t)‖2

P̃(t)

(27)

and the equivalent original objective function for MAP es-

timation is

JMAP
PFCD(F,x(t)) = JML

PFCD(x(t)) + 1
2 ‖x(t) − x̃(t)‖2

P̃(t)

(28)

The reformulated objective functions (25) and (27) can

be iteratively minimized via original objective functions

(26) and (28) as follows,

Update F and Q Given fixed x(k−1)(t), minimize

JML
PFCD(F,Q,x(t)) or JMAP

PFCD(F,Q,x(t)). At iteration k,

F(k) and Q(k) can be computed by

f
(k)
j,i ∝ ωiKj(zi;T (mj ,x

(k−1)(t)),Σ) f
(k)
j,c ∝ ωcpc

f
(k)
j,c +

M
∑

j=1

f
(k)
j,i = 1

q
(k)
i,j ∝ πjKj(zi;T (mj ,x

(k−1)(t)),Σ) q
(k)
i,c ∝ πcp

′
c

q
(k)
i,c +

N
∑

i=1

q
(k)
i,j = 1

(29)

Update x(t) Given fixed F(k) and Q(k), minimize

JML
PFCD(F,Q,x(t)) or JMAP

PFCD(F,Q,x(t)). At iteration k,

x(k)(t) is given by

x
(k)
ML(t) =

[

M
∑

j=1

WT
j Σ̃

(k)−1

u,j Wj

]−1 [
M
∑

j=1

WT
j Σ̃

(k)−1

u,j ũ
(k)
j

]

x
(k)
MAP (t) =

[

P̃−1(t) +
M
∑

j=1

WT
j Σ̃

(k)−1

u,j Wj

]−1

×

[

P̃−1(t)x̃(t) +
M
∑

j=1

WT
j Σ̃

(k)−1

u,j ũ
(k)
j

]

(30)

where ũ
(k)
j =

wF βj

2σ2
F

N
∑

i=1

f
(k)
j,i

uj+
wR

2σ2
R

N
∑

i=1

αiq
(k)
i,j

uj

wF βj

2σ2
F

N
∑

i=1

f
(k)
j,i

+
wR

2σ2
R

N
∑

i=1

αiq
(k)
i,j

and Σ̃
(k)
u,j =

Σu

wF βj

2σ2
F

N
∑

i=1
f
(k)
j,i

+
wR

2σ2
R

N
∑

i=1
αiq

(k)
i,j

.

The main stages of tracking with the FCD/PFCD are

summarized in algorithm 1.

Algorithm 1 Tracking with the Fuzzy Chamfer Distance

and its Probabilistic Formulation

1. Prediction

2. Iterative optimization

k = 1, x(0)(t) = x̃(t)
(i) Update F and Q by equation (18) or equation

(29)

(ii) Update x(t) by equation (19) or equation (30))

if
∥

∥x(k)(t) − x(k−1)(t)
∥

∥ < ε, then

x̂(t) = x(k)(t) and stop

else

k = k + 1 go to (i)

end if

4. Results and discussions

Fuzzy chamfer distance/Chamfer distance and Haus-

dorff distance The DT is essential for tracking with the CD

[24], the HD [15] or its probabilistic formulation [20, 21],

so that a multi-resolution search algorithm or particle filters

can be used efficiently based on the DT. However for the

DT, only low dimensional feature vectors can be employed

as the complexity of the DT grows rapidly with the dimen-

sionality of feature vectors. In addition, the complexity of

multi-resolution search or particle filters also grows rapidly

with the dimensionality of state vectors, due to the curse of

dimensionality.

On the contrary, the DT is not useful for the FCD/PFCD,

as distances from all model samples to all measurements

have to be computed. Higher dimensional feature vectors

can be employed, as distances of feature vectors only need

to be computed once and are then used in iterative algo-

rithms, which usually only take a few iterations and now it

can track two or three objects in near real time on 3GHz

Pentium IV. Due to a monotonicity property of the iterative

algorithm, it can seek the mode of likelihoods or posteri-

ors despite high dimensional state space and sharply peaked

likelihoods, which may be difficult for tracking with multi-

resolution search and particle filters.

