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Abstract

This paper presents a multi-frame data association al-

gorithm for tracking multiple targets in video sequences.

Multi-frame data association involves finding the most

probable correspondences between target tracks and mea-

surements (collected over multiple time instances) as well

as handling the common tracking problems such as, track

initiations and terminations, occlusions, and noisy detec-

tions. The problem is known to be NP-Hard for more than

two frames. A rank constrained continuous formulation of

the problem is presented that can be efficiently solved using

nonlinear optimization methods. It is shown that the global

and local extrema of the continuous problem respectively

coincide with the maximum and the maximal solutions of

the discrete counterpart. A scanning window based track-

ing algorithm is developed using the formulation that per-

forms well under noisy conditions with frequent occlusions

and multiple track initiations and terminations. The above

claims are supported by experiments and quantitative eval-

uations using both synthetic and real data under different

operating conditions.

1. Introduction

Tracking large number of targets in a video is a challeng-

ing task due to high ambiguity in data association caused

by frequent occlusions among targets, arrival and departure

of targets from the scene, and the presence of detection er-

rors and noise. The task is further complicated when there

are not many distinguishing features among the targets (ei-

ther because of sensor limitations or because the targets are

themselves alike) or if the tracking is performed solely on

the spatial locations of the targets. These scenarios com-

monly occur in applications like surveillance, optical flow,

feature tracking, and structure from motion. The task of a

tracker is to uniquely identify each target in the scene and

to specify its position in every frame from its arrival to de-

parture from the scene. That is, at each time step, a tracker

must be able to estimate target states and perform data as-

sociation between measurements and tracks.

Formally, let Z(i) = {z1(i), z2(i), . . . , zki
(i)} be the

set of target measurements at time instant ti, 1 ≤ i ≤
T . A track is defined as a non-empty set of points τ =
{za(i1), zb(i2), . . . , zm(ik)} such that for all i, |τ ∩Z(i)| ≤
1. Data association is the problem of finding a partition,

ω = τ1∪τ2∪. . . τm of
⋃T

i=1 Z(i), such that each track is ei-

ther a set of all the measurements of a single target (element

integrity principle) or it is a set of clutter measurements.

In this paper, we present a multi-frame scanning window

based algorithm to solve the above data association prob-

lem. The proposed algorithm observes subsequent mea-

surements from more than one scan (frame) before assign-

ing a label to earlier measurements. The importance of de-

ferred inference provided by the multi-frame algorithm to

resolve ambiguities is well documented in both psychology

and computer vision literature [10, 8, 23]. The idea of de-

layed inference was introduced in computer vision as early

as 1976 by David Marr [10] who introduced the principle

of least commitment. Multi-frame algorithms for data asso-

ciation are not new either and date back to Reid’s multiple

hypothesis tracker[19]. The comparison of our work and

these methods is provided in the next section. The major

contribution of this paper is the presentation of a continu-

ous formulation of the multi-frame data association prob-

lem (DAP). The formulation has some interesting proper-

ties, for example, the global solutions of both the continu-

ous and discrete problems coincide. In addition, the local

extrema of the continuous problem and the maximal solu-

tions of the discrete counterpart are also tightly related. This

is practically advantageous because it allows to exploit the

full range of well established continuous and efficient op-

timization techniques to solve a difficult discrete problem.

We show that the resulting tracking algorithm performs well

under noisy conditions with frequent occlusions and multi-

ple track initiations and terminations.

The organization of the paper is as follows. In Section 2,
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we present a survey of the related work. In Section 3, we

provide a formulation of the problem and detail the pro-

posed solution in Section 4. In Section 5, we present quan-

titative and qualitative results to validate our claims. The

paper is concluded in Section 6.

2. Related Work

Earlier work in motion correspondence focused on the 2-

frame problem, where the track labels for the measurements

of each scan are fixed right after the scan. Ullman [24] used

a linear programming approach to the problem. Salari and

Sethi [20] used an iterative greedy exchange algorithm to

optimize an objective function based on nearest neighbor

and smoothness constraints. Rangarajan and Shah [18] pro-

posed a non-iterative greedy algorithm that used 3 frames to

find correspondences using proximal uniformity constraint.

Veenman et al. [25] proposed a Hungarian search algorithm

and showed that their GOA algorithm generalizes many of

the previous 2-frame algorithms.

