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Abstract

Computer vision and image recognition research have a

great interest in dimensionality reduction techniques. Gen-

erally these techniques are independent of the classifier be-

ing used and the learning of the classifier is carried out af-

ter the dimensionality reduction is performed, possibly dis-

carding valuable information. In this paper we propose an

iterative algorithm that simultaneously learns a linear pro-

jection base and a reduced set of prototypes optimized for

the Nearest-Neighbor classifier. The algorithm is derived by

minimizing a suitable estimation of the classification error

probability. The proposed approach is assessed through a

series of experiments showing a good behavior and a real

potential for practical applications.

1. Introduction

Dimensionality reduction techniques play a very impor-

tant role in image recognition tasks. Images have an inher-

ently high dimensionality and thus it is difficult to directly

apply machine learning algorithms to them because of the

so called curse of dimensionality. These techniques aim at

finding a mapping from the original representation space

into a new space with a considerable dimensionality reduc-

tion.

Over the years several dimensionality reduction ap-

proaches have been proposed. These can be mainly cate-

gorized as: linear or non-linear, depending on the nature of

the mapping function; supervised or unsupervised, depend-

ing on whether the class information is taken into account

or not; parametric or non-parametric, depending on whether
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FPI scholarship.

a distribution is assumed for the data or not; and as having

a closed solution or being iterative.

Two well known linear methods are Principal Com-

ponent Analysis (PCA) and Linear Discriminant Analysis

(LDA) [10]. PCA is an unsupervised technique which pre-

serves as much variance of the data as possible. On the

other hand LDA is a supervised technique that minimizes

the scatter within each class while separating them from the

other classes. These two methods have a closed solution

and are parametric assuming that the data has a Gaussian

distribution. Subsequent versions of both techniques were

presented aiming at solving some limitations of the origi-

nal versions, for instance, there are non-linear extensions

of PCA and LDA which rely on the kernel trick [18, 27].

Closely related to LDA is the Non-parametric Discriminant

Analysis (NDA) [4, 10], which is also linear and with a

closed solution, but as the name states it is non-parametric,

so this method does not assume any particular distribution

of the data.

Another family of methods are the techniques based on

preserving the topology of the original space. Two well

known methods are ISOMAP [30] and Locally Linear Em-

bedding (LLE) [26]. Both methods are unsupervised and

non-linear. A supervised version of LLE (SLLE) is pre-

sented in [8]. Also, some linear methods are proposed aim-

ing at preserving the topology of the original space: an un-

supervised method, Locality Preserving Projections (LPP)

is presented in [13], and recently, a supervised method, Lin-

ear Laplacian Discrimination (LLD) is presented in [33].

The previous techniques are based on a close solution

for obtaining the optimal projection. On the other hand,

another family of algorithms are based on the iterative im-

provement of the projection under some criterion to opti-

mize. Among others we can cite: Independent Component

Analysis (ICA) [7] that can be categorized as linear and un-

supervised; and Boosted Discriminant Projections [16] and

Genetic Linear Projection (GLP) [23], both categorized as
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linear and supervised.

Other dimensionality reduction methods worth mention-

ing are proposed in [3, 6, 9, 11, 14, 19, 28, 32].

It is important to mention that generally the dimension-

ality reduction techniques are independent of the classifier

being used. This characteristic is good because it does not

force the practitioners to use some fixed classifier, but also,

it seems natural that learning both jointly, the dimension-

ality reduction and the classifier parameters, will lead to

better results.

In this work we propose to use a Nearest-Neighbor (NN)

classifier. The NN classifier has two parameters to estimate:

the distance function and the prototypes used as reference1.

We fix the distance function to the euclidean distance and

the prototypes are estimated following the same ideas pre-

sented in the work of Paredes and Vidal [21]. Since the

NN classifier operates in the projected space, the method

proposed here simultaneously learns both a reduced set

of prototypes and a suitable linear projection. The proto-

types/projection combination is obtained by minimizing an

estimation of the classification error of the NN classifier.

The proposed approach has been assessed through a se-

ries of experiments. In these experiments the algorithm ex-

hibits a good behavior and the results shows the benefits of

the simultaneous learning of the prototypes and projection

base.

The rest of the paper is organized as follows: Section 2

describes the algorithm including its derivation and a dis-

cussion about its behavior. The experiments are presented

in section 3 and finally section 4 draws the conclusions and

directions for future research.

