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Abstract

We present a hybrid camera that combines the advan-
tages of a high resolution camera and a high speed cam-
era. Our hybrid camera consists of a pair of low-resolution
high-speed (LRHS) cameras and a single high-resolution
low-speed (HRLS) camera. The LRHS cameras are able to
capture fast-motion with little motion blur. They also form
a stereo pair and provide a low-resolution depth map. The
HRLS camera provides a high spatial resolution but also
introduces severe motion blur when capturing fast moving
objects. We develop efficient algorithms to simultaneously
motion-deblur the HRLS image and reconstruct a high res-
olution depth map. Our method estimates the motion flow
in the LRHS pair and then warps the flow field to the HRLS
camera to estimate the point spread function (PSF). We then
deblur the HRLS image and use the resulting image to en-
hance the low-resolution depth map using joint bilateral
filters. We demonstrate the hybrid camera in depth map
super-resolution and motion deblurring with spatially vary-
ing kernels. Experiments show that our framework is robust
and highly effective.

1. Introduction

With the recent advances in digital imaging, the use of

high resolution, high speed, or high dynamic range cam-

eras has become a common practice. However, thus far

no single image sensor can satisfy the diverse requirements

of all industrial camera applications today. For example,

high-speed cameras can capture fast motion with little mo-

tion blur, but require expensive sensing, bandwidth and stor-

age. The image resolution in these cameras is often much

lower than many commercial still cameras. This is mainly

because the image resolution needs to linearly scale with

the exposure time [2] to maintain the Signal-to-Noise Ratio

(SNR), i.e., higher speed maps to a lower resolution. In ad-

dition, the relatively low bandwidth on usual interfaces like

Figure 1. Motion deblurring and depth map super-resolution re-

sults using our hybrid camera. (a) shows two frames from the

LRHS cameras, (b) shows a cropped region of the HRLS im-

age. (c) showed the motion deblurred result. (d) shows the re-

constructed high resolution depth map.

USB 2.0 or FireWire IEEE 1394a also restricts the image

resolution especially when streaming videos at 100 to 200

frame/second.

In this paper, we present a hybrid sensor that combines

the advantages of a high resolution camera and a high speed

camera. Our imaging system consists of a pair of low-

resolution high-speed (LRHS) cameras and a single high-

resolution low-speed (HRLS) camera. The LRHS cameras

can capture fast moving objects with very little motion blur.

They also form a stereo pair and can generate a coarse depth

map. The HRLS camera, on the other hand, provides a high

spatial resolution yet is vulnerable to motion blur. We de-

velop efficient algorithms to simultaneously motion-deblur

the HRLS image and reconstruct a high resolution depth

map.

Our method first recovers a low resolution depth map
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from the LRHS pair and combines it with each LRHS’s

motion flow to estimate the point spread function (PSF) in

the HRLS image. Unlike most previous motion deblurring

methods that only support spatially-invariant kernels, our

method identifies the regions with different motion flow and

individually deblurs each region using the Richardson-Lucy

(R-L) algorithm. Once we deblur the HRLS image, we then

use it to upsample the low resolution depth map using joint

bilateral filters. An example of the results generated by our

hybrid camera is shown in Figure 1.

2. Related work
Our work is mostly related to depth super-resolution

methods and image deblurring algorithms.

Depth Map Super-resolution The problem of depth

map super-resolution is relatively new in computer vision.

Diebel and Thrun [7] modeled the disparity as a Markov

Random Field on the low resolution depth map and then

used a high resolution image to enhance the map using

conjugate gradient algorithm. G. Piella [18] proposed a

region-based approach that combines aspects of both ob-

ject and pixel-level fusion for image and depth map super-

resolution. Sawhney et al. [20] proposed a hybrid stereo

camera that uses image-based rendering methods to accu-

rately warp the high resolution image to the low resolution

one. Kopf et al. used a high resolution image as a prior to

upsample the low resolution exposure map and depth map

using joint bilateral filters [12].

Recently, Yang et al. [24] proposed to combine the low

resolution depth map obtained from a range sensor and a

high resolution image to create a super-resolution depth

map. They assume no parallax between the range sensor

and the camera and their scene objects are generally static.

