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Abstract

The paper presents a fuzzy chamfer distance and its
probabilistic formulation for edge-based visual tracking.
First, connections of the chamfer distance and the Haus-
dorff distance with fuzzy objective functions for clustering
are shown using a reformulation theorem. A fuzzy cham-
fer distance (FCD) based on fuzzy objective functions and
a probabilistic formulation of the fuzzy chamfer distance
(PFCD) based on data association methods are then pre-
sented for tracking, which can all be regarded as reformu-
lated fuzzy objective functions and minimized with iterative
algorithms. Results on challenging sequences demonstrate
the performance of the proposed tracking method.

1. Introduction

This paper focuses on edge-based visual tracking. Previ-
ous work on edge-based tracking includes contour tracking
with Kalman filters [5], particle filters [17], EM algorithms
[22], and edge template based tracking with the chamfer
distance (CD) [24] or the Hausdorff distance (HD) [15].
The CD and the HD were initially used for feature-based
object recognition [14, 16, 23, 11], where the CD was em-
ployed for object detection in [11] and the HD was used
with efficient algorithms based on the distance transform
(DT) [7] to locate objects under translation [14], translation-
scaling [16] and affine transform [23]. A probabilistic for-
mulation of the HD was presented in [20] where a likeli-
hood was proposed for ML matching. A modified HD was
presented in [10]. Edge template based tracking with a par-
tial forward HD was proposed in [15]. Hand tracking with
a multi-channel CD for edge feature, in combination with
skin color feature, was presented in [24]. It can be noted
that usage of the CD/HD in previous work relies on the
DT so that multi-resolution search or particle filters can be
applied. However, for the DT only low dimensional fea-
ture vectors can be used as the complexity of the DT grows
rapidly with the dimensionality of feature vectors. In ad-

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

Farzin Mokhtarian'

Miroslaw Bober*  John Illingworth!
fCentre for Vision, Speech and Signal Processing
University of Surrey, UK

{f .mokhtarian, j.illingworth}@surrey.ac.uk

dition, the complexity of multi-resolution search or particle
filters also grows rapidly with the dimensionality of state
vectors.

This paper presents a fuzzy chamfer distance and its
probabilistic formulation for edge-based visual tracking.
First, connections of the CD/HD with fuzzy objective func-
tions for clustering [4] are shown using a reformulation the-
orem [13]. A fuzzy chamfer distance (FCD) based on fuzzy
objective functions is then introduced, which can be re-
garded as a reformulated fuzzy objective function and min-
imized with an iterative algorithm. A probabilistic formula-
tion of the fuzzy chamfer distance (PFCD) based on data
association methods is further presented, which can also
be regarded as a reformulated fuzzy objective function and
minimized with an iterative algorithm. It extends the work
in [18], which can be regarded as tracking with a reverse
PFCD, to tracking with a forward PFCD in the same spirit
of the previous work in [15, 20] but in a tractable approach
using iterative algorithms. In addition, the forward and re-
verse FCD/PFCD can be combined for more robust track-
ing using iterative algorithms. Note that for the FCD/PFCD,
the DT is not useful as distances from all model samples to
all measurements have to be computed. Higher dimensional
feature vectors can be employed, as distances of feature vec-
tors only need to be computed once and are then used in
iterative algorithms. Due to a monotonicity property of the
iterative algorithm, it can seek the mode of likelihoods or
posteriors despite high dimensional state space and sharply
peaked likelihoods, which may be difficult for tracking with
multi-resolution search and particle filters.

The organization of the paper is as follows. Fuzzy ob-
jective functions are introduced in Section 2; Tracking with
the FCD/PFCD is presented in Section 3; Results are given
in Section 4 and the paper is concluded in Section 5.

2. Fuzzy objective functions

2.1. Chamfer distance and Hausdorff distance

Chamfer distance Given a set of M points M = {m; }jj\il
and a set of N points Z = {z;}) ,, the directed CD from



M to Z is

M

1
a7 2 dmy.Z) (1)

j=1

Dep(M,Z) =

where d(m;, Z) = min |m; — z;||. If M is regarded as a
model and Z as measurements, Do p (M, Z) is the forward
CD from M to Z whereas the reverse CD from Z to M is
D¢ p(Z, M) after swapping M and Z.