One of the best known examples of true look-ahead algo-

rithms is the multiple hypothesis tracker (MHT) [19]. MHT

maintains a set of hypotheses for each track assignment un-

til a clear winner (the hypothesis with the highest poste-

rior) can be determined. However, the algorithm suffers

from combinatorial explosion as the number of hypotheses

to be maintained grows exponential over time. Efficient im-

plementations and approximations of MHT have been sug-

gested (see [15] for a survey). A large class of these algo-

rithms attempts to solve the multidimensional (S-D) assign-

ment problem in a sliding window of fixed temporal scope

[7, 11, 13, 17, 22]. This problem is known to be NP-Hard

(i.e., the existence of an efficient algorithm is highly un-

likely) when S > 2, i.e., if the window contains more than

two frames. Further approximations, such as, Lagrangian

and linear relaxations are employed for practical applica-

tions. Poore and Yan[17] used Lagrangian relaxation to it-

eratively reduce the S-D assignment problem to the 2D as-

signment problem. Murphey et al. [13] used a greedy ran-

domized adaptive search procedure (GRASP) to solve this

problem. Morefield [11] modelled the problem as an integer

programming problem and solved its linear programming

(LP) relaxation. Linear relaxations of integer programming

problems for DAP were more recently used in [9] and [22],

where a greedy rounding procedure was used to obtain an

integer solution from LP solution. One disadvantage of us-

ing relaxations of a general integer program is that the solu-

tion does not utilize the combinatorial structure and the as-

sociated polyhedra of the problem in hand, which has been

shown to be a valuable tool for both the theoretical insight

into the problem structure as well as its approximability.

Two alternative approaches to the problem were recently

proposed in [14] and [21]. In [14], a Markov chain Monte

Carlo method was used for random sampling of the solution

space. In [21], the problem was modelled as that of finding

a maximum weighted path cover of a directed graph and a

polynomial time optimal algorithm was presented. How-

ever, the limiting factor of the model was that the weights

of each hypothesized link was assumed to be independent

of past history. This is generally not true especially when

the only useful cue for correspondence is the motion of the

target. A greedy heuristic was used to relax this condition.

The work presented in this paper is more closely related

to the multi-dimensional assignment based approaches, e.g.,

[11, 22] for the data association problem (DAP). However,

instead of relaxing a general integer programming problem,

we attempt to solve an equivalent combinatorial problem

of finding the maximum weighted stable set in a graph.

Modelling the problem as a well known graph theoretical

problem allows us to properly identify its solution space.

A rank-constrained continuous relaxation of a semi-definite

program of the maximum stable set problem is then applied

to efficiently solve the problem. We show empirically that

the quality of solution obtained using the proposed relax-

ation is better than that of the LP relaxation.

3. Problem Formulation

Recall from Section 1 that Z(i) = {z1(i), z2(i), . . . , zki
(i)}

is the set of target measurements at time instant ti, 1 ≤
i ≤ T . For an S-D assignment problem (sliding window

of size S), we construct a hyper-graph G = (V,E), such

that {V1, V2, . . . , VS} partitions V . Each set Vi ⊂ V con-

sists of ki + 1 vertices v0(i), v1(i), . . . , vki
(i) such that

∀a > 0, the vertex va(i) ∈ Vi corresponds to a true

measurement za(i) ∈ Z(i). The vertex v0(i), ∀i, rep-

resents a dummy measurement to deal with occlusions,

missed detections, false alarms, track initiations, and track

terminations. Furthermore, E ⊆ V1 × V2 × . . . VS −
{(v0(1), v0(2), . . . , v0(S))}, where each e ∈ E is an S-

dimensional vector and represents a track hypothesis τ .

From here onwards, we will be using τ to represent edges

of graph G for the sake of simplicity. Similarly, vertices of

G, va(i), and corresponding measurements, za(i) will be

used interchangeably. The edge weights w(τ) are defined

as the log likelihood L(τ) of the track hypothesis. A sam-

ple hyper-graph constructed this way is shown in Figure 1

(Please note that except for the first frame where the tracks

are initiated, the vertices of the first set V1 correspond to

the (established) tracks. However, for simplicity, the same

notation will be used in the rest of the paper). The three

edges shown in Figure 1 represent three distinct types of

tracks: The edge τ1, represents a track where the target is

not observed in the second frame, τ2 shows a continuation

of an existing track, whereas τ3 is a hypothesis of new tar-

get arrival in the frame S. A hypothesis with only one true

measurement (e.g., τ3) may also indicate false alarms.