The cameras in our system, in contrast, have a relatively

large baseline. We also aim to recover the high resolution

depth map of fast moving objects.

Image Deblurring The problem of image-deblurring

has been well studied in the image processing community.

Most previous methods have focused on recovering the blur

kernel, or the point spread function (PSF). The classical

Wiener filter [25] attempts to estimate the PSF from the

image statistics and uses regularization to compute the in-

verse kernel. Computer vision methods such as graph cuts

[19] and belief propagation [21] have also been used to re-

cover nearly optimal deblurred images. Tull and Katsagge-

los [23] proposed an iterative restoration approach to fur-

ther improve the quality of deblurred images. Jia et al. [10]

improved a short exposure noisy image by using color con-

straints observed in a long exposure photo without solving

for the PSF. Sun et al. [26] used a blurred/noisy image pair

to more accurately estimate the blur kernel. Most single-

image deblurring algorithms assume the PSF is spatially-

invariant. An exception is the work by Levin [13] in which
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Figure 2. The prototype of our proposed hybrid camera. It consists

of a rig of three cameras: a PointGrey Flea2 that serves as the

HRLS camera and two PointGrey Dragonfly Express that serve as

the LRHS cameras.

the image is segmented into several layers with different

kernels, each assumed to have a constant motion velocity.

Hardware solutions have also been proposed to reduce

the motion blur. These include the techniques based on

lens stabilization and sensor stabilization. Adaptive opti-

cal elements controlled by inertial sensors have been used

to compensate for camera motion [6, 16]. Liu and Gamal

[14] proposed to capture multiple images on a CMOS sen-

sor to construct a high dynamic range and motion deblurred

image.

Closest to our design, Ben-Ezra and Nayar [2] proposed

a hybrid imaging system that consists of a LRHS and a

HRLS camera. They assume that the motion blurs are

caused by the shaking of the camera and they used the

LRHS to estimate the PSF in the HRLS. It is possible to

apply their system to deblurring moving objects [3]. How-

ever, their method only supports spatially invariant kernels

(e.g., the scenes of constant depth or with a single moving

object) whereas our system is able to deblur images with

spatially varying kernels such as the scenes that consist of

multiple objects moving along different trajectories and/or

at different speeds (Figure 6). In addition, we use the de-

blurred HRLS image to enhance the low resolution depth

map.

3. System Setup and Algorithm Overview
Our prototype hybrid camera uses a pair of PointGrey

Dragonfly Express cameras as the LRHS cameras. The

Dragonfly Express captures images of resolution 320x240

at 120 fps. We also position a PointGrey Flea2 camera on

top of the two Dragonfly cameras. The Flea2 serves as the

HRLS camera and captures images of resolution 1024x768

at 7.5 fps. We use the software solution provided by Point-

Grey to synchronize the LRHS cameras and the HRLS cam-

era so that every HRLS frame synchronizes with 16 LRHS

frames. These three cameras are connected to two SIIG

FireWire 800 3-Port PCIe cards. We attach all three camera

modules to a wood plate and mount it on 2 tripods, as shown

in Figure 2. Each camera uses a micro-lens with 4.8mm fo-
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Figure 3. The processing pipeline using our hybrid camera for motion deblurring and depth map super-resolution. We first estimate the

motion flows M1 and M2 in two LRHS sequences. We then warp the flow to the HRLS camera as M0. To motion deblur the HRLS image,

we estimate the PSF from M0 and use the Richardso-Lucy algorithm to deblur the image. To construct a high resolution depth map D0, we

warp the low resolution depth map estimated from the LRHS cameras to the downsampled HRLS and use joint bilateral filters to upsample

the D′
0.

cal length.