As only forward distance is usually used in previous

work on tracking with the CD [24] or the HD [15, 20], for a

fair comparison, results of tracking with the forward PFCD

only (wF = 1 and wR = 0) using iterative algorithm 1 on

CAVIAR1“TwoEnterShop1cor” and “seq sb”2 are shown

in Fig. 2 (a) and Fig. 3 (a). A head in green ellipse and a

head in red ellipse make dramatic appearance changes in

CAVIAR “TwoEnterShop1cor” while a head is occluded

by unknown objects four times in “seq sb”. Examples of

1The EC Funded CAVIAR project/IST 2001 37540, see

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.
2The sequence is from http://vision.stanford.edu/˜birch/headtracker/.



(a) (b) (c)

Figure 2. Results of CAVIAR “TwoEnterShop1cor”. (a) Tracking with the forward PFCD. (b)(c) Examples of tracking failure with the

multi-channel chamfer distance and the probabilistic formulation of the Hausdorff distance using the SIR particle filter respectively.

(a) (b) (c)

Figure 3. Results of “seq sb”. (a) Tracking with the forward PFCD. (b)(c) Examples of tracking failure with the multi-channel chamfer

distance and the probabilistic formulation of the Hausdorff distance using the SIR particle filter respectively.

(a) (b)

Figure 4. Comparison of (a) Tracking with the forward PFCD. (b) Tracking with the reverse PFCD.

tracking failure under dramatic appearance changes and

heavy occlusions, for the multi-channel chamfer distance

[24] and the likelihood (22) of the probabilistic formulation

of the HD [20] using SIR particle filters, are given in Fig. 2

(b)(c) and Fig. 3 (b)(c) respectively.

Forward/Reverse One issue of the forward FCD/PFCD

(actually also for the forward CD [24], the partial forward

HD [15] and its probabilistic formulation [20, 21]) is that

there is no exclusion principle as that of Joint Probabilistic

Data Association (JPDA) [2] and PMHT [25], so one mea-

surement may be associated with multiple model samples.

On the contrary, the reverse FCD/PFCD has the exclusion

principle so that one measurement can only be associated

with one model sample, which make it more suitable

for tracking multiple objects jointly during occlusions as

shown in Fig. 4, where an object in red is tracked through

occlusions with the likelihood (24) of reverse PFCD rather

than with the likelihood (23) of forward PFCD. For this

reason, only the reverse FCD/PFCD is used when a cluster

contains more than one object so multiple objects are

jointly tracked with the reverse FCD/PFCD as that of [18].

The forward FCD/PFCD can be used alone or with the

reverse FCD/PFCD to track multiple single objects when

there is only one object in a cluster.

Three results of multi-object tracking on challenging se-

quences with both the forward and reverse PFCD are shown

in Fig. 5, Fig. 6 and Fig. 7, where multiple single objects

are tracked with the forward PFCD only while multiple ob-

jects in the same cluster, linked by white lines, are jointly

tracked with the reverse PFCD only. Fig. 5 shows results on

“office”, in which there are dramatic appearance changes,

scale changes and four heavy occlusions from frame 5280

to 5320, from frame 5340 to 5370, from frame 5380 to 5410

and from frame 5410 to 5424.

Fig. 6 shows results on CAVIAR “OneShopOneWait2-

cor” where head sizes are quite small and there are two

heavy occlusions from frame 1166 to 1176 and from frame

1276 to 1292.

Fig. 7 shows results of tracking with the B-spline model

on CAVIAR “OneStopMoveEnter1cor”, which is a very

challenging sequence with a very crowded and cluttered

scene, and there are four heavy occlusions, from frame 916

to 954, from frame 956 to 974, from frame 1152 to 1176

and from frame 1184 to 1218. These results show the effec-

tiveness of both forward and reverse PFCD.

5. Conclusions

This paper introduces the FCD/PFCD for edge-based vi-

sual tracking. First, connections of the CD/HD with fuzzy

objective functions for clustering are shown with the refor-

mulation theorem. The FCD based on fuzzy objective func-

tions and the PFCD based on data association methods are

then presented for tracking, which can all be regarded as re-

formulated fuzzy objective functions and minimized with it-

erative algorithms. Results on challenging sequences show

the performance of the proposed tracking method.



t=5210 t=5286 t=5380 t=5420 t=5430 t=5468

Figure 5. Results of “office” with the forward and reverse PFCD. c©Mitsubishi Electric ITE 2005.

t=1060 t=1168 t=1180 t=1280 t=1296 t=1380

Figure 6. Results of CAVIAR “ OneShopOneWait2cor” with the forward and reverse PFCD.

t=660 t=900 t=936 t=1000 t=1200 t=1226

Figure 7. Results of CAVIAR “OneStopMoveEnter1cor” with the forward and reverse PFCD.
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