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Abstract
This paper addresses a key bottleneck in the use of the 3D

medial axis (MA) representation, namely, how the complex
MA structure can be regularized so that similar, within-
category 3D shapes yield similar 3D MA that are distinct
from the non-category shapes. We rely on previous work
which (i) constructs a hierarchical MA hypergraph, the
medial scaffold (MS), and (ii) the theoretical classifica-
tion of the instabilities of this structure, or transitions (sud-
den topological changes due to a small perturbation). The
shapes at transition point are degenerate. Our approach is
to recognize the transitions which are close-by to a given
shape and transform the shape to this transition point, and
repeat until no close-by transitions exists. This move to-
wards degeneracy is the basis of simplification of shape. We
derive 11 transforms from 7 transitions and follow a greedy
scheme in applying the transform. The results show that the
simplified MA preserves with-in-category similarity, thus
indicating its potential use in various applications includ-
ing shape analysis, manipulation, and matching.

1. Introduction
The medial axis (MA) of a shape is the closure of cen-

ters of maximal spheres that are at least tangent to the sur-
face at two places. It is a generic representation useful in
many 2D/3D shape modeling applications, including fea-
ture detection (ridges [17], flat/tubular regions [16]), ani-
mation [37], and shape simplification [33]. In computer vi-
sion, the MA is used in shape matching [27, 5], retrieval
[29, 18], morphological analysis, and segmentation [25, 9].

The MA has great promise as a universal model for
shape [20] since: (i) it is intuitively appealing in represent-
ing elongated and branching objects; (ii) a radius function
along theMA trace encodes the varying width of the shape;
(iii) important global features such as curvature extrema
(ridges), necks, limb, thin/thick parts are made explicit; (iv)
a hierarchy of scales is built-in the representation; (v) it is
complete, i.e., a full reconstruction is always possible [11];
and (vi) it provides a powerful framework to model and gen-
erate shapes [35, 22].

The MA structure in 3D is more complex than in 2D

Figure 1. Regularizing theMA of a scan of a hand (≈ 38k points,
from Polhemus) toward simplification. (a) The computed MS
and an associated meshing of the surface (≈ 76k faces) and the
initial noisy MS (9, 574 sheets) [6]. The MA in (b) is greatly
simplified via a series of transforms into a hypergraph of only 10
sheets, 33 curves, and 23 nodes in (c), reflecting the structure of
the shape. (d) is the graph of (c) with sheets implicit, where the
rib curves are shown in blue and axial curves are in red. The fore
finger is zoomed on (e).

since it consists of connected sheets, curves, and points.
Giblin and Kimia classify these points into one type ofMA
sheet, two types of MA curves, and two types of MA
points [12]. This classification has been used by Leymarie
and Kimia [20] to propose the notion of a medial scaffold
(MS), a hierarchical representation of the MA points. Al-
gorithms for computing the MS from unorganized points
have been developed [20, 6], which also effectively meshes
the surface as well, Figure 1a,b. The MA structure is com-
plete, but is also complex and redundant with respect to a
qualitative representation of the structure: as the shape is
perturbed it undergoes transitions, or sudden changes in the
MS topology, so that highly similar shapes can have dras-
tically different MS topology. Giblin and Kimia classify
these 3D transitions of the MS into 7 types [14, 13], as
shown in detail in Figure 2.

This paper addresses a key bottleneck in the use of the
3D MA representation, namely, how the complex MA
structure can be regularized so that similar, within-category
3D shapes yield similar 3D MA that are distinct from the
non-category shapes. Our approach can be illustrated by
relying on a simpler 2D example of Figure 3 [34, 27]: de-
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(a)

(b)

(c)
Figure 2. (a) Seven example shapes near the transition point across
a one-parameter family of shape deformation [13]. (b) Simulation
of the 7 cases of MS transitions. In (c) all medial sheets are hid-
den to better visualize their structures. The 11 MS transforms
related to the 7 transitions are labelled as well.

generate shapes are simpler, so we transform all shapes to
close-by more degenerate shapes as indicated by the near-
transitionMA configurations. The 7 transitions result in 11
transforms (red arrows in Figure 2b). These transforms are
based on topological changes to the MA and to the shape,
and described in detailed here. In fact, they are already
based in computing the MS itself [21, 6].

Our contribution is as follows. First, we present a dual-
scale representation of the MA topology and geometry,
Figure 4, to allow for an explicit computation of the MA
transition (Section 3). Second, we have identified 11 MS
transforms covering all 7 transitions in Figure 2. In par-
ticular, traditional pruning of the MA can be recognized
as the splice transform, but where our transform in addi-
tion to removing a medial sheet branch, also merges the re-
maining sheets. All other transforms (contract, merge) op-
erate in the same spirit to fully simulate all transitions. Our

Figure 3. Stable MA regularization by grouping similar shapes
under perturbation into equivalence classes and simplifying them
toward a representative shape (center of arrows) of each class.