An overview of our motion deblurring and depth map

super-resolution framework is shown in Figure 3. We as-

sume each frame I0 in the HRLS camera maps to two LRHS

sequence S1(t) and S2(t) (t = 1...K and K = 16 in our

case). We first estimate the motion flow fields M1 and M2

in S1 and S2 and warp them onto I0 as M0. Next, we es-

timate the PSF in I0 from M0 and apply the R-L algorithm

to deblur I0. Recall that I0 corresponds to K consecutive

LRHS frames, therefore, I0 can be deblurred using K dif-

ferent PSFs, each derived from the relative motions with

respect to a specific LRHS frame. We use Ĩ0(t) to repre-

sent the deblurred result of I0 for frame t. To generate the

super-resolution depth map, we first compute a low resolu-

tion depth map DL(t) between S1(t) and S2(t). We then

warp DL(t) to the downsampled HRLS camera as D
′
0(t)

and then upsample D
′
0(t) using a joint bilateral filter, whose

spatial kernel is defined on D
′
0(t) and range kernel defined

on Ĩ0(t).

4. Motion Deblurring
In this section, we show how to use our hybrid camera

for efficient motion deblurring.

4.1. Estimating Motion Flow

We first partition each frame in the LRHS camera into

multiple foreground regions Ωf
i and a background region

Ωb. To do so, we simply take a background image without

any foreground objects and then use fore/background sub-

traction followed by graph-cut [5] to extract the foreground

regions. We then group all foreground pixels into separate

connected regions. We assume that each region has homo-

geneous motion and the regions do not overlap. We also use

the estimated disparity map (Section 5.1) to establish corre-

spondences between the foreground regions in two LRHS

cameras. This allows us to individually motion-deblur each

foreground region using the method described in Section

4.3. Notice that since our system captures a sequence of

images, it is also possible to directly composite the back-

ground image by applying a median filter across the frames.

To estimate the motion flow in each region Ωf
i , we

assume an affine motion model between two consecutive

frames although we can concatenate several successive

frames to form more complex motions. We apply a multi-

resolution iterative algorithm [4] to minimize the energy

function:

arg min
p

∑
x

[I(w(x; p)) − I
′
(x)]2 (1)

w(x; p) =
(

p1x + p2y + p3

p4x + p5y + p6

)

where p corresponds to the motion flow parameter, w is the

warping function. In our case, we estimate the motion flow

in each LRHS camera, i.e., I = Sj(t) and I ′ = Sj(t + 1),
j = 1, 2. At each frame, we use the Gauss-Newton method

to find the optimal motion [1].

4.2. Motion Warping

Once we estimate the motion flow for every foreground

region Ωf
i in each LRHS camera, we warp the the motion

flow to the HRLS camera. Denote M1(t) and M2(t) as the

estimated motion flow sample in S1 and S2 at frame t. To

compute the motion flow sample M0(t) in the HRLS image

I0, we first establish correspondences between S1(t) and

S2(t). We use SIFT feature detection [15] to process S1(t)
and S2(t) and then perform a global matching. To remove
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Figure 4. Motion estimation. (a) For each correspondence pair p1

and p2 in the LRHS pair, we project the ray that passes through

p1 in S1(t) onto I0 as l1. We similarly project p2 as l2 in I0.

Finally, we compute the intersection point of l1 and l2 to find the

corresponding point p0. (b) To estimate the motion flow of p0 in

I0, we use the motion flow in the LRHS cameras to find q0 and

treat p0q0 as its motion flow.

outliers, our algorithm uses RANSAC with projective trans-

formations as its precondition.

Given a pair of corresponding feature points p1 and p2 in

S1(t) and S2(t), we connect p1 with S1 camera’s center-of-

project (COP) to form a ray r1. We then project r1 onto the

HRLS image I0 as a line l1. We apply a similar process to

p2 to obtain line l2. Finally we intersect l1 and l2 to obtain

the p0, as is shown in Figure 4(a).

To estimate the motion flow of p0 in the HRLS camera

I0, we assume p0’s corresponding point p1 in S1(t) moves

to q1 by motion flow M1(t) and p2 in S2(t) moves to q2 by

M2(t). Similar to the way we find p0, we then combine q1

and q2 to find their corresponding point q0 in I0. We use the

displacement between p0 and q0 as a motion flow sample.

