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Abstract

Image understanding involves analyzing many different
aspects of the scene. In this paper, we are concerned with
how these tasks can be combined in a way that improves
the performance of each of them. Inspired by Barrow and
Tenenbaum, we present a flexible framework for interfac-
ing scene analysis processes using intrinsic images. Each
intrinsic image is a registered map describing one charac-
teristic of the scene. We apply this framework to develop an
integrated 3D scene understanding system with estimates of
surface orientations, occlusion boundaries, objects, camera
viewpoint, and relative depth. Our experiments on a set of
300 outdoor images demonstrate that these tasks reinforce
each other, and we illustrate a coherent scene understand-
ing with automatically reconstructed 3D models.

1. Introduction

Scene understanding requires the coordination of many
different tasks – occlusion reasoning, surface orientation
estimation, object recognition, and scene categorization,
among others. How can we even begin to sort them out?
Grappling with this issue, Marr proposed, in 1978, to orga-
nize the visual system as a sequential process, producing in-
creasingly high-level descriptions of the scene: from a low-
level primal sketch to a 2 1

2 D sketch of surfaces to a full 3D
model of the scene [14]. Unfortunately, with this model, a
flaw in early processing can ruin the entire interpretation.
Barrow and Tenenbaum [1] extended Marr’s idea of geo-
metric sketches to a general representation of the scene in
terms of intrinsic images,1 each a registered map describ-
ing one characteristic of the scene. But in contrast to Marr’s
feed-forward philosophy, Barrow and Tenenbaum proposed
that the entire system should be organized around the re-
covery of these intrinsic images, so that they serve, not as a
pre-process, but as an interface between the interdependent

1The popularity of the reflectance and illumination images from Bar-
rows and Tenenbaum’s 1978 work has led, over the years, to a redefini-
tion of the intrinsic image problem as reflectance/illuminant factorization.
However, in this paper, we will use the term in its original meaning [1].
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Figure 1: We propose a simple framework for integrating disparate
scene understanding processes using maps of scene characteristics
as an interface.

visual tasks. Their key idea is that the ambiguities of the
scene can be resolved only when the many visual processes
are working together.

Recently, researchers have made much progress in re-
covering scene properties, such as primal sketch [6], surface
orientations [10], depth [21], illumination [23], and occlu-
sion boundaries [11, 19]. In the tradition of Marr, such ad-
vances have typically been applied as part of a feed-forward
system. We believe that it is time to revisit the ideas of Bar-
row and Tenenbaum – to see how these tasks can work to-
gether to achieve something greater than the sum of their
parts.

In this paper, we propose a simple and flexible frame-
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(a) Input Image (b) Surfaces (c) Occlusion (d) Depth (e) Objects
Figure 2: Examples of intrinsic images estimated from the image (a) in the first iteration. In (b), we show four of the surface confidence
maps (brighter is higher confidence); clockwise, from upper-left: “support”, “vertical planar”, “vertical porous”, “vertical solid”. In (c),
we show the confidence map for occlusion boundaries (bright indicates occlusion likely). In (d), we show upper and lower estimates of
depth (log scale, brighter is closer). In (e), we show four of the object intrinsic images. Each is a confidence map indicating the likelihood
of each pixel belonging to an individual object (cars or pedestrians in this case).

work (Figure 1) for integrating various scene characteris-
tics. We organize our system as a set of processes that each
outputs a set of intrinsic images. Iteratively, each visual
task interacts with the others through cues computed from
the intrinsic images and outputs its own intrinsic images in
return.

Much recent work in computer vision has focused on
contextual relationships. For example, Oliva and Tor-
ralba [16, 17] propose a scene gist representation that can
be used to coarsely estimate scene depth and camera view-
point and to improve object recognition [15]. Sudderth et
al. [22] infer the depth of points in the image using detected
objects. Leibe et al. [13] and Ess et al. [4] model the rela-
tionship between objects and scene geometry. Several oth-
ers model object-object interactions (Rabinovich et al. [18]
is a recent example).

Our framework has several advantages. First, it is syner-
gistic, allowing all processes to benefit from their combined
interaction. By contrast, much existing work in context is
feed-forward. For instance, Hoiem et al. [8, 11] use esti-
mates of surface orientations to improve object detection
and occlusion estimation, but the original surface estimates
not are improved. Second, our framework is modular, al-
lowing a new process to be inserted without redesigning the
entire system. Systems that define contextual relationships
symbolically and perform inference over graphical models
(e.g., [9, 12]) usually cannot easily accommodate new types
of information. Third, by allowing one process to influence
another through cues, rather than hard constraints (as in the
original Barrow and Tenenbaum paper), the framework is
robust and not subject to researcher-designed assumptions.