The thresholded directed CD, which is more robust to
outliers, is given by

D (M, Z) me (6,d(mjy, Z)) )

where ¢ is a distance threshold. Likewise, if M is regarded
as a model and Z as measurements, D¢, (M,Z) is
the thresholded forward CD from M to Z whereas the

thresholded reverse CD from Z to M is Dg p(Z, M) with
reverse threshold §’.

Hausdorff distance The directed HD is [14]

Duyp(M,Z) = maxd(m;,Z) 3)

J
If M is regarded as a model and Z as measurements,
Dyp(M, Z) is the forward HD from M to Z whereas the
reverse HD from Z to M is Dy p(Z,M). The symmetric
HD is DHD(Ma Z) = max (DHD(M; Z), DHD(Z7 M))
To be more robust to outliers, a partial HD is often used
instead and the directed partial HD is

D} (M, Z) = ¢ d(m;, Z) 4)
J

where ¢ € [0,1] and ¢*" d(m;, Z) denotes the ¢'" quan-
J

tile value of {d(m;, Z)}jj\i1 in ascending order and it be-
comes the maximum if ¢ = 1 and the median if ¢ =
1

5 Likewise, if M is regarded as a model and Z as

measurements, D¥,,(M,Z) is the forward partial HD
with quantile ¢ and DgD(M,Z) is the reverse partial
HD with quantile ¢’. The partial HD is D%}% (M,Z) =
max (D p (M, Z), Dy p(Z, M)).

2.2. Fuzzy objective functions for clustering

Fuzzy c-means (FCM) clustering FCM was presented in
[4] with an objective function

N M
Jrem(Z,M;Q) = > > g; ;d(zi, m;)
i=1j=1 (5)
subject to Z q,;=1
=

where Z = {z; }l , are N samples, M = {m, }] , are M
prototypes, d(z;, m;) is the distance from sample z; to pro-

_ m N s th bership of
Q= Hais}j— o Qi is the membership o
sample z; in the jth cluster and r € [1,00) is a weighting

exponent called the fuzzifier.
To minimize Jroas (Z, M; Q), it can be shown that

totype m;,

N
= > 4i %
d(z;,m;)1-r =Y
Gij= 7w m; = = (6)
Z d(zumk)l i Z q;j

Noise clustering (NC) NC was proposed in [9] to make
clustering more robust to noise. In NC, noise is considered
as a separate class and is represented by a prototype that has
a constant distance ¢ to all samples. The objective function
of NC is

N M
Inc(Z,M; Q) = 21 q;.0+ ‘21 q; ;d(zi, m;)
1= J=

M
subject tog; .+ > ¢; ; =1
j=1

(7

where g; . is the membership of sample z; in the noise clus-
ter. To minimize Jy ¢ (Z, M; Q), it can be shown that

1 1
B d(z;,m; ) T=7 _ ST
9i,j = 1 T 1 Qic = 21 1 1
> d(zi,mg)I-r+61-7 > d(zi,mg) -7 +61-7
k=1 k=1
N )]
Z qz jzl
i=1
m; ==L ©)

4.,
l; R
and if 6 — 400, NC reduces to FCM.

2.3. Reformulated fuzzy objective functions

The reformulation theorem was introduced in [13] by
Hathaway and Bezdek to convert an original objective func-
tion J to an unconstrained objective function R. According
to the reformulation theorem,

. (Q, M) globally minimizes .J = M globally minimizes

o M globally minimizes R = (Q, M) globally minimizes

J
° (Q, M) locally minimizes J = M locally minimizes R

e M locally minimizes R = (Q, M) locally minimizes .J

With the reformulation theorem, it can been shown that
the reverse CD, reverse thresholded CD and partial reverse
HD are all special cases of reformulated fuzzy objective
functions of FCM, NC and fuzzy c-least gth quantile of



squares (FCLQS) clustering respectively.