From Section 1, we know that a feasible solution of the



Figure 1. A sample hyper-graph G for DAP. Each edge represents a

distinct track hypothesis, for example, τ1 is a hypothesis that target

corresponding to the measurement (track) z1(1) is not detected in

the second scan whereas τ2 is a hypothesis that the measurement

zkS
(S) in the scan S initiates a new track.

multi-frame DAP is a set of tracks ω = {τ1, τ2, . . . , τm}
that partitions the set of measurements Z, i.e.,

⋃m

i=1 τi = Z

and for each i 6= j, τi ∩ τj = ∅. In terms of the con-

structed hyper-graph, a feasible solution is a set of edges

ω = {τ1, τ2, . . . , τl} such that for each i, 1 ≤ i ≤ S
and j, 1 ≤ j ≤ ki, there exists a unique edge τ ∈ ω for

which τ(j) = zj(i), i.e., each true measurement is con-

tained in exactly one track. An optimal solution of the

problem is a feasible solution ω∗ such that for all feasi-

ble sets ω,
∑

τ∈ω∗ w(τ) ≥ ∑

τ∈ω w(τ), i.e., the objective

function that we seek to maximize is the sum of log likeli-

hoods of all the tracks in a feasible solution. The problem

of finding ω∗ can easily be formulated as a 0-1 integer pro-

gramming problem [22, 11] by assigning a binary variable

to each track τ and defining constraints to ensure element

integrity principle.

Let us construct another graph G′ = (V ′, E′),
where each vertex of the graph corresponds to a

track hypothesis (or an edge of graph G) and there

is an edge between two vertices if and only if the

corresponding tracks have a common true measure-

ment. Formally, V ′ = E =
{

τ1, τ2, . . . , τ|E|

}

and

E′ = {(τa, τb)|∃S ≥ i ≥ 1, j ≥ 1, for which,

τa(i) = τb(i) = zj(i)}. Also, we define the weight

of each vertex in G′ to be equal to the weight of the

corresponding track. It is easy to see that the feasible

solutions ω of DAP correspond to the maximal stable

sets of graph G′. (A stable set is a set of vertices in a

graph, no two of which have a common edge. A maximum

weighted stable set is a stable set for which the sum of the

weights of its vertices is largest among all stable sets of

the graph.) Now, let A = {τ1, τ2, . . . , τq} be a maximal

stable set of graph G′ such that {τ1, τ2, . . . , τq} is not a

feasible solution of DAP. By definition of stable sets and

construction of graph G, we know that the element integrity

principle is not violated. Hence, there must exist a true

measurement zj(i) that is not contained in any track in A.

By construction of graph G′, this implies that the track τ =
(z0(1), z0(2), . . . , z0(i − 1), zj(i), z0(i + 1), . . . , z0(S))
does not have any edge in common with any track τp ∈ A.

But then A ∪ τ is a stable set, which contradicts that A
is a maximal stable set. Thus, DAP is equivalent to the

problem of finding maximum weighted stable set in graph

G′. An immediate consequence of this equivalence is

that no polynomial algorithm can approximate the optimal

solution of DAP within a factor of nǫ, for fixed but arbitrary

ǫ > 0 (since the above is true for maximum stable set

problem [1]). It also allows us to use a wide array of

techniques and heuristics developed for maximum stable

set problem (or maximum clique problem, since both are

equivalent), such as, tabu search, simulated annealing,

replicator dynamics, and continuous-based heuristics based

on Motzkin-Strauss[12] like formulations of maximum

clique (see [3] for a detailed survey of approximate

algorithms for maximum clique problem).

4. Continuous Formulation

The use of continuous formulations for discrete problems

has recently gained significant interest in the literature [3].

These formulations allow the use of efficient and well

known continuous optimization techniques to the solution

of hard discrete problems. The formulation presented here

is an extension of the continuous formulation of maximum

stable set, due to [6], to the weighted graphs. The maximum

weighted stable set problem for a graph G = (V,E) is to

find a maximal weighted subset A ⊆ V of vertices with

weights w ∈ R
|V |
+ , such that no two vertices are connected

by an edge in E, equivalently, we may write the problem as

max {w(A)|A ⊆ V, ij /∈ E ∀i, j ∈ A}.