We test our framework by integrating several scene
analysis algorithms from Hoiem et al. that describe sur-
faces [10] (“surface layout”), detect objects and infer view-
point [9] (“objects in perspective”), and recover object oc-
clusion boundaries and estimate depth [11] (“occlusion”).
We treat each of these algorithms as a component that takes
as input the raw image and the intrinsic images from the
other algorithms and outputs its own set of intrinsic images.
Note that in this paper we do not attempt to improve the
low-level cues or inference mechanisms of the individual
algorithms. Instead, our goal is to provide a more accurate

and coherent scene interpretation by closing the feedback
loop among them.

We analyze the effectiveness of our framework and the
contextual cues on the Geometric Context dataset [8] of
300 outdoor images from a wide variety of scenes. Our re-
sults demonstrate modest quantitative improvement in sur-
face estimates and object detection, as well as substantial
qualitative improvement in occlusion estimates. Finally, we
demonstrate the scene understanding of our system with
a new automatic single-view 3D reconstruction algorithm,
which is the first to model foreground objects.

2. Intrinsic Image Representation

The intrinsic images, displayed in Figure 2, serve as
an interface between the various scene understanding pro-
cesses. As proposed by Barrow and Tenenbaum [1], each
intrinsic image is an image-registered map of one scene
characteristic. Our intrinsic images differ from those of
Barrow and Tenenbaum in that they reflect the confidences
of the estimates, either by representing the confidences di-
rectly, as with the surfaces, or by including several esti-
mates, as with the depth.

Surfaces. The surface intrinsic images consist of seven con-
fidence maps for “support” (e.g., the ground), vertical pla-
nar facing “left”, “center”, or “right” (e.g., building walls),
vertical non-planar “porous” (e.g., tree leaves), vertical non-
planar “solid” (e.g., people), and “sky”. Each image is a
confidence map for one surface type indicating the likeli-
hood that each pixel is of that type.

We compute the surface intrinsic images using the sur-
face layout algorithm [10]. In this algorithm, the image
is partitioned several times into multiple segmentations.
Image cues are then computed over each segment, and a
boosted decision tree classifier [2] estimates the likelihood
that the segment is valid (does not contain several differ-
ent labels) and the likelihood of each possible label. These
likelihoods are then integrated pixel-wise over the segmen-
tations to provide several confidence maps. We modify the
original surface layout algorithm by storing the multiple
segmentations and augmenting the cue set with the contex-
tual cues from the other processes.



Occlusions and Depth. One intrinsic image is computed
for occlusion boundaries, indicating the likelihood that a
pixel lies on the occlusion boundary of a free-standing ob-
ject (a physical structure that is entirely self-supporting).
We compute the occlusion boundaries using the publicly
available code from Hoiem et al. [11]. This algorithm uses
a CRF model with unary potentials estimated by boosted
decision tree classifiers to estimate the likelihood that the
region on either side occludes for each boundary in a hy-
pothesized segmentation. Then, regions that are unlikely to
have an occluding boundary between them are merged, and
the cues and boundary estimates are updated for the new
segmentation. As this method is already iterative, we per-
form one iteration of the occlusion estimation each time the
other intrinsic images are updated and augment the original
cues with the object and viewpoint information.

The original occlusion algorithm also outputs three es-
timates of depth (with a fixed guess of intrinsic parame-
ters that determine scale), which we use as intrinsic images.
Each is a separate estimate of depth in log scale computed
directly from the current surface and boundary estimates
based on assumptions that ground is horizontal and other
objects are vertical. See [11] for details.

Objects and Camera Viewpoint. Each hypothesized ob-
ject is represented by a confidence map, indicating the like-
lihood that a pixel is part of the object times the likelihood
that the object exists.