Fuzzy c-means clustering and chamfer distance
Substitute g; ; in equation (6) into equation (5), the
reformulated objective function of FCM is

N [ M 1
RFCM(Z,M) = E d(Zi,l’Ilj)ﬁ
=1

i=1 |j=

N (10)
= ;H;‘CM(ZivM)

1—r

M
where  Hlpyy (25, M) = [Z d(zi,mj)llrl
j=1

is proportional to the generalized mean (GM)
of distances from sample z; to prototypes WM,

M M
F=1 (Y hF(d(z;,m;)) |, > hj = 1 where
j=1 j=1
F(z) = 277 is a polynomial and h; = i
Note that if » — 1%, then Hjpoy,(2z;, M) =
mind(z;,m;) is the minimum distance from z; to

J
M. So if M is regarded as a model whereas Z as mea-
surements, Rpcoar(Z, M) is equivalent to the reverse CD
Dep(Z,M).

Noise clustering and thresholded chamfer distance
Substitute equation (8) into equation (7), the reformulated
objective function of NC is

N ) M . 1—r
Rnc(Z,M) =" |67 + > d(z;, m;)T—"
i=1 j=1

N
= 2 Hyo(z:, M)

1)
1—r
1 M 1
0T + > d(zi,mj)lr] is

Jj=1

where Hy,(z;, M) =

also proportional to the GM of distances from sample z; to
all prototypes, M and the prototype of the noise cluster.

Note that if » — 17, then Hpo(z;, M) =
min ((5, mind(zi,mj)) is the thresholded minimum
j

distance from z; to M. So if M is regarded as a model
whereas Z as measurements, Ry (Z, M) is equivalent to
the thresholded reverse CD D%, (Z, M).

Fuzzy c-least gth quantile of squares (FCLQS) clus-
tering and Hausdorff distance Fuzzy c-least median of
squares (FCLMS) clustering was proposed in [19] and the
reformulated objective function of FCLMS is

RFCLMS(Z; M) = rnecl_lian (H;"CJVI (ZZ', M))

Median can be replaced by the gth quantile and it becomes
fuzzy c-least qth quantile of squares clustering,

RqFCLQS (Z,M) = qt_h (Hpcn (2i, M))

where if ¢ = 4 FCLQS reduces to FCLMS. If r —
1", Htop (2, M) = mind(z;, m;) and regard M as a
j

model whereas Z as measurements, then Rf..;qs(Z, M)
is equivalent to the partial reverse HD DY, ,(M, Z). How-
ever, there are no corresponding original objective functions
of FCLMS and FCLQS that can be minimized analytically
as those of FCM and NC. Some heuristical iterative opti-
mization algorithms or the genetic algorithm [19, 12] are
used for minimization.

3. Fuzzy chamfer distance and its probabilistic
formulation for visual tracking

Before introducing the fuzzy chamfer distance and its
probabilistic formulation for visual tracking, state vector,
measurements and models for tracking are described. State
vector is denoted as x(¢) = [z(t) y(t) a(t) b(t)]" where
[2(t) y(t)]" is the spatial position of an object center, a(t)
and b(¢) are the width and height of the object respectively.
A second order auto-regressive model is employed as the
dynamical model, x(¢t) = A1x(t — 1) + Aox(t — 2) +
Bow(t), where w(t) is Gaussian noise N'(w(t); 0, I).

3.1. Measurements and Models

Edge measurements are first detected by the Canny edge
detector [8]. The gating procedure of Probabilistic Data
Association (PDA) is then applied. A validation region is
computed based on the predicted state vector using the dy-
namical model, so only measurements from within the val-
idation region of the predicted state vector are used [2],
which are denoted as Z = {z;}_, where N is the num-

u;

T
ber of measurements, z; = ,u; = [z;,y;] and

i
v; = 0; € [0,27) are the spatial position and the orienta-
tion of the ith edge measurement respectively.

The edge-based object model M includes a contour

u MCOTL
_ Meon __ con,j
model M,,,, = «{mco,w»}j:1 = {[ }} ,

Veon,j j=1
which consists of M,,,, contour sample points, and a edge

M Weage; 1%
dge edge,
model M, g4 = {medgeyj}j:el“’e = {[ 9.7 }} ,

Vedge,j =1
which consists of M.q4. edge pixels inside the object con-
tour. An ellipse can be used for head tracking and more
complex contours can be represented by B-splines [6, 3].