A well known semi-definite relaxation of this problem

(due to Lovász and Schrijver) is given as:

Maximize W • Y

subject to yij = 0,∀ij ∈ E,
trace(Y) = 0,
Y � 0

(1)

where W =
√

w
√

w
T

, Y is a symmetric matrix of size

|V |×|V |, W•Y is the matrix inner product, i.e., W•Y =
trace(WT

Y), and the constraint Y � 0 requires that Y be

positive semi-definite.

Many approximation algorithms for maximum stable set

are based on the above semi-definite program (SDP) as it (in

the un-weighted graphs) provides an upper bound (Lovász

theta number ϑ(G)) on the stability number of the graph.

Most of these algorithms require explicit solution of some

semi-definite program. However, the existing methods for

solving SDP, such as, interior point methods and spectral



bundle methods for SDP are not suitable for large scale

problems that are common in DAP instances.

The formulation presented in this paper is obtained by

restricting the above SDP program to the matrices (Y) of

rank at most 1 or 2. For rank 1, we can write Y = yyT

for some y ∈ R
n. This results in the following non-linear

program (call it NLP1):

Maximize (
√

w
T
y)2

subject to y ∈ R
n, ‖y‖2 = 1,

yiyj = 0,∀ij ∈ E

(2)

For any y ∈ R
n, let Sy be a set of vertices i ∈ V for

which yi 6= 0, i.e., Sy = {i ∈ V |yi 6= 0}. In other words,

y is a continuous incidence vector of S, or y induces set

Sy in the graph G. The following theorem describes a rela-

tionship between the local extrema y′ of NLP1 and the sets

induced by y′ in G.

Theorem 1 For y′ ∈ R
n, such that ‖y′‖2 = 1, y′ is a local

maximizer of NLP1 if and only if Sy′ is a maximal stable set

of G.

Hence there is a tight correspondence between the lo-

cal solutions of NLP1 and the local (maximal) solutions of

maximum stable set problem. As a matter of fact, the same

is true for the global maxima of both problems, i.e., it can

be shown that the global maxima of NLP1 correspond to the

maximum weighted stable sets of graph G. This results is

formally stated as:

Theorem 2 The optimal value of NLP1 is equal to the

weight of a maximum stable set of graph G. Also, y∗ is a

global maximizer of NLP1 if and only if Sy∗ is a maximum

weighted stable set of G.

The proof of both theorems follow similar line of reason-

ing as that of the un-weighted case [6] and though simple,

are rather long and out of scope of this paper. Similar re-

sults also hold when matrix (Y) is restricted to be of rank at

most 2, i.e., Y = xxT + yyT for some x, y ∈ R
n. Due to

this tight correspondence between the discrete and continu-

ous problems, we can find a stable set by first solving NLP1

with an appropriate continuous optimization technique and

then extracting the set induced by the solution found. In

other words NLP1 allows us to perform combinatorial opti-

mization using continuous optimization techniques.

We used an augmented Lagrangian algorithm based

heuristic [6, 27] to solve the above non-linear program.

Augmented Lagrangian relaxation is a standard technique

that allows to place the difficult constraints of the program

in the objective function itself. In this case, the difficult con-

straints are the edge constraints, i.e., yiyj = 0, ∀ij ∈ E.

Thus, the augmented Lagrangian relaxation of the NLP1 is

given as follows (call it NLP2):

Maximize (
√

w
T
y)2 +

(

λ − σ
2 c(y)

)

c(y)
subject to y ∈ R

n, ‖y‖2 = 1,
(3)

where, λ = (λij)ij∈E
, σ > 0 is a fixed penalty parame-

ter, and c(y) = (yiyj)ij∈E
, are the edge constraints.

The augmented Lagrangian algorithm iteratively per-

forms successive minimization of NLP2 with respect to y
while keeping the other two parameters (i.e., λ and σ) fixed,

which are updated between iterations. For minimization

of NLP2 w.r.t. y in each iteration, we use a strong Wolfe-

Powell line search and a gradient based limited memory

BFGS technique for generating the search directions [5].