To improve robustness, we average multiple motion flow

samples to compute M0(t).
Since our method combines the correspondences and the

Figure 5. Motion deblurring results in a dynamic scene. The yel-

low book was quickly passed over from one hand to the other. (a)

shows two original HRLS frames and (b) shows the deblurred re-

sults using our approach.

LRHS’s motion flow, our camera is able to model more

complex motions than the system proposed by Ben-Ezra

and Nayar. In [2], the motion flow in the HRLS camera is

assumed to be identical to the one estimated from the LRHS

camera. This is only valid for planar motions. Our method

separately estimates the motion flow for each foreground

region Ωf
i and warps it using the correspondences. There-

fore, we can compute the motion flow for each foreground

objects in I0, even if they lie on different depth or move

along different trajectories. Notice that the accuracy of our

motion warping relies heavily on camera calibrations. In

our implementations, we use the method in [27] to calibrate

all 3 cameras.

4.3. PSF estimation and Image deconvolution

Recall that every HRLS frame maps to K (K = 16)
LRHS frames, therefore, we can compute the PSF with re-

spect to each frame t. To do so, we concatenate all K dis-

crete motion samples M0(t), t = 1...K to form a single mo-

tion path. Ben-Ezra and Nayar proposed to use the motion

centroid to construct a Voronoi tessellation for smoothly in-

terpolating the motion path. Notice that our LRHS camera

captures at a very high frame rate, therefore, each motion

sample usually only covers 3 to 5 pixels in the HRLS im-

age. To accurately estimate the kernel, we first appropri-

ately align the motion path with the center of the kernel,



Figure 6. Motion deblurring results with spatially varying kernels.

(a) and (b) show the two LRHS sequences. (c) shows the HRLS

image with strong motion blur. (d) shows the motion deblurred re-

sults using our method. Notice the front and back train are moving

in opposite directions at different speeds. Our method is able to

motion deblur both objects.

then resample each M0(t) into N subpixels (N = 50 in our

experiment), we further count, for each pixel p covered by

M0(t) in the kernel, the number of subpixels Np falling into

p. Finally, we use this count Np to estimate the weight of

entry p in the kernel and normalize the kernel as the PSF.

Once we estimate the PSF, we can deblur the HRLS im-

age using existing image deconvolution algorithms [9, 25].

In our implementation, we choose to use the Richardson-

Lucy (R-L) iterative deconvolution algorithm. The R-L de-

convolution always produces non-negative gray level values

and works better than linear methods if the blur kernel is

known and the noise level in the image is low. Before ap-

plying the R-L algorithm, we first estimate the masks for

each of the foreground regions in the HRLS image that are

obtained by using the technique presented in section 4.1 and

4.2. These masks are used to composite deblurred results

into a common background image. In Figure 5 and 6, we

show the motion results on captured dynamic scenes.

5. Depth Map Super-resolution
Next, we show how to use the deblurred HRLS image

for generating super-resolution depth maps.

5.1. Initial Depth Estimation

We first use the two LRHS cameras and apply the graph-

cut algorithm [11] to estimate a low-resolution disparity

map with respect to the left LRHS camera. We then convert

it to the depth map DL. Next, we warp DL to the downsam-

pled HRLS camera as D
′
0. We adopt a similar notation as in

[27]: every pixel p1 in DL is mapped to its corresponding

pixel p0 in D
′
0 as:

p0 = (A0 R0) (A1 R1)−1 (p1 − A1 T1) + A0 T0 (2)

where p is homogeneous coordinate of the pixel as

(sx, sy, s)T , s represents the depth of the point, A1 and A0

are the camera intrinsic matrices of the LRHS camera S1

and the downsampled HRLS camera. R and T are the ex-

trinsic to the cameras. Here we downsample the HRLS to

have the same spatial resolution as LRHS camera to reduce

the missing data (holes) in the reprojected depth map.

A sample depth map DL is shown in Figure 7(b). Notice

the depth map is incomplete because of the large baseline

between the two LRHS cameras. This is less problematic

since we focus on capturing the depth map of the moving

foreground objects. However, the foreground can exhibit

some serious artifacts. For example, in Figure 8, the left

boundary of the red foreground object in the depth map par-

tially merges with the background and the silhouettes of the

toy train lack fine details. In Section 5.2, we show how to

use the joint bilateral upsampling to reduce these artifacts.