Figure 4. The proposed dual-scaleMS representation to simulate
the trueMA of the underlying shape. The coarse-scale is a hyper-
graph capturing the topology and the fine-scale is a (not necessary
manifold) mesh capturing the geometry and other information.

MS regularization process consists of a sequence of trans-
forms rank-ordered by a saliency measure (Section 4) and
performed in a greedy least-cost first fashion. Third, a com-
putational scheme to realize the proposed framework in
practice is also developed (Section 5). Our system takes in-
put up to 300k points and computes the regularizedMS ef-
ficiently and virtually with no manual parameters involved.
We associate all sample points on the shape with their cor-
responding MS elements and maintain them consistently
during all transforms. The advantage is a coupled shape-
skeleton structure suitable for subsequent shape modeling
applications (Section 6) 1.

Our transform-based MA regularization is drastically
different from the traditional approaches which focus on
pruning medial sheets, which is tantamount to effecting
two types of transforms (splicing out protrusions A1A3-
I and A2

1A3-II) 2. However, they are silent on structural
inter-connectivity between the sheets which are illustrated
in Figure 2 and do occur in practice all the time (see Sec-
tion 2 for details). Our approach not only advocates a holis-
tic component-based transformation in the first two cases
(as opposed to element-based pruning), but also introduces
nine additional cases which are required in an effective reg-
ularization of the MA so that the qualitative structure of

1 The related work of pair-mesh [Shamir & Shaham, GM’06] also pro-
vides a coupled structure. However, a solid mesh is assumed (for the inner
VD and the PowerCrust) and it works in a different manner.

2 The notation An
k indicates k-fold tangency at n points. A1 is regular

tangency.



the MA emerges; see Figure 12 as an example.
Another advantage of computing a qualitative MA

structure is the computation of two types of curves which
have played a significant role in other work on 3D shape
representation; namely, ridges and generalized cylinder
axes. A ridge is a reconstruction of an A3 rib curve and
a generalized axis is the A3

1 axial curve (see Section 3 for
notations) 3.

2. Related Works
Existing works in 3D MA computation and regulariza-

tion have been diverse and differ in the philosophy as well as
in the representation. MajorMA computation methods can
be broadly organized into five categories based on: (i) thin-
ning by peering layers of elements until theMA is reached,
(ii) ridge following on the distance map, (iii) solving the
PDE of Blum’s grass-fire like front propagation [4], (iv) re-
fining the Voronoi diagram (VD) of sample points toward to
the MA, and (v) computing the interior MA from a solid
polyhedral shape, etc. For a detailed survey, see [20]. After
computing the 3DMA, the following step of regularization
is usually necessary (due to the ubiquitous instability) and is
in some cases embedded with the prior. Several MA reg-
ularization techniques have been independently developed
but rather share common ideas and mainly vary in how the
MA elements are selected to prune. We briefly review them
and for in-depth surveys, see [2, 32, 10, 26, 34].

Voronoi refinement: A major approach to 3D MA ex-
traction is to compute a Voronoi diagram of the sample
points and then refine it toward theMA. In the early works
of [24, 3], the interior Delaunay tetrahedra are deleted in
layers while maintaining topological consistency. The main
problem is that there exist Voronoi vertices near the object
surface (centers of flat Delaunay tetrahedra called ‘slivers’)
that restrain the regularization process. Such ‘slivers’ can
be filtered out using the poles of Amenta et al. [1]. In the
PowerCrust approach [1], the MA is computed using the
power diagram (a weighted VD) of the inner poles. The
MA is then simplified by removing poles of small surface
features or with contact balls overlapping significantly. Al-
though this method has some theoretical support, it requires
two passes of Voronoi computations and the resulting MA
is not on the Voronoi complex of the input (and needs ad-
ditional heuristics to clean up). A following work in [10]
extracts the MA by directly filtering the VD. A Voronoi
face is removed if (i) the angle between the estimated sur-
face normal and its dual Delaunay edge is not small, (ii) the

3 We point out two related works. (i) The λ-MA [7] gives theoretical
support on regularizing the rib curves by pruning all elements closer to
the shape boundary (within the threshold λ). (ii) Notably, the approach in
[37, 17] extracts smooth rib curves by representing the (Voronoi-refined)
MA as a two-sided non-intersecting surface and apply standard Laplacian
smoothing (and loop subdivision) on the MA manifold. However, all
interior structural connectivity (junctions) of theMA is lost.

ratio of the object feature size to its radius is small, which
is related to the MA significance 4. The resulting MA
may contain unwanted internal ‘holes’ and the association
between input samples and the MA can be lost.