The objects in perspective algorithm [9] outputs a set of
hypothesized objects, along with a probability distribution
over potential bounding boxes. We use this distribution (us-
ing the Dalal-Triggs local detector [3]), along with an ex-
pected mask of the object class, to compute the likelihood
that each pixel is part of an object instance. We compute
the expected mask of an object by averaging the masks of
manually segmented objects in LabelMe [20]. The result is
an “object map” for each object that is detected with confi-
dence greater than some threshold. Objects at lower image
positions are assumed to be closer to the viewer, so if two
objects overlap, the confidences of the further object pixels
are multiplied by one minus the confidences of the closer
object pixels (loosely modeling object occlusion). The sum
of the object maps over a pixel yields the likelihood that the
pixel is generated by any detectable object. Intrinsic images
are included for each hypothesis that passes a confidence
threshold (5% in our experiments).

The camera viewpoint is a two-parameter fit to the
ground plane (the plane that supports most objects of in-
terest) with respect to the camera, corresponding loosely to
the horizon position and the camera height. The objects in
perspective algorithm captures the relationship between the
image size of grounded objects and the camera viewpoint
and directly outputs the most likely camera viewpoint.

Surfaces Occlusions

Viewpoint and Objects

Surface Maps

Depth, Boundaries

Viewpoint/Size
Reasoning

Figure 3: Contextual symbiosis. We show our final estimates for
surfaces, occlusion boundaries, viewpoint, and objects and illus-
trate the interplay among them. The dotted arrows contain con-
textual relationships modeled by the previous work of Hoiem et
al. [9, 11], while the solid arrows denote new cues proposed in
this paper. For surfaces: green=support, red=vertical, blue=sky;
arrows=planar orientation, X=solid, O=porous. Occlusion bound-
aries are denoted with blue/white lines. Objects are shown as over-
laid individually colored confidence maps of object extent, with
the blue line denoting the estimated horizon.

3. Contextual Interactions

Here, we describe how the processes can interact using
the intrinsic images as an interface between them. The orig-
inal Hoiem et al. algorithms [9, 11] incorporate interactions
from surfaces to objects and from surfaces to occlusions.
We summarize those and propose several new contextual
interactions to close the feedback loop. See Figure 3 for an
illustration.

Surfaces and Objects. An object tends to correspond to a
certain type of surface. For instance, the road is a support-
ing surface, and a pedestrian is a vertical, non-planar solid
surface. In addition, many objects, such as cars and pedes-
trians tend to rest on the ground, so a visible supporting
surface lends evidence to a hypothesized object. As Hoiem
et al. [9] showed, these relationships between objects and
surfaces can be used to improve object recognition.

In this paper, we also allow object detections to improve
surface estimation. We provide object-based cues for the
surface classifier by summing pixel confidences for each
class of object (cars and pedestrians in our experiments)
and computing the mean over each surface region. The ob-
ject recognition algorithm also outputs a viewpoint estimate
which can be used to further improve surface estimation by
representing the differences between the horizon position
and the top and bottom (10th and 90th percentile of row-
position) of the surface region.
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Figure 4: Example of the influence of occlusion on object esti-
mates. Before considering occlusion information in the second it-
eration, pieces of the crosswalk are mistaken for cars (left). During
the occlusion reasoning, however, it is determined that the cross-
walk is a single structure, and the false detections are discarded.

Surfaces and Occlusions. Occlusion boundaries often oc-
cur at the boundary between neighboring surface regions of
different types. Further, the surface types are often a good
indicator of the figure/ground label (e.g., the sky is always
occluded). For this reason, cues based on surface estimates
can greatly aid occlusion estimation. Additionally, the sur-
face images, together with occlusion boundaries and cam-
era viewpoint, are used to estimate depth, as in the original
occlusion algorithm [11].

In this paper, we also model how the boundary and depth
estimates can benefit surface estimation. The boundary es-
timates allow better spatial support. In each segment pro-
duced by the multiple segmentation algorithm, we look up
the confidence of the most likely internal boundary which
helps determine whether a segment is likely to correspond
to a single label. Also, the average depth and a measure
of the slope in depth from left to right is computed each
segment (for all three depth estimates). The average depth
may help determine the label of the segment since appear-
ance characteristics vary with distance (e.g., the texture in
foliage is lost at a distance). The slope in depth may help
determine whether a planar segment faces the left, center,
or right of the viewer.

Objects and Occlusions. Object detections can aid occlu-
sion reasoning by helping to determine whether neighbor-
ing regions are part of the same individual object. To rep-
resent this, we first compute the mean and max confidences
for each individual object for each region. As cues, we then
compute: the sum (over objects) of the mean confidences
(giving total object likelihood); the sum of the absolute dif-
ference of the mean confidences between two regions (an
overall measure of the object confidence difference); the
confidence of the most likely individual object within each
region; and the maximum absolute difference between indi-
vidual object confidences.