4.1. Motion Model

In this section, we describe how the likelihood value for

each track τ is computed. We use a linear system model

for the target dynamics. Let xj(i) be the state of the tar-

get j at time ti. The state transition model is described by:

xj(i + 1) = Fjxj(i) + wj(i) whereas the measurement

model is given as: zj(i) = Hjxj(i) + vj(i). Here, wj(i)
and vj(i) are zero mean white Gaussian noise variables with

covariances Qj(i) and Rj(i) respectively. Each observation

of the state of the target is measured with a detection proba-

bility pd. In addition to track observations, false alarms and

new targets are observed from Poisson arrival distributions

with parameters λf and λt respectively. The spatial loca-

tions of false alarms and track initiations are assumed to be

uniformly distributed over the sensor’s field of view with

probability densities df and dt respectively.

For each track hypothesis τ , we estimate the state of

the corresponding target x̄(i) (in τ ) and its covariance

by applying the Kalman Filter at each time step i. The

residual covariance at each time step is given as U(i) =
H(i)P (i)H(i)T + R. The log likelihood, L(τ) of the track

τ = (zj1(1), zj2(2), . . . , zjS
(S)) can then be written as

[16]:

L(τ) =

S
∑

i=1

ln g(zji
(i), τ)

where,

g(zji
(i), τ) =



























1 − pd if ji = 0

λtdt

λf df
if zji

(i) initiates the track

pdp(zji
(i)|τ)

λf df
otherwise

and p(zji
(i)|τ) = e

0.5[zji
(i)−x̄(i)]T U(i)−1[zji

(i)−x̄(i)]√
(2π)n|U(i)|

The above model is used to independently assign a

weight (log likelihood) to each track in the solution space.

Since, the number of tracks in the solution space E ⊆
V1×V2×. . . VS−{(v0(1), v0(2), . . . , v0(S))} is very large,

it is therefore imperative to efficiently prune the less likely



tracks. Next we present the strategies to reduce the solution

space.

4.2. Solution Space Reduction & Problem Decom
position

To prune the unlikely tracks, filtering techniques commonly

known as “gating” are generally utilized. A survey of gating

techniques can be found in [2]. We use three different gating

tests to reduce the size of our problem.

The first gating test only allows a new hypothesis to

be created if the measurement fits the target’s predicted

state with a certain degree of confidence. The gating test

is based on the Mahalanobis distance of the measurement

and the target’s predicted state and is given as [zji
(i) −

x̄(i)]T U(i)−1[zji
(i) − x̄(i)] ≤ β, where the value of β is

decided based on the choice of validation region.

The second gating test uses a parameter for maximum

absence of a target measurement. If a target is not observed

for more than the duration of this parameter, it is considered

to have left the scene and the track for that target is no longer

used in the data association.

The third gating test prunes all the track hypothesis that

have negative weights. It is easy to show that the tracks

with negative weights cannot be part of a maximal solution.

Suppose otherwise and let τ be such a track in a maximal

solution A, then a better feasible solution can be obtained

by replacing τ in A with the set of tracks each of which

has exactly one true measurement corresponding to the true

measurements in τ .

In addition to pruning the less likely tracks from the so-

lution space, we also decompose the solution space into in-

dependent components, each of which can be independently

solved without affecting the quality of the overall solution.

Note that, if a graph G′ is not connected then a maximum

weighted stable set of graph G′ is the union of maximum

weighted stable sets of each connected component of G′.

Hence, the solution space of the DAP can be decomposed

by finding the connected components of the graph. This

procedure generally results in multiple problems of much

reduced size (than the original) that can be independently

solved and thus significantly improve the efficiency of the

algorithm.

5. Results

In this section, we present quantitative and qualitative eval-

uation of the performance of our algorithm using both syn-

thetic and real sequences.

5.1. Quantitative Evaluation

We used synthetic data to evaluate the performance of the

proposed algorithm under different operating conditions,

such as, traffic densities, detection probabilities and false

alarms. The synthetic target sequences were generated by a

modified Point Set Motion Generator (PSMG) [26]. PSMG

provides controls over the size of image space, number of

points, number of frames, mean and variance of initial ve-

locity, mean and variance of the change in velocity, proba-

bility of occlusion, and probability of false alarms. Initially,

a given number, N , of points are initialized in the given

image space with uniform probability. The random points

move independent of each other with uniformly distributed

initial motion directions and normally distributed speeds. In

every frame, Gaussian perturbations are introduced in both

motion directions and speeds. The state of each random

point (i.e., whether the point is detected or not) is indepen-

dently determined with a uniform probability of detection,

Pd. The points may remain undetected for a given maxi-

mum duration after which they are forced to be observed at

least once. The points leave the scene when they cross the

scene boundaries. In each frame, new points are introduced

in the scene with a Poisson distribution, λN , however, the

maximum number of points in a scene at a given time is

bounded. Finally, false alarms are introduced in each frame

with uniform spatial distribution, where the number of false

alarms has a Poisson distribution, λF .