Recent development in MA simplification has focused
on retaining the homotopy in the process. Informally, the
purpose is to ensure that the topology between the shape
and theMA are the same 5. The work in [33] uses the Pow-
erCrust to compute the MA and ‘peels’ off medial sheets
according to (i) the sheet size (number of triangles) and (ii)
its corresponding shape volume (estimated using the Delau-
nay tetrahedra), while maintaining the topological consis-
tency. In [31], the m-Rep is extracted from an inner Voronoi
skeleton via the pruning and merging of medial sheets while
minimizing the change of the underlying shape according
to two criteria similar to [33]: (i) the sheet area (number of
vertices) and (ii) its corresponding shape volume. The re-
cent flow complex (FC) [15] extracts theMA from the VD
based a Morse analysis on the radius flow and is closely
related to our approach. A possibly extendable core (set
of ‘unstable manifolds’) is computed from the flow analy-
sis on the VD to approximate the MA. We point out that
our approach is based on a singularity analysis [12, 20] and
produces a richer set then the FC 6.

Refining the MA of a polyhedron: Another branch of
research extracts 3D MA from a (solid) polyhedral mesh
and regularizes it. In [32], MA branches are pruned using
a separation angle related to the MA significance. The
homotopy of the MA is preserved by only removing non-
interior medial sheets. In [30, 28] theMA is computed and
pruned simultaneously by measuring the average flux of the
gradient of the distance field in each voxel.

Curve skeleton: A different branch of research extracts
a 1D curve skeleton (CS) out of a 3D shape (instead of the
2D sheets). The CS is more simplified than theMA, but its
mathematical formulation is still an open question [8] 7.

3. Representing theMS Hypergraph Topology
We briefly describe the general topology of the MS hy-

pergraph, i.e., the incidence relationship between the me-
dial sheets (A2

1), curves (A3, A3
1), and nodes (A1A3, A4

1)
[12] and propose an efficient data structure to represent it.
This representation shall approximate the trueMA, captur-

4 The significance of a MA branch is related to the corresponding
object angle θ and the MA formation speed v. At any MA point p, v
changes with an angle φ between the MA formation direction and the
vector from p to the corresponding object point: v = −1/ cos φ [11].

5 Lieutier shows that any shape are homotopy equivalent to its MA
[Lieutier CAD’04].

6 All the “relay” type of shock vertices (A2
1-3, A3

1-3) [20] are not iden-
tified as critical points in the Morse analysis in the flow complex frame-
work. Omitting these singular points makes their subsequent analysis and
algorithms different from ours.

7 The CS has been related to the MA via a geodesic function on the
medial sheets by Dey and Sun [SGP’06].



Figure 5. The general topology of an A2
1 shock sheet S in the

MS hypergraph and its representation using the extended half-
edge (EHE) data structure. (a) Three possible types of sheet-
curve incidence of S: the boundary curve, anchor curve (with a
tab T ), and swallow-tailed self-intersection. The topology of the
2-incident anchor curve (double red curve) is represented by two
half-edges in (b). The 3-incident swallow-tailed self-intersection
(triple red curve) is represented by 3 half-edges both in a loop (at
the junction) and in a chain in (c).

ing both global structures and local details, and enable the
implementation of hypergraph edits in the transforms. Our
solution is a dual-scale representation (Figure 4): The fine-
scale hypergraph is a polygonal mesh consisting of mesh
face/edge/vertex elements, typically non-manifold at the in-
tersection of medial sheets, which captures detailed infor-
mation such as the geometry, radius, associated boundary
points (generators), dynamics (speed v, etc.) of the MS .
The coarse-scale is a similar structure, but representing
groupings of sheets, curves, and nodes towards a topologi-
cal hypergraph also consisting of sheet/curve/node compo-
nents as hyperlinks/links/vertices, respectively. The coarse-
scale representation captures the shape after applying the
simplifying transforms.

The grouping of individual sheet elements into a larger
scale sheet implies that the coarse-scale medial sheet S in
general may contain the following three kinds of bound-
aries (Figure 5): (i) a 1-incident boundary curve including
the A3 ribs and A3

1 axials bordering other sheets 8; (ii) a
2-incident anchor curve internal to S where another me-
dial sheet branch (tab) intersects the sheet; (iii) a 3-incident
swallow-tailed self-intersection of S close to the A5 transi-
tion (detailed in [13]), which can be viewed as that the A3

1

curve is triply incident to S in a loop, and the 3 incidences
is also ordered as a single boundary chain (bordering the
boundary of S), Figure 5c.