M Mo Meage
LetM = {mj}j:1 = {{mcomj}j:c1n ) medye,j}j:eldge}’

M = M_on + Meqqe and later on for brevity, it will not be



specified whether m; is from the contour model or the edge
model.

3.2. Tracking with the fuzzy chamfer distance

Given N measurements Z = {z; } _, and M model
samples M = {m; };il, the forward FCD from M to Z
is defined based on the weighted sum of generalized means
with a polynomial function F'(x),

DII::CD(M Z)
N L 1—r
i=
(12)
> 2
where w, + ;wi = 1, dimj,z;) = |m; -zl =
(llj - ui)th_xl(uj —u;) + (Vj _ Vi)TE\Tl(Vj —vi) as-

u O
0o 3 |

M
of the jth model sample and ) 5, = 1. Note that if let
=1

suming covariance ¥ = B; is the weight

j_
r—17,8; = 4 andw. = w; = +, then Df. ., (M, Z) =

M
+ > min (5, min d(m;, zl)> reduces to the thresholded
j=1 :
forward CD D%, (M, Z).
By swapping the model and measurements, the reverse
FCD is defined as

D?CD(Z’ M)

N L M . 1—7r
-5 K%(é/)” > Wa‘d(Zumj)”)]

i=1
(13)
where if r — 1%, a; = + and 7, = m; = 47, then

N
+ > min (5’, min d(z;, rnj)> reduces
J

i=1
to the thresholded reverse CD D¢, ,(Z, M).

To track with the FCD, model M is dependent on
state vector x(t) with the aim to minimize the FCD, so
M(x(t)) {T(mj,x(t))}?il, where the transformed
jth model sample T(mj,x(t)) = Tu(uz,,.x(t)) )

J
Ty (u,;,x(t)) is the spatial transformation of the spatial po-
sition of the jth model sample whereas feature vector v; is
assumed to be unchanged.

The forward and reverse FCD can be combined by a
weighted sum and regarded as a reformulated objective
function for ML estimation,

Ridip (x(t)) =

s Dicp(M(x(t)), Z) +

DECD<Z5 M) =

508 Difop(Z, M(x(1)))
(14)

where wr and wg are weights for the forward and reverse

FCD respectively, o and or are constants. The equiva-

lent original objective function based on the reformulation
theorem is

Iy (B, Qx(0) =
2 55 5 [l g0 (T g x(0).20)|

= L

wr
+3

loa

2N

=1

o lwgrqzcé’ + 21 ﬂ;frqf,jd(zi, T(m;, x(t)))]
]:

N M
subject to fj .+ > f;; =land gic+ > ¢ ;=1
i=1 j=1

15)
Prior can also be incorporated and the reformulated ob-
jective function with the prior for MAP estimation is
SN
RYAP (x(1)) = RME, (x(0) + & 1x(t) — %(0)lI3,,
(16)
and the equivalent original objective function is

Tren (F,Qx(t) = Jpdp(F, Q. x(1)) + 3 [x(?)
(17)

where X (t) = A1X(t — 1) + Ao%(t — 2), P(t) ~ BoBY
are the predicted state vector and covariance respectively.

The reformulated objective functions (14) and (16)
can be iteratively minimized via original objective func-
tions (15) and (17) as follows,

Update F and Q Given fixed x*~1(¢), mini-
mize Jpdn(F,Q,x(t)) or Jigp (F,Qx(t)).  Let
Tu(uj x(t)) = W;x(t) is Jacobian of the transformation,
at iteration &, F(*) and Q(*) can be computed by

f(k) x o.u?ﬁ

f(k) o wl (zL,T(mJ,x(k_l)))ﬁ e

(k) + Z (k)
0\’ ) oy d(z T(m xE=DNTE B
2,7 ] 19 K qlc ¢
k k
g + Z ) =
(13)
Update x(t) Given fixed F®) and Q®, minimize

JME(F,Q,x(t)) or JMAP(F,Q,x(t)). At iteration k,
x(¥)(t) is given by

-1
M 1 M - —1
k (k)™ k ~(k
= |Ewrsew || wrs e

= =

—1

_ M ~ (-1
Pl + L WISE W,

h J
j=1

13—1( (1) + Z WTZ(k) ﬁ( )]

k
XS\/[)AP(t) =

— %(t)[IB )