We choose to warp the depth map to the HRLS camera

instead of warping the HRLS image to the LRHS camera

mainly because the depth-based warping inevitably corrupts

the quality of the image by introducing holes near occlusion

boundaries. Since our goal is to construct a high resolu-

tion depth map, it is more preferable to maintain the quality

of the high resolution image than the low resolution depth

map.

5.2. Joint Bilateral Upsampling

To enhance the warped depth map, we use the recently

proposed joint bilateral filters. The basic bilateral filter is

an edge-preserving filter [22] that uses both a spatial filter

kernel and a range filter kernel evaluated on the data values

themselves. A joint bilateral filter chooses the range filter

from a second guidance image. It can effectively combine

flash/no-flash pairs [17, 8], upsample the low resolution ex-

posure maps, and enhance the low resolution range maps

[12, 24]. In this paper, we also use the joint bilateral filter

for depth map super-resolution.

Our joint bilateral filter combines the low resolution

depth map D
′
0 and the motion deblurred high resolution im-

age Ĩ0. It computes the value at each pixel p in the high



resolution depth map D0 as:

D0(p) =
1

Wp

∑
q∈Θ\Γ

Gs(‖ p − q ‖)Gr(| Ĩ0(p) − Ĩ0(q) |)D′
0(q)

(3)

Wp =
∑

q∈Θ\Γ
Gs(‖ p − q ‖)Gr(| Ĩ0(p) − Ĩ0(q) |)

where Gs is the spatial kernel centered over p and Gr is the

range kernel centered at the image value at p in Ĩ0 ; Θ is the

spatial support of the kernel Gs. Wp is the normalization

factor. Since the warped low resolution depth map D
′
0 con-

tains holes, we exclude the points Γ that correspond to the

holes.

To emphasize on the color difference in the range kernel,

we choose

| Ĩ0(p)− Ĩ0(q) |= max(| rp − rq |, | gp − gq |, | bp − bq |)
(4)

where r, g, b are the color channel of the pixel in Ĩ0. In

Figure 7(c), we show the reprojected low resolution depth

map of resolution 320x240 and the enhanced high resolu-

tion depth map in Figure 7(d). The joint bilateral filter sig-

nificantly improves the quality of the depth map by filling

in the missing holes and partially correcting the inaccurate

boundaries (e.g., the background between the engine and

carriage of the toy train in Figure 7). However, the resulting

boundaries still appear blurry due to the spatial Gaussian.

Although we can re-apply the joint bilateral filters on the

upsampled depth image to further improve the boundary,

we implement a simple scheme based on the observation

that with a large enough spatial support Θ, there should be

enough pixels that have the similar color and depth to pixel

p. To do so, we apply a joint median filter: we first pick N
pixels from Θ that have the closest color to p and then apply

the median filter on the depth values of these N pixels. In

our experiment, we choose N to be 20% of all pixels in Θ.

6. Results and Discussion
Figure 2 shows the prototype of our hybrid camera. The

LRHS camera captures images of resolution 320x240 at

120 fps and HRLS camera captures images of resolution

1024x768 at 7.5 fps. The two LRHS are positioned about

7.5cm away from each other and the HRLS camera is placed

above the LRHS cameras.

In Figure 5 and 6, we show the motion deblurring re-

sults using our hybrid camera. In Figure 5(a), we apply mo-

tion deblurring algorithm to a dynamic scene: the yellow

book was quickly passed over from the right hand to the left

hand. Notice, the texts on the book are unrecognizable in

the original HRLS frames, but are clearly readable in the

deblurred results shown in Figure 5(b). The hand holding

the textbook is also effectively deblurred. In Figure 6, we

use the hybrid camera to deblur spatially varying kernels.

The foreground and the background toy trains are moving

in opposite directions at different speeds. Since our method

separately estimates the PSF for each individual train using

the method discussed in Section 4, we are able to effectively

deblur both objects.