Likewise, occlusion reasoning can help remove false ob-
ject detections by showing them to be part of a larger struc-
ture. For example, pieces of the crosswalk in Figure 4 indi-
vidually appear to be cars (and are consistent in viewpoint)
but are discarded when found to be part of the larger cement
structure. In our implementation, we simply remove object
hypotheses if its soft mask is inconsistent with the occlusion

TRAINING

Initialize:
• Get multiple segmentations for each training image
• Estimate horizon
• Perform local object detection

For iteration t = 1..Nt :
1. Train and apply surface estimation

(a) Compute features for each segment (using re-
sults of (2),(3) from iterations 1 . . . t−1)

(b) Train surface classifiers and compute surface
confidences with cross-validation

2. Apply object/viewpoint/surface inference (using re-
sult of (1) from iteration t and (3) from t−1)

3. Train and apply occlusion reasoning algorithm (us-
ing results of (1), (2) from iteration t)

(a) Train on hold-out set
(b) Perform occlusion reasoning on cross-

validation images

Figure 5: Iterative training algorithm for combining surface, oc-
clusion, viewpoint, and object information. Training and testing
is performed on the Geometric Context dataset. The holdout set
of 50 images used to train the surface segmentation algorithm is
used to train the occlusion reasoning, and the remaining 250 im-
ages are used for testing (using five-fold cross-validation for the
surface estimation). Nt=3 in our experiments.

estimates. More specifically, regions from the occlusion re-
sult are assigned to an object if they overlap at least 50%
with the object bounding box; if the area of the regions as-
signed to an object is less than 25% of the expected object
area, the object candidate is removed. We note that this de-
viates from our general principal of “soft” consistency and
sometimes causes small pedestrians to be incorrectly dis-
carded.

4. Training and Inference

Training and inference are performed in a simple itera-
tive manner, cycling through the surface estimation, object
detection and viewpoint recovery, and occlusion reasoning.
We outline our training and inference algorithm in Figure 5.
Each of our algorithms are evaluated using the Geometric
Context dataset. The first fifty images are used for training
the surface segmentation and occlusion reasoning. The re-
maining 250 are used to test the surface, object, viewpoint,
and occlusion estimators. The surface classifiers are trained
and tested using five-fold cross-validation.

In training and testing the surface classifiers, the mul-
tiple segmentations are computed once. In each iteration
after the first, the cues for each segment are updated with
information gleaned from the latest object, viewpoint, and
occlusion estimates. The object/viewpoint inference uses
the surface estimates from the current iteration and the oc-



clusion information from the previous iteration (starting in
the second iteration). The occlusion algorithm uses the lat-
est surface, object, and viewpoint estimates. The first two
iterations of the occlusion algorithm correspond to the first
two iterations of the original algorithm, with additional cues
from the latest surface, object, and viewpoint estimates. In
the third iteration, the occlusion algorithm re-iterates until
convergence. In all other respects, the training and testing
for the three algorithms is implemented as described in the
work of Hoiem et al. [8, 9, 11].

5. Experiments

We applied the training and inference procedure de-
scribed in the previous section to the Geometric Context
dataset. We show examples of final results in Figure 6. In
the object results here and elsewhere, only objects that pass
a preset confidence threshold are shown (threshold corre-
sponds to 0.5 false positives per image). In this section, we
discuss the improvement in each type of estimation. Our
analysis includes qualitative assessment, inspection of the
decision tree classifiers learned in the surface and occlusion
estimation, and quantitative performance comparison. In
the decision tree learning, early and frequent selection of a
cue indicates that the cue is valuable but does not necessar-
ily imply great value beyond the other cues, as there may be
redundant information.

Surfaces. The decision tree learning indicates that the
boundary likelihood from occlusion reasoning is the most
powerful cue for the segmentation classifier, as it is the first
and most frequently selected. For the “solid” classifier, the
pedestrian confidence value from the object detection is the
first feature selected. The learning algorithm determines
that regions with high pedestrian confidence are very likely
to be solid, but regions without pedestrian confidence are
not much less likely (i.e., all pedestrians are solid, but not all
solids are pedestrians). Our measure of depth slope from the
occlusion reasoning is used frequently by the planar “left”
and “right” classifiers.