2. Learning Discriminative Projections and

Prototypes

First, we assume that the objects of interest can be rep-

resented by elements of a D-dimensional vector space. We

will refer to this space as the original space and denote it as

E = R
D.

Vectors in the original space can be mapped by a linear

transformation to a space which we are going to refer to as

the target space, and denote it as G = R
R. The mapping is

defined by the matrix B ∈ R
D×R, and its columns compose

the set B = {b1, . . . ,bR} being br ∈ R
D, 1 ≤ r ≤ R.

Vectors in the original space and the target space will be

denoted by x ∈ E and y ∈ G respectively. The linear map-

ping from the original space to the target space is computed

by

y = BT x . (1)

1Generally this set of prototypes is the whole set of labeled prototypes

available, training data. But it is well known that the performance of the

NN rule can be boosted by using simple editing or prototype reduction

techniques which attempt cleaning inter-class overlap regions

We also assume that we have a finite sample of vec-

tors X = {x1, . . . ,xN} ⊂ E with their corresponding

class labels, being C the number of classes. These sam-

ples projected onto the target space compose the set Y =
{y1, . . . ,yN} ⊂ G. This training set is the one used for the

learning of the algorithm, however, this is not the same set

as the one used in the final NN classifier. For this, we define

a new reduced set of prototypes P = {p1, . . . ,pM} ⊂ E
which has the characteristic of being much smaller than the

training set, that is M ≪ N . This set of prototypes pro-

jected onto the target space is Q = {q1, . . . ,qM} ⊂ G. For

convenience, generally the number of prototypes per class

is set to be the same for all the classes, this value will be

denoted by Mc, where Mc = M/C. To avoid confusions

throughout the rest of the paper, we clarify that when we

say training vectors we are referring to elements of X or Y ,

and when we say prototypes we are referring to elements of

P or Q.

The distance used for NN classification will be the eu-

clidean distance between a vector and a prototype, both in

the target space. This distance is given by

d(y,q) =

√

√

√

√

R
∑

r=1

(yr − qr)
2

, (2)

where the sub-index r denotes the rth component.

2.1. Derivation of the Algorithm

The objective is to use a training set X to obtain a dis-

criminant projection base B and a reduced set of prototypes

P that produce a low error rate of the NN classifier in the

target space. For this, we propose to minimize a criterion

index which is an approximation to the NN classification

error of X using P and d(., .). Following a similar notation

as in [21], this NN error estimate can be written as

J(B, P ) =
1

N

∑

∀x∈X

Sβ

(

d(y,q=)

d(y,q6=)

)

, (3)

where y = BT x and q=, q6= ∈ Q are, respectively, the

same-class and different-class nearest prototypes of y. Each

of these prototypes have a corresponding vector in the orig-

inal space, which we denote by p= and p6= respectively.

Note that p= and p6= are not necessarily the same-class and

different-class nearest prototypes in the original space. The

function Sβ(z) is a sigmoid with slope β centered at z = 1,

which is defined as

Sβ(z) =
1

1 + eβ(1−z)
. (4)

Note that as β approaches infinity, the sigmoid function

tends to the step function, and thus the index J is an estima-

tion of the NN classification error using B and P. However,



by using a sigmoid function, the index becomes differen-

tiable. Furthermore the sigmoid function has a smoothing

effect that is beneficial for the behavior of the algorithm.

For further details on this approximation to the NN classifi-

cation error refer to [22].

A gradient descent procedure is proposed to minimize

this index. This requires to take partial derivatives of J
with respect to the parameters being optimized B, and P
(which indirectly optimizes Q). It should be noted that J
depends on B and P through the distance d(., .) in two dif-

ferent ways. First, it depends directly through the projection

base and prototypes involved in the definition of d(., .). The

second, more subtle dependence is due to the fact that for

some y ∈ Y , the nearest prototypes q= and q6= may change

as the projection base and prototype positions are varied.