The results of the proposed tracker (denoted by MSS,

for maximum stable set) are compared with the multi-frame

tracker (SS) proposed by Shafique and Shah [21] that has

been shown to perform well under a variety of scenarios.

To measure the effectiveness of each tracker and to com-

pare the results, we use two metrics proposed in [14], i)

normalized correct associations (NCA) and ii) incorrect-to-

correct association ratio (ICAR). Let ω∗ be the true solu-

tion (ground-truth) of the DAP. For any ω in the solution

space, the set of all associations (links) in ω is defined as

SA(ω) =
⋃

τ∈ω{(τ(i), τ(j))|1 ≤ i < j ≤ S ∧ τ(i) 6=
z0(i) ∧ τ(j) 6= z0(j) ∧ ∀k, i < k < j, τ(k) = z0(k)}.

The set of correct associations CA(ω) in ω with respect

to ω∗ is defined as CA(ω) = SA(ω) ∩ SA(ω∗). The nor-

malized correct associations (NCA) are defined as the ratio

between the number of correct associations and the num-

ber of true associations, i.e., NCA(ω) = |CA(ω)|
|SA(ω∗)| . The

incorrect-to-correct association ratio (ICAR) is defined as

ICAR(ω) = |SA(ω)|−|CA(ω)|
|CA(ω)| . For each scenario, we report

the average of both metrics computed on the output of 20

random sequences generated by using the same parameters.

The parameters of both the algorithms were kept constant

in all scenarios. Particularly, the sliding window size of 5

was used in all the experiments.

In our first experiment, we evaluated the performance of

the proposed algorithm with respect to the track density in

the scene. The number of initial tracks, N , was varied from

5 to 50 in a fixed image space of size 300 × 300. All the

other parameters of the point set motion generator were kept

constant. Specifically, we chose the length of each sequence



to be 50 frames, probability of detection, Pd = 0.9, the ex-

pected number of false alarms per frame, λF = 1, and the

expected number of arrivals, λN = 1. However, the max-

imum number of active targets (not including false alarms

and terminated tracks) was bounded by N . The maximum

duration of continued absence of a point was chosen to be

4. The average values of the performance metrics (over 20

random sequences) are shown in Figure 2.

(a) (b)
Figure 2. Performance of the proposed tracker (MSS) and the SS

tracker with respect to the density of points in the scene. The

plots for MSS and SS are shown with solid black and dashed red

plots respectively. (a) Normalized correct associations (NCA), (b)

Incorrect-to-correct association ratio (ICAR).

In the next two experiments, we evaluated the robustness

of the algorithm with respect to the probability of detection

and the presence of false alarms in the scene. The number

of initial tracks was fixed at N = 10, while the other param-

eters were kept the same as the previous experiment. First

we varied the probability of detection Pd from 1 to 0.1 with

a decrement of 0.1 at each step. Again, the performance

metrics NCA and ICAR were computed at each step on 20

different sequences. The average values of both metrics are

plotted in Figure 3. Next, we fixed Pd back to 0.9 and varied

the expected number of false alarms per frame, λF , from 1

to 15. The results of this experiment are shown in Figure 4.

(a) (b)
Figure 3. Tracking performance with respect to detection proba-

bility Pd: (a) NCA, (b) ICAR.

The results in plots of Figures 2, 3, and 4 show that the

proposed algorithm is quite robust to the target densities,

occlusions, and false alarms. The algorithm achieved better

than 90% correct links in all the cases, whereas the ratio of

(a) (b)
Figure 4. Tracking performance with respect to false alarm density

(a) NCA, (b) ICAR.

(a) (b)

Figure 5. Tracking results on feature detection output.

incorrect to correct associations was also significantly low

for most cases. In addition, the proposed algorithm clearly

performed better than the greedy algorithm of [21] on all

performance metrics especially under more difficult scenar-

ios (high number of false alarms or low probability of de-

tection). With gating and problem decomposition, the pro-

posed algorithm performs in real-time (on average 7 frames

per second) on most moderate sized problems (around 25

points per frame).

5.2. Qualitative Results

Next, we show the results of our algorithm on real data.