We also find that the position cues relative to the esti-
mated horizon position are used overall twice as frequently
as the absolute position cues. In a separate experiment, in
which we train and test surface classification with manu-
ally assigned (ground truth) horizon estimates, we find that
the main (support, vertical, sky) classification and subclas-
sification of vertical (left, center, right, porous, solid) each
improve by 2% (from 87% to 89% and 61% to 63%, re-
spectively). Thus, knowledge of the horizon is an important
cue, but the potential improvement in surface estimation by
improving the horizon estimate is limited.

We find a modest quantitative improvement in surface
classification with the inclusion of object and occlusion in-
formation. Using the surface layout algorithm [7] by itself,
the main classification accuracy is 86.8% and subclassifica-

Car Ped
Dalal-Triggs 2005 (Initial) 41% 54%
Hoiem et al. 2006 (Iter 1) 41% 66%
This paper (Final) 51% 61%

Table 1: Detection rates at 1 false positive per image for cars and
pedestrians on the Geometric Context dataset. We compare re-
sults from the local detector [3] (top row), the putting objects in
perspective algorithm [9], and our iterative algorithm.
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Figure 7: ROC curves for initial Dalal-Triggs classification, after
one iteration (equivalent to the “Putting Objects in Perspective”
algorithm [9]), and the final result.

tion accuracy is 60.9%. The accuracy improves by roughly
1% to 87.6% and 61.8% once the contextual information
from the objects, occlusions, and depth is considered. For
the main classification (“support” vs. “vertical” vs. “sky”),
this difference is statistically significant (p < 0.05), but for
the subclassification (subclasses within “vertical”) it is not
(p > 0.05). With closer inspection on an image-by-image
basis, of the 18% of images that change in main class pixel
error by more than 5%, 74% improve. Thus, while large
changes are rare, changes made after considering the new
object and occlusion information are much more likely to
improve results than not.

Objects. As in [9], we use the Dalal-Triggs [3] object de-
tector to supply object hypotheses and confidences based
on local image information. In Table 1, we report the detec-
tion rate at 1 false positive per image for cars and pedestri-
ans in the Geometric Context dataset, ignoring cars smaller
than 24 pixels tall and pedestrians smaller than 48 pixels
tall (these are the minimum sizes of the respective detector
windows). In total, the test portion (excluding the occlusion
training set portion) of the dataset contains 82 cars and 379
pedestrians.

When viewpoint and surfaces are considered (result of
the first iteration, equivalent to the objects in perspec-
tive algorithm [9]), pedestrian detection improves consider-
ably. When occlusion information is considered (later itera-
tions) car detection improves but pedestrian detection drops
slightly, likely due to the difficulty of maintaining occlusion
boundaries for distant pedestrians (see Figure 7). Along
with many false positives, 11% of true pedestrian and 8%
of true car detections are discarded by the occlusion-based
filtering. Overall, the car detection improves by 10% and
the pedestrian detection by 7% when considering surface,



Surfaces [10] Objects [3] Occlusions [11] Surfaces (joint) Objects (joint) Occlusions (joint)

Figure 6: In each row, we show the results of the three original algorithms and the results when they are integrated with our framework.
Each process achieves higher performance when they work together. Rows 1 and 2: the occlusion estimates help improve mistakes in
the surface labels. Row 3: the detected car allows the surface labels and occlusion estimate to improve. Row 4: the soldiers need better
camouflage as the algorithm is able to identify and segment them away from the background. Row 5: false detections on the coat rack
are eliminated due to the occlusion information. Row 6: The contextual inference results in more pedestrians being detected (with a false
positive car). Rows 7-9: A reasonably good job is done in complicated scenes.



Image Occ Ground Truth Objects/View Occ Result
Figure 8: By reasoning together about objects and occlusions, we are sometimes able to find the occlusion boundaries of tightly crowded
individuals. In this case, our occlusion estimates are more precise than the ground truth, which leads to an artificially low quantitative
measure of improvement.

Input Image Old Pop-up New Pop-up

Figure 9: We show results for the original Hoiem et al. [7] algo-
rithm and our extension of that algorithm to handle foreground ob-
jects. In the original algorithm the man is pressed into the ground
and the building in back of him. In our new algorithm, the man
is correctly pulled away from the background using the occlusion
estimates.

viewpoint, and occlusions.