While the derivatives due to the first dependence can be

developed from equation (3), the secondary dependence is

non-continuous and is thus more problematic. Therefore a

simple approximation will be followed here by assuming

that the secondary dependence is not significant compared

to the first one. In other words, we will assume that, for

sufficiently small variations of the projection base and pro-

totype positions, the prototype neighborhoods remain un-

changed. Correspondingly, we can derive from equations

(2) and (3) the following:

∂J

∂br

≈

1

N

∑

∀x∈X

S′
β (f(y)) f(y)

d2(y,q=)
(yr − q=

r )(x − p=)

−
1

N

∑

∀x∈X

S′
β (f(y)) f(y)

d2(y,q6=)
(yr − q 6=r )(x − p6=)

; (5)

∂J

∂pm

≈

1

N

∑

∀x∈X:

qm=q
6=

S′
β (f(y)) f(y)

d2(y,q6=)

R
∑

r=1

(yr − q 6=r )br

−
1

N

∑

∀x∈X:
qm=q

=

S′
β (f(y)) f(y)

d2(y,q=)

R
∑

r=1

(yr − q=
r )br

. (6)

As it was mentioned before, the super-indexes = and 6= in-

dicate that the prototype is the same-class or different-class

nearest prototypes of y respectively. The function f(y) is

the ratio of the distances to the same-class and different-

class nearest prototypes, that is

f(y) =
d(y,q=)

d(y,q6=)
, (7)

Algorithm LDPP (X, B,P, β, γ, η, ε) {
// X: training set; B, P : initial parameters;

// β: sigmoid slope; γ, η: learning factors; ε: small constant;

λ′ = ∞; λ = J(B, P ); B′ = B; P ′ = P ;

while(|λ′ − λ| > ε) {
λ′ = λ;

for m = 1 . . . M
qm = BT pm;

for all x ∈ X {
y = BT x;

q= = FINDNNSAMECLASS(Q,y);
q6= = FINDNNDIFFCLASS(Q,y);
F= = S′

β (f(y)) f(y)/d2(y,q=);

F 6= = S′
β (f(y)) f(y)/d2(y,q6=);

for r = 1 . . . R {
b′

r = br − F=(yr − q=
r )(x − p=);

b′
r = br + F 6=(yr − q 6=r )(x − p6=);

p=′ = p= + F=(yr − q=
r )br;

p6=′
= p6= − F 6=(yr − q 6=r )br;

}
}
B = B′; P = P ′; λ = J(B, P );

}
return(B, P );

}

Figure 1. Learning discriminant projections and prototypes

(LDPP) algorithm.

and S′
β is the derivative of the sigmoid function (4) with

respect to z

S′
β(z) =

βeβ(1−z)

(1 + eβ(1−z))2
. (8)

Using the derivatives in equations (5) and (6) leads to the

corresponding gradient descent update equations

b(t+1)
r = b(t)

r − γ
∂J

∂br

, (9)

p(t+1)
m = p(t)

m − η
∂J

∂pm

. (10)

2.2. LDPP Algorithm

The gradient descent procedure is summarized in the al-

gorithm Learning Discriminant Projections and Prototypes

(LDPP), see figure 1. From a dimensionality reduction

point of view, it can be categorized as being linear, super-

vised and non-parametric.

The algorithm procedure is somewhat intuitive. The pro-

posed algorithm visits each vector x ∈ X in each iteration

and updates the projection base and the prototype positions.

The projection base is modified so that it projects the vec-

tor x close to its same-class nearest prototype in the target



space, q=. Similarly, the projection base is also modified so

that it projects the vector x far away from its different-class

nearest prototype in the target space, q6=. Simultaneously,

the prototypes of the reduced set Q are modified in the fol-

lowing way: for each vector x ∈ X , its same-class nearest

prototype in the target space q= is moved towards the pro-

jection of x, while its different-class nearest prototype q 6= is

moved away from the projection of x. This desirable move-

ments in the target space are accomplished by the update of

the prototypes in the original space.

We can discuss the problems and disadvantaged that the

algorithm has. First of all, it is iterative and a gradient de-

scent method will only guarantee finding a local minimum.

The solution will depend on the initialization of the pa-

rameters and the learning rates chosen. Finally, in certain

tasks the data distributions could be naturally non-linear,

and therefore using a linear projection could be an impor-

tant disadvantage.

On the other hand, the algorithm has several interesting

properties. The index being minimized is directly related

to the NN classification error, and therefore it is directly

related to the final classifier to use. The update steps are

weighted by the distance ratio f(y) and windowed by the

derivative of the sigmoid function. This way, only the train-

ing vectors which are close to the decision boundaries ac-

tually contribute to the update of the parameters. A suit-

able β value of the sigmoid function should allow the pro-

posed algorithm to learn from the prototypes that lay near

the class decision boundaries, moreover, the windowing ef-

fect of the sigmoid derivative should prevent learning from

outliers whose f(y) value is too large and also should pre-

vent learning from those vectors that are safely well classi-

fied (with f(y) ≪ 1.0). The proposed algorithm also con-

denses the training set into a very compact classifier, and

this added to the fact that it is linear, makes the classifier

extremely fast. In this sense the learned classifier is also ex-

pected to generalize well to unseen data thanks to the con-

densation of the data and the effect of the derivative of the

sigmoid function just mentioned.