The detection results on different scenarios were used as

the input to the algorithm. In tradition with the evaluation

of data association algorithms, we restricted the input to our

algorithm to the spatial measurements of the targets in each

frame. In other words, no shape or appearance information

was used in the generation of the results of this section.

We first tried our algorithm on feature point tracking

problem, where feature points were first detected using Har-

ris feature detector on image sequences captured from a

moving camera. The spatial locations of the detected fea-

tures were used for tracking. The generated tracks on two

such sequences are shown in Figure 5.

Next we tested the proposed algorithm on real sequences

with high traffic density and frequent occlusions. Mov-

ing objects were detected by background subtraction and

their centroids were used as the feature points for track-

ing. In Figure 6, we show the tracks of individual birds

in flocks. In first sequence, the birds are exhibiting group



(a) (b)

Figure 6. Tracks generated for birds in motion

(a) (b)

Figure 7. Tracks generated for schools of fish

motion whereas in the second sequence, each bird is ex-

hibiting unique independent motion. Visual inspection of

the tracks show that the tracker successfully tracked indi-

vidual birds in both instances. We also tested the algorithm

to track schools of fish and achieved similar results. The

tracks for these experiments are shown in Figure 7.

We also tested our algorithm on human tracking in a

sports scenario (hockey players). Evenly sampled frames

from the sequence with tracking results are shown in Fig-

ure 8. All these results show good tracking performance on

challenging data (especially since no appearance informa-

tion was used for correspondence) and validate the quanti-

tative analysis of the previous subsection.

6. Discussion and Conclusion

In this section, we discuss objections and questions raised

by the anonymous reviewers.

Comment 1: Target merging and splitting is a significant

problem in real surveillance applications. It is not clear

how the proposed framework can accommodate such one-

to-many and many-to-one scenarios.

Response: The framework deals with many-to-one scenar-

ios (occlusions) as well as missed detections by employ-

ing the dummy measurements (See Figure 1) that indicate

that the target is either missing or occluded in the given

frame. Traditional data association methods assume point

models for targets and do not deal with one-to-many scenar-

ios (single target generating multiple measurements). Only

recently, attempts have been made to tackle these scenar-

ios in data association framework [4, 28]. While we have

not considered target splitting in this paper, theoretically it

can be handled by allowing hyper-edges to contain more

than one measurement in each frame. This is equivalent

of saying that the measurements belong to the same target.

However, doing so may significantly increase the problem

size and aggressive gating or other optimizations may be

required for real-time performance. One way to reduce the

complexity of such a system is to use tracklets from a high

precision tracker as measurements (vertices of hyper-graph)

and use the proposed algorithm for linking the tracklets.

Comment 2: In tracking real objects, shape and appear-

ance information can be very powerful to reduce the com-

plexity. How (or weather) these characteristics could be

incorporated into the system?

Response: The framework does not impose any restriction

on the features used, motion model, or objective function

for edge-weight computation. One way to incorporate ap-

pearance features is by assuming independence with the

spatial features and modifying likelihood computation ac-

cordingly.

Comment 3: How the sliding window is handled?

Response: The sliding window is overlapping and is in-

cremented one step after each frame. The tracks are only

committed once the measurements fall out of the window.

Comment 4: The gating parameters can be selected to

make the algorithm arbitrarily fast at the expense of accu-

racy. How are the gating parameters selected?

Response: The gating parameter β is based on chi-square

distribution and was chosen to be have the 99% of the vali-

dation region, i.e., β = 9.2. The maximum absence param-

eter was assumed to be 30 frames in all of our experiments.

Comment 5: How is track initiation handled?

Response: For each measurement, a track initiation hy-

pothesis is modelled by a hyper-edge that contains only

dummy measurements in the previous frames. The velocity

for such measurement is assumed to be zero and the motion

model reduces to the nearest neighbor model.

Conclusion: In conclusion, we have presented a continu-

ous formulation of the multi-frame data association prob-

lem that is based on a semi-definite program of the maxi-

mum weighted stable set problem. The formulation readily

allows the use of many continuous optimization techniques

as well as competing algorithms and heuristics, such as tabu

search, simulated annealing, and replicator dynamics to the

data association problem. A sliding window based multi-

frame tracker was developed using the formulation and was

shown to perform well on both real and synthetic data.
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Figure 8. People tracking performance in a sports scenario.
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