Viewpoint. We evaluate viewpoint estimation based on
the horizon position, since it is difficult to obtain ground
truth for camera height. Using the mean horizon position
as a constant estimate yields an error of 12.8% (percent-
age of image height difference between the manually la-
beled horizon and the estimated horizon). This error drops
to 10.4% when using a data-driven horizon estimate with
the LabelMe training set. During the first iteration, which
is equivalent to the objects in perspective algorithm [9], this
drops further to 8.5%. Further iterations do not produce a
statistically significant change (p > 0.05).

Occlusion. A subjective comparison reveals that individ-
ual cars and people are correctly delineated much more fre-
quently when object information is considered. Figure 6
contains many such examples. However, we are not able to
measure an overall quantitative improvement, due to ground
truth labeling of a crowd of people or row of cars as a single
object, as shown in Figure 8.

6. Automatic Photo Pop-up with Occlusions

We demonstrate the full scene understanding ability by
providing a simple but effective extension of the Hoiem et
al. [7] Automatic Photo Pop-up algorithm to handle occlud-
ing foreground objects. In the original algorithm, only sur-
face estimates and a horizon position are used to create a
simple piecewise planar 3D model of the scene. As a con-
sequence, this method fares poorly in cluttered scenes with
foreground objects. The more recent work of Saxena et

al. [21] can better handle cluttered scenes, since it is not
based on a segmentation into ground/vertical/sky surfaces,
but it cannot handle foreground objects because it assumes
that the entire visible scene is a continuous surface.

In this section we incorporate occlusion, viewpoint, and
object information into the reconstruction. The object de-
tections provide better occlusion boundaries for cars and
pedestrians. The occlusion boundaries allow foreground
objects to be separated from the background and modeled
as individual “billboards”. The viewpoint estimates provide
the correct perspective. Overall, we are better able to handle
complex scenes.

When the ground-contact points of a region are visi-
ble, we can fit a ground-vertical boundary polyline to those
points (as in the original photo pop-up algorithm) to model
the region with a series of planes. When the ground-contact
points are obscured, however, we cannot measure the depth
or orientation of the region directly. For the purpose of cre-
ating a graphically appealing model, it is better to group
such regions with other regions of known depth, rather than
to try to model them as separate surfaces. Our solution is
to iteratively remove occlusion boundaries between regions
of unknown depth and regions of known depth, removing
the weakest boundaries first. The strength of a boundary
is given by the occlusion intrinsic image. To determine
the “support”, “vertical”, “sky” labels needed to create the
model, we average surface confidences provided by the sur-
face estimation process and the occlusion process (this latter
estimate is not used elsewhere in our intrinsic image frame-
work). In other respects, the 3D scene reconstruction is per-
formed as originally described by Hoiem et al. [7].

We show a comparison of the original Photo Pop-up
algorithm and our new algorithm in Figure 9. We dis-
play three additional results in Figure 10. The 3D models
demonstrate a good understanding of the spatial layout of
the scene. Overall, in the 250 images we processed (from
the Geometric Context dataset), about 40% of the models
were “pretty good” (based on a subjective assessment of
whether there are major modeling errors). Hoiem et al. [7]
report a success rate of 30% on a simpler subset of the data.



Figure 10: Input images and novel views taken from automatically generated 3D models, using estimated occlusion boundaries to separate
foreground objects. In row 1, we show two novel views from the textured 3D model and from similar views in a wireframe model (wires
are colored from image). Note how, in the scenes of row 2, pedestrians and cars are correctly segmented from the background.

7. Discussion

Our framework allows many different visual tasks to
work together by iteratively relating them through their in-
trinsic images. Our experiments demonstrate the effec-
tiveness of our approach, indicating that inference over
explicit symbolic representations (e.g., graphical models)
may not be required. This is important because graphical
models, though effective in constrained domains such as
object-viewpoint inference [9], often cannot be extended to
tractably handle a large number of visual tasks.

With suitable choices of learning algorithms in each of
the processes, our framework could provide additional ad-
vantages. If the algorithms are able to share features (e.g.,
[24]), one process could benefit from the structural knowl-
edge of the input space that is learned by other processes.
If a linear logistic regression algorithm is used (e.g., Ad-
aboost [5]) and sufficient statistics of the training data are
stored, a new visual task (e.g., building detection) could be
inserted and used by the existing processes without com-
pletely retraining them.
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