X J
j=1
(19)
1—r
wpBy X (\" 1—r | WRT; N (K)\"
(k) "% 1’,2::1 (fjl) i wit UQR iglaz(qi’j) v
whereu PR =
wrBj (K)\" 1—r “RT; (RN
“%‘ igl (fj"i ) wi “?z 7:2::1 a,(qm)



Iteration
(a) Initial estimation (b) Final estimation (c)
Figure 1. Iterative update where edge measurements are marked
in yellow. (a) Initial estimation. (b) Final estimation. (c) FCD
decreases monotonically.

and f)(@ = Zu — .
Note that distances of orientation features only need to be
pre-computed once, which then can be used in the iterations
to improve the speed. The iterative update is shown in Fig.
1, where r = 2, wp = 1, wrg = 1 and the reformulated
objective function of the combined forward and reverse

FCD decreases monotonically.

3.3. Tracking with a probabilistic formulation of the
fuzzy chamfer distance

This section presents a probabilistic formulation of the
FCD. Based on similarities between the function F'(z) of
the GM and the kernel function of SVM, a nature exten-
sion is to replace the polynomial function in the FCD with
a Gaussian. Actually the probabilistic formulation of the
forward FCD (forward PFCD) is based on the likelihood
of PDA with amplitude information (PDA-AI) [1] to track
M independent model samples, where the orientation fea-
ture can be regarded as amplitude information. The PDA-AI
likelihood for the jth model sample is [1]

N
p;(Z, N|x(t)) = L2 PoPe) [T, () 4 eV Pp

NVN-1
i=1

X éN(ui;Tu(uj,X(t)),Eu)Kv,j(vi;vﬁEv) T po(vi)

kik7i
N
X wepe + 2 wiKKj(z; T(my, x(t)), %)
i=1

(20)
where Pp is the detection probability, Pg is the gat-
ing probability, V is the gating volume, pp() is the
probability mass function of the number of false de-
tections [2], po(v) is the probability that v is from
clutter and a uniform distribution p,(v) = po is used,
we = 1 — PpPg and w; = %V}“f(;, Pe = % for Poisson
false detection model or p. = £2 for non-parametric
false detection model, K,(z;;T(m;,x(t)),X) =
N(ui; T'u(llj7 X(t))7 Eu)Kv,j(Vi; Vi, Ev) and Kv,j()
for the contour model or the edge model was given in
[18]. Note that it is indeed in the form of the GM where
F(CE) = Kj(x) and hi = Wj.

So the joint likelihood for all M model samples is

M
Lr(x(t) = l;[lpj(Z,NIX(t))

M N (1))
— 11 [oupe + 32 w6y o Tlamy x(0). 2
j= i=

Note that it is similar to the probabilistic formulation of the
HD [20, 21] in which the likelihood is

M
Lx(t) = [ [wepe + (1 = we)N(z5; T(my, x(1)), )]
e
’ 22)
where z7 = mind(7(m;,x(t)),z;) is a nearest neigh-

bor measurement of the transformed model sample
T(m,,x(t)). However all measurements are involved in
the likelihood (21) similar to the FCD (12).

It is also similar to the likelihood used for contour track-
ing with the CONDENSATION algorithm [17] where mea-
surements Z(x(t)) are restricted to be on normal lines of
contour samples and are a function of the state vector x(t)
which is a drawback from the perspective of Bayesian in-
ference. Now measurements are fixed in the likelihood (21)
and are not restricted to be on normal lines of contour sam-
ples due to the employment of the orientation feature and
model samples now include not only contour samples but
also edge pixels inside.

In practice the independent assumption is not valid if
model samples are close to each other and model samples
may be weighted to emphasis matching of model samples
with higher weights, the likelihood becomes

£r(x(t) = T1 932 NIx(9)
v o 5 3
= 1;[1 WePe + ;win(zi;T(mj,x(t)),E)

where 3; is the weight for the jth model sample.
The likelihood based on Probabilistic Multi-Hypothesis
Tracker (PMHT) in [18] can be regarded as a reverse PFCD,

(27

N M
Lrx(t)) = [T |mepl + D miK;(2s; T(my, x(1), )
i=1 j=1
(24)
A reformulated objective function combining the likelihood
of the forward PFCD (23) and the likelihood of the reverse
PFCD (24) is