In Figure 7, we validate our joint bilateral filter method

for depth map super resolution in a static scene. We position

a toy train on top of the rails. Notice the toy train has com-

plex contours. If we simply upsample the low resolution

depth map obtained from the LRHS cameras, the details of

the contours disappear. Using a joint bilateral upsampling,

we are able to recover these fine details and partially cor-

rect the erroneous boundaries in the depth map (e.g., the V

shaped contour between the engine and the carriage).

Finally, we show using the hybrid camera to simultane-

ously motion deblur the HRLS image and reconstruct the

high resolution depth map. Figure 1 shows the results using

our system in a toy train scene. We mount a star shaped

object on top of the toy train to emphasize the accuracy of

the recovered depth maps. The LRHS and HRLS inputs are

shown in Figure 1(a) and Figure 8(a), and the deblurred re-

sult is shown in Figure 1(c) and Figure 8(b). Our method

effectively reduces the motion blur by recovering the text

on the toy train and the contour of the star-shaped object,

although we also observe some ringing artifacts caused by

the R-L devonvolution.

In Figure 8, we show the depth super resolution results

using joint bilateral filters. We choose a large enough ker-

nel size σs for the spatial Gaussian to fill in the missing

data. In this example, we set σs to be 35. We normalize the

depth map to have intensity between [0 1] and we set σr of

the range Gaussian to be 0.02. Figure 8(c) shows the depth

map from the LRHS pair and Figure 8(d) shows the warped

result. The reprojected depth map is very noisy and contains

many holes. Using the joint bilateral filter, the depth map is

significantly enhanced (Figure 8(e)). The seams at the oc-

clusion boundaries are further enhanced (Figure 8(f)) using

the joint median filter as described in Section 5.2. Close-

ups are shown at the bottom of Figure 8. The typical up-

sampling rate in our experiments is 9. Due to the camera

calibration requirement, we did not further downsample the

LRHS camera to demonstrate a higher upsampling rate, al-

though it can easily be achieved if we use a different HRLS

camera with a higher resolution.

7. Conclusions and Future Work
We have presented a hybrid camera that combines the ad-

vantages of a high resolution camera and a high speed cam-

era. Our hybrid camera consists of a pair of low-resolution

high-speed (LRHS) cameras and a single high-resolution

low-speed (HRLS) camera. The LRHS cameras are able to

capture fast motion with little motion blur. They also form



Figure 7. Depth map super-resolution results for a static scene. (a) shows the input images from the LRHS and HRLS cameras. (b) shows

the depth map from the LRHS camera pair. The result is upsampled using bilinear interpolation for comparison. (c) shows the reprojected

low resolution depth map onto the HRLS camera. The warped map is very noisy and contains holes. (d) shows the upsampled results using

the joint bilateral filters.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 8. Motion deblurring and depth map super-resolution using the hybrid camera. (a) shows the motion blurred image from the HRLS

camera. (b) shows the motion deblurred result using the method described in Section 4. (c) shows the low resolution depth map. We

upsample the map using bilinear interpolation to compare it with the bilateral filtered results. (d) is the reprojected depth map. (e) shows

the upsampling result using joint bilateral filters. (f) shows further improved results using the joint median filter described in Section 5.2.

(g) shows closeup images of the depth maps.

a stereo pair and provide a low-resolution depth map. The

HRLS camera provides a high spatial resolution but also

introduces severe motion blur when capturing fast moving

objects.

We have developed efficient algorithms to simultane-

ously motion-deblur the HRLS image and reconstruct a

high resolution depth map. Our method estimates the mo-

tion flow in the LRHS pair and then warps the flow field to

the HRLS camera to estimate the PSF. We then deblurred

the HRLS image and used the resulting image to enhance



the low-resolution depth map using joint bilateral filters. We

have demonstrated the hybrid camera’s usefulness in depth

map super-resolution and motion deblurring with spatially

varying kernels.

Our future work includes experimenting the hybrid cam-

era for outdoor scenes, using our system to generate videos

with extremely high spatial and temporal resolutions, and

varying the exposure time in the two LRHS cameras for

producing high resolution and high dynamic range videos.
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