It is important to clarify that the projection base B is not

forced to be an orthonormal basis. Also there is no upper

limit in the number of dimensions of the target space, unlike

other discriminative techniques which have a C − 1 upper

bound [10], and even it is not mandatory that the dimen-

sionality of the target space R be smaller than the original

space D.

3. Experiments

The capabilities of the proposed approach have been em-

pirically assessed through three different types of experi-

ments. In the first one, a handwritten digits recognition task

is considered. In the second one a more challenging experi-

ment on Gender Recognition is proposed over an extensive

data set. Finally, the last experiment is carried out over a

Face Recognition task. This last experiment will show the

generalization capabilities of the projection base obtained

by LDPP.

3.1. Handwritten Digits

This experiment is basically the same as the one found

in the work of He and Niyogi [13]. It was conducted using

the Multiple Features Database [1] which is a data set of

features of handwritten digits (‘0’–‘9’) extracted from a col-

lection of Dutch utility maps. This data set comprises 200

binary images per class (for a total of 2,000 images). Each

image is represented by a 649-dimensional vector that in-

cludes: 76 Fourier coefficients of the character shapes; 216

profile correlations; 64 Karhunen-Love coefficients; 240

pixel averages in 2×3 windows; 47 Zernike moments; and

6 morphological features.

With this corpus and using the LDPP algorithm, a 2-

dimensional projection base and one prototype per class

was learned. The corpus was not divided into training and

test sets and all of the data was used for the learning. This

is because the objective of the experiment is just observing

in a 2-D graph the resulting representation of the data.

The initialization of the algorithm was: the first two PCA

components for the projection base; and the class mean for

each prototype. The β parameter was kept fixed to 10 and

the learning factors chosen were γ = 10 and η = 0.1. The

algorithm was executed for 10000 iterations. The results are

presented in figure 2. This figure shows two graphs that plot

the prototype of each class in the target space with the cor-

responding voronoi diagram that they produce. To see the

relationship with the prototypes learned, the training set is

also plotted in the graphs. The first graph shows the initial-

ization, and the second one is the final result obtained with

the algorithm. For comparison of these results with other

techniques on the same data see [13, 23].

This experiment is quite illustrative for showing the ca-

pabilities that the LDPP algorithms offers. Although the

initialization is not very good, as can be observed in the fig-

ure, the algorithm is able to find a projection base that nicely

groups each class making them almost separable. It is worth

mentioning that the graphs in the figure have the same scale

in the horizontal and vertical axis, and it is interesting to

note that for LDPP the variance of the data in both axis is

very similar, therefore the two components have more or

less the same importance. In fact it is like if the data points

within each class were whitened, which is exactly what is

needed if the euclidean distance is used for the NN.

3.2. Gender Recognition

Although there are several works on gender recognition

of human face images [4, 5, 12, 16], there is no standard

database or protocol for experimentation in this task. For
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Figure 2. Prototypes plotted in the target space for handwritten

digits and the corresponding voronoi diagram. Top graph is the

initialization (PCA and class means) and bottom, the final result

learned with LDPP. The graphs also include the training set points

projected onto the target space.

our experiments we have taken a set of 1892 images (946

males and 946 females) from many databases. From each

database we took only the first frontal image of each sub-

ject, however because all of the databases have more male

subjects than female, we only took as many male images

as there were females. More specifically the data set was

composed of the following images: 118 from the AR Face

Database [15]; 82 from the BANCA Database [2]; 22 from

the Caltech Frontal Face Database [31]; 102 from the Es-

sex Collection of Facial Images [29]; 792 from the FERET

Database [25]; 486 from the FRGC version 2 Database [24];

14 from the Georgia Tech Face Database [20]; and 276 from

the XM2VTS Database [17].

The preprocessing done to the images was as follows.

Using manually selected eye coordinates, the face images

were cropped and resized to 32 × 40. Afterward, the im-

ages were converted to gray-scale and histogram equalized

in order to somewhat compensate for global illumination

changes. This gives a 1280-dimensional vector representa-

tion of each image which was what we used for the experi-

ments.