Rffop(x(t)) = =50 log Lp(x(t)) — 54 log Lr(x(t))
(25)
and the equivalent original objective function for ML esti-



mation is
J FCD( x(t)) =

) [Z i log BT AL | p, jog wppr]
j=1 i=1 :

N M
-3 q [E g;.; log ;K (zl,Tq(ln:],x(t)) ) 4 Gi.clog cpc
i= j=1

| S

N M
subject to fj .+ > f;; =land gic+ > ¢ ;=1
i=1 " j=1

(26)

Rather than the ML estimation in [20], the prior is impor-

tant for tracking and can be incorporated into the posterior,
which is equivalent to a reformulated objective function

RYED (x(0) = RYffop (x() + 5 (1) = X(0)llp
27
and the equivalent original objective function for MAP es-
timation is
JpEep(F,x(t) = Jpiiop (x(t)) + ( )”%(t)
(28)

The reformulated objective functions (25) and (27) can
be iteratively minimized via original objective functions
(26) and (28) as follows,

Update F and Q Given fixed x*~Y(¢), minimize
JME L (F, Q,x(t)) or JMAT(F, Q,x(t)). Atiteration k,
F®*) and Q™) can be computed by

f ocwl i (zi; T (m;, x (k= 1)( ), %)
f§,lz) + Zl =1

=
0\ oc i K (2 T(my, x50 (1), 2) ¢ oc mep),

N
qz-(_,'? + > qg,kj) =1
1=1

3 (1) — %(t

k
f;,c) X WepPe

(29)
Update x(t) Given fixed F®*) and Q®*), minimize
JME L(F, Q,x(t)) or JMAT(F, Q,x(t)). Atiteration k,

x(¥)(t) is given by

M ~ _1
x (1) = [szzi’f} w,

—1
M
T (k)™ < (k)
lzwj SN ]

j=1

M —1
k = _ (k)7
Xyap(t) = [P71(1) + > WIS wj]

Jj=1

B0x() + 3 WIS Al ﬂ

X
Jj=1 !
(30)
wp By k N K
=(k) _ 2§ . Z it 3 il u s (k)
where U u; R =1 and Zuj =

wFﬁ] Z f(k>+ wg g aig®
i °Ri=z1 7
Zu
wp By (k) w (k)
%J;f + Riz o

The main stages of tracking with the FCD/PFCD are
summarized in algorithm 1.

Algorithm 1 Tracking with the Fuzzy Chamfer Distance
and its Probabilistic Formulation

1. Prediction

2. Iterative optimization
E=1,xOt) = x(t)
(i) Update F and Q by equation (18) or equation

(29)
(ii) Update x(t) by equation (19) or equation (30))
if ||x(*®) x*=D(t)|| <&, then
%(t) = x(®) (t) and stop
else
k=k+1goto(i)
end if

4. Results and discussions

Fuzzy chamfer distance/Chamfer distance and Haus-
dorff distance The DT is essential for tracking with the CD
[24], the HD [15] or its probabilistic formulation [20, 21],
so that a multi-resolution search algorithm or particle filters
can be used efficiently based on the DT. However for the
DT, only low dimensional feature vectors can be employed
as the complexity of the DT grows rapidly with the dimen-
sionality of feature vectors. In addition, the complexity of
multi-resolution search or particle filters also grows rapidly
with the dimensionality of state vectors, due to the curse of
dimensionality.

On the contrary, the DT is not useful for the FCD/PFCD,
as distances from all model samples to all measurements
have to be computed. Higher dimensional feature vectors
can be employed, as distances of feature vectors only need
to be computed once and are then used in iterative algo-
rithms, which usually only take a few iterations and now it
can track two or three objects in near real time on 3GHz
Pentium IV. Due to a monotonicity property of the iterative
algorithm, it can seek the mode of likelihoods or posteri-
ors despite high dimensional state space and sharply peaked
likelihoods, which may be difficult for tracking with multi-
resolution search and particle filters.