A five-fold cross validation procedure was employed. In

this procedure the data set is randomly divided into 5 sub-

sets, four subsets are used for training and the remaining

one for test. The experiments are repeated each time using

a different subset for test and the results are averaged.

The LDPP algorithm was used to learn a projection base

and a set of prototypes. The number of dimensions of the

target space and the number of prototypes per class was var-

ied, R = {1, 2, 4, 8, 16, 32} and Mc = {1, 2, 4, 8, 16}. The

initialization of the projection base was by using PCA and

for the prototypes the class mean (if there are several pro-

totypes per class, they are initialized to the class mean ran-

domly perturbed). The β parameter was kept fixed to 10 and

the learning factors chosen were γ = 0.5 and η = 1000000.

The algorithm was executed for 10000 iterations.

Approach Dim.
Error (%) Classif. Time

Mean Std. Dev. (relative)

Orig. Space 1280 21.1 1.8 1

PCA 64 20.2 2.5 ≈ 10−1

LDA 1 29.0 2.6 ≈ 10−2

MFA [6] 1 30.9 3.4 ≈ 10−2

CPW [22] 1280 17.4 1.1 ≈ 1

LPP [13] 1 15.6 2.5 ≈ 10−2

LPD [21] 1280 13.3 1.4 ≈ 10−2

SVM N/A 12.0 1.3 ≈ 10−1

LDPP(Mc=1) 1 11.6 1.7 ≈ 10−4

LDPP(Mc=4) 2 10.6 1.6 ≈ 10−3

LDPP(Mc=16) 32 9.5 1.2 ≈ 10−2

Table 1. Gender recognition results comparing baseline techniques

with LDPP.

Table 1 compares a few results for LDPP with some

baseline techniques. For the baseline techniques, the pa-

rameters were also varied and in the table we only show the

best results. Not including SVM, all of the results in the

table use the NN classifier. The vectors used as reference

for the NN classifier are the whole training set except for

LDPP and LPD that use a set of learned prototypes. The re-

sult for SVM was obtained using SVMLight, for CPW and

LPD using R. Paredes’s [21] implementation and for MFA

and LPP using D. Cai’s [6] implementation.

In general, the results for LDPP for all the parameters

tried were very good and with similar error rates. In the

table we only show three representative results. The best

error obtained was for Mc = 16 and R = 32, and it is con-

siderably better than the baseline techniques. The methods

that reduce dimensionality to only one dimension tend to

give high error rates, which is probably due to such a dras-

tic reduction. Nonetheless in this situation LDPP still gives

a competitive result. The table also includes the average

classification time relative to the time for the original space.



As the dimensionality and the number of reference vectors

of the NN classifier are lower, the classification time also

decreases.

 0
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Figure 3. Graph of the index J and the training and test set errors

as the LDPP algorithm iterates. This is for the gender recognition

experiment with R = 16 and Mc = 4.

Figure 3 shows a graph of the index J and the classifi-

cation error of the training and test sets as they vary with

the iterations of the LDPP algorithm. The index J is an ap-

proximation of the training set error, and as expected, in the

graph these two are always very close together. On the other

hand, the test set error tends to be higher than the train set

error. It is important to note that even when the training set

reaches a lower bound (iteration 2000) and the algorithm is

further iterated, the test set error does not increase. In fact

the error rate goes on decreasing. This is a very important

property, the algorithm does not suffer much by over-fitting.

This is mainly due to the basic idea of the algorithm of hav-

ing a low dimensionality and a small set of prototypes that

tend to a good generalization capability.

Thanks to the fact that the feature vectors are images, the

projection base and prototypes learned can also be viewed

as images. An example of this is shown in figure 4 for a

target space of 2 dimensions and 2 prototypes per class. In

the figure, the prototypes and the training set are also plot-

ted in a 2-D graph showing how the prototypes define a fair

decision boundary for the classes. The two projection vec-

tors have the appearance of strange faces which encode the

discriminative features of the genders, however it is difficult

to really interpret them.