As only forward distance is usually used in previous
work on tracking with the CD [24] or the HD [15, 20], for a
fair comparison, results of tracking with the forward PFCD
only (wrp = 1 and wr = 0) using iterative algorithm 1 on
CAVIAR' “TwoEnterShoplcor” and “seq_sb”? are shown
in Fig. 2 (a) and Fig. 3 (a). A head in green ellipse and a
head in red ellipse make dramatic appearance changes in
CAVIAR “TwoEnterShoplcor” while a head is occluded
by unknown objects four times in “seq_sb”. Examples of

IThe EC Funded CAVIAR project/IST 2001
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.
2The sequence is from http://vision.stanford.edu/ birch/headtracker/.

37540, see



Figure 2. Results of CAVIAR “TwoEnterShoplcor”.
multi-channel chamfer distance and the probabilistic formulation of the Hausdorff distance using the SIR particle filter respectively.

MM

(@)

(a) Tracking with the forward PFCD. (b)(c) Examples of tracking failure with the

(b) (©

Figure 3. Results of “seq_sb”. (a) Tracking with the forward PFCD. (b)(c) Examples of tracking failure with the multi-channel chamfer

(a)

tracking failure under dramatic appearance changes and
heavy occlusions, for the multi-channel chamfer distance
[24] and the likelihood (22) of the probabilistic formulation
of the HD [20] using SIR particle filters, are given in Fig. 2
(b)(c) and Fig. 3 (b)(c) respectively.

Forward/Reverse One issue of the forward FCD/PFCD
(actually also for the forward CD [24], the partial forward
HD [15] and its probabilistic formulation [20, 21]) is that
there is no exclusion principle as that of Joint Probabilistic
Data Association (JPDA) [2] and PMHT [25], so one mea-
surement may be associated with multiple model samples.
On the contrary, the reverse FCD/PFCD has the exclusion
principle so that one measurement can only be associated
with one model sample, which make it more suitable
for tracking multiple objects jointly during occlusions as
shown in Fig. 4, where an object in red is tracked through
occlusions with the likelihood (24) of reverse PFCD rather
than with the likelihood (23) of forward PFCD. For this
reason, only the reverse FCD/PFCD is used when a cluster
contains more than one object so multiple objects are
jointly tracked with the reverse FCD/PFCD as that of [18].
The forward FCD/PFCD can be used alone or with the
reverse FCD/PFCD to track multiple single objects when
there is only one object in a cluster.

Three results of multi-object tracking on challenging se-
quences with both the forward and reverse PFCD are shown
in Fig. 5, Fig. 6 and Fig. 7, where multiple single objects
are tracked with the forward PFCD only while multiple ob-

dlstance and the probablhstlc formulatlon of the Hausdorff distance usmg the SIR pamcle ﬁlter respectlvely

(b)
Figure 4. Comparison of (a) Tracking with the forward PFCD. (b) Tracking with the reverse PFCD.

jects in the same cluster, linked by white lines, are jointly
tracked with the reverse PFCD only. Fig. 5 shows results on
“office”, in which there are dramatic appearance changes,
scale changes and four heavy occlusions from frame 5280
to 5320, from frame 5340 to 5370, from frame 5380 to 5410
and from frame 5410 to 5424.

Fig. 6 shows results on CAVIAR “OneShopOneWait2-
cor” where head sizes are quite small and there are two
heavy occlusions from frame 1166 to 1176 and from frame
1276 to 1292.

Fig. 7 shows results of tracking with the B-spline model
on CAVIAR “OneStopMoveEntericor”, which is a very
challenging sequence with a very crowded and cluttered
scene, and there are four heavy occlusions, from frame 916
to 954, from frame 956 to 974, from frame 1152 to 1176
and from frame 1184 to 1218. These results show the effec-
tiveness of both forward and reverse PFCD.

5. Conclusions

This paper introduces the FCD/PFCD for edge-based vi-
sual tracking. First, connections of the CD/HD with fuzzy
objective functions for clustering are shown with the refor-
mulation theorem. The FCD based on fuzzy objective func-
tions and the PFCD based on data association methods are
then presented for tracking, which can all be regarded as re-
formulated fuzzy objective functions and minimized with it-
erative algorithms. Results on challenging sequences show
the performance of the proposed tracking method.
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Figure 7. Results of CAVIAR “OneStopMoveEnterIcor” with the forward and reverse PFCD.
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