3.3. Face Recognition

Probably all of the techniques for discriminative dimen-

sionality reduction (including LDPP proposed in this pa-

per) have as objective to find a space in which the classes

of the training set are well separated. However in some ap-

plications, the real objective is somewhat different. In face
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Figure 4. (a) Prototypes for gender recognition learned with LDPP

for R = 2 and Mc = 2. For the original dimensionality the

prototypes are represented as images, and for the target space they

are plotted in a 2-D graph. The 2-D graph also includes the voronoi

diagram and the training set points. (b) The two projection vectors

represented as images.

recognition there can be a variable number of classes (peo-

ple) and therefore it is desired to train the system with im-

ages of people different from the final users. To this end,

a learned projection base should discriminate faces of peo-

ple in general, not only for the subjects in the training set.

The LDPP algorithm is not designed for this type of prob-

lems because a set of reference prototypes is also learned

and such set is optimized for the training used. However we

are going to show in this experiment that the projection base

learned is adequate for being used without the prototypes.

This experiment is a face identification task, and it is the

same as the one found in the work of Zhao et al. [33]. The

images used are a subset of the facial data in experiment 4

of FRGC version 2 [24]. There are in total 316 subjects,

each one having ten images. The first 200 subjects are used

for the test phase, using the first five images of each subject

for the gallery set and the remaining images for the probe

set. All the images from the last 116 subjects are used for

the training set, which is the one for leaning the projection

base. Using the eye coordinates, the images were cropped

and resized to 32 × 40. The images were also converted

to gray-scale and there was no illumination normalization.

The data set and the experimentation protocol are clearly



explained in [33].

The procedure of the experiment is as follows. The train-

ing set is used to learn a projection base. This projection

base is used to dimensionally reduce the gallery and probe

sets, and a classification error estimation is obtained using

the nearest neighbors of the gallery set. In this procedure

the prototypes obtained from LDPP are never used, they are

discarded after the training phase.

Figure 5 shows a graph of the face identification error

varying the number of dimensions of the target space. The

algorithm was iterated 5000 times using one prototype per

class, β = 10, γ = 0.5 and η = 100. The initialization was

using PCA for the projection base and the class means for

the prototypes. The graph shows a curve for the initializa-

tion (PCA) and another curve for the final result with LDPP.
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Figure 5. Face identification error varying the number of dimen-

sions for the initialization by using PCA and the final result for

LDPP (discarding the prototypes). The error bars indicate the 95%

confidence intervals.

The algorithm consistently improves the projection base

with respect to the initialization. The lowest error obtained

was 9.2% ±1.8 for 512 dimensions, which is competitive

compared to other techniques [33], see table 2. Then effec-

tively the projection base learned with LDPP is a discrimi-

native projection adequate to be used without the prototypes

obtained.

Approach Error (%)

Laplacianfaces 15.0

L-Fisherfaces 9.5

LBP plus Dual LLD 7.4

Initialization (PCA) 31.0

LDPP 9.2

Table 2. Face recognition results comparing baseline techniques

with LDPP.

4. Conclusions

In this paper we have proposed a novel algorithm which

simultaneously optimizes a linear discriminant projection

base, adequate for dimensionality reduction, and a reduced

set of prototypes for Nearest-Neighbor classification. First

the algorithm was formally derived based on a minimiza-

tion of a suitable estimation of the classification error prob-

ability. Afterward, the characteristics, strengths and weak-

nesses of the algorithm were analyzed theoretically and

through a series of practical experiments. Based on the

results of the experiments, we can conclude that the pro-

posed approach is capable of giving a good performance for

a great variety of problems. Furthermore, the learned clas-

sifiers are very compact and simple, making them a good

choice from a practical point of view.

The algorithm was carefully studied in the present pa-

per, however there are still some topics that need to be fur-

ther analyzed. In all of the experiments the initialization of

the algorithm was done using PCA for the projection base

and class means for the prototypes. This is not necessar-

ily a good initialization for every problem, and by using

other methods it is possible to obtain better results and a

faster convergence. Another topic of study is concerning the

learning rates. Currently these are chosen by a trial and er-

ror procedure and there is no clear relationship between the

learning rates of the projection base and the prototypes. An

in-depth study can give a general behavior of these parame-

ters and provide a simple way for selecting them depending

on the characteristics of the task.

Although the technique was tested in a few tasks achiev-

ing successful results, we believe that it has a high practical

value and we want to test it for several other applications.

To name a few there are: classifier combination, biometric

fusion, face verification and face expression analysis. Fi-

nally, another direction for future research will be in the

development of new algorithms based on the same ideas.

The obvious following step is developing a non-linear ex-

tension of the proposed algorithm, for instance, using the

kernel trick.
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