We adopt the popular half-edge (HE), an edge-centered
data structure capable of maintaining incidence information
of faces/edges/vertices, to efficiently describe the MS hy-
pergraph topology 9. The use of half-edges to describe the
incidence relationship between elements of a hypergraph

8 The boundary curve of any internal ‘void’ of the sheet S (which can
be either a true hole or part of other sheets) also belongs to this category.

9 The original HE is designed for (and only applies to) a 2-manifold
mesh with limitations. It can not represent a mesh with a degenerate vertex
(which if removed, the mesh is disconnected) or a degenerate edge (which
is with no incident face). For recent development of 3D non-manifold
object modeling, see e.g., [Floriani, Hui, SGP’03].

and those of an ordinary mesh is similar. The major dif-
ference is that non-planar variations of hypergraph sheets
may cause additional topology described above. We ex-
tend the original HE with new capabilities to handle (i)
non-manifold junctions by extending the half-edge’s pair
pointer into a circular loop at a junction (Figure 5c), and
(ii) degenerate mesh configuration by storing the vertex-link
incidence at each vertex (with a dynamic array). The ex-
tended half-edge (EHE) data structure enables all elements
in the hypergraph to efficiently traverse all incident objects
while keeps only the necessary information. We also adopt
a reduced version of the EHE for the fine-scale MS mesh,
where the topology is more simplified (with planar convex
polygons). The coarse-scale MS components has point-
ers to access the fine-scale elements as shown in Figure 4.
Some details out of scope is omitted due to the space limit.

4. Medial Scaffold (MS) Transforms
The use of transforms in MA regularization requires

three items: (i) saliency measure: estimating the cost of cor-
responding shape deformation, (ii) detection: identifying
whether any part of a MS hypergraph is close to any tran-
sition and rank order candidate transforms by their saliency
measures, and (iii) operations of the transform, which in-
cludes two parts: the MS hypergraph edit and the update
of the corresponding shape.

The seven transitions of the MA in Figure 2 cannot all
be approached from both sides of the transition. As the red
arrows of Figure 2b show, this gives 11 transforms and can
be organized into three main categories: splice, contract,
and merge. These can be further sub-categorized depend-
ing on whether the transform operates on a medial sheet,
curve, or node which gives 6 sub-categories: sheet-splice,
curve-contract, sheet-contract, node-node merge, node-
curve merge, and curve-curve merge. Figure 6 presents a
visual summary of the transforms.

The splice transform removes a non-interior medial
sheet (tab) T and merges the remaining sheets at the A3

1

axial curve C, as illustrated in Figure 6a,b. There are two
types of sheet-splice transforms: the A1A3-I prunes and
merges sheets as described, and the A2

1A3-II contains ad-
ditional merging of the remaining medial curves C1 and
C2. The cost of a splice transform is estimated from the
tab T ’s saliency using two criteria: (i) the number of as-
sociated generators (for small tabs) and (ii) the correspond-
ing change of shape volume divided by the average radius
(∆V/r, for large tabs) 10. With the removal of T , its asso-
ciated generators are associated with C for consistency. The
change of object shape can be ignored for a small tab; and

10 Comparing to [33, 31], our use of generators is a better measure for
small tabs (assuming rough uniform sampling). To accurately estimate the
saliency for larger tabs, incorporating the local feature size (w.r.t the ra-
dius) is better in keeping small but salient tabs. See [34] for a 2D analysis.



Figure 6. Operations of the eleven types of MS transforms. (a-b) the splice transforms and (c-d) the contract transforms on the boundary
medial sheets. (e-g) the contract transforms and (h-k) the merge transforms on the interior medial sheets of the MS hypergraph.

for a large tab, a ‘cut-off’ patch of the corresponding pro-
trusion is computed similar to [21] in a zigzag fashion. We
observe in practice that the splice transforms simplify the
MS quite significantly, Figures 8 and 9.

The contract transforms contract a medial curve C or
a medial sheet S . Depending on whether the change is
near the boundary (A3 rib) or at the interior (A3

1 axial)
of the MS, they are organized into two classes: (i) the
A5 and A2

1A3-I curve-contract transforms regularize the
boundary, and (ii) the A5

1 curve-contract and A5
1/A4

1 sheet-
contract transforms regularize the interior of the MS . In
the A5 curve-contract transform, the ‘swallow-tail’ of the
sheet S can be removed by identifying a mid-point m on
the A3

1 curve C and ‘trim’ out the two intersecting wings
(by applying splice transforms element-by-element) such
that the self-intersection is removed, Figure 6c. The two
trimming points u/v on the two rib curves R1/R2 (respec-
tively) are estimated with a proper scale, and the two trim-
ming paths um/vm is computed as a geodesic shortest path
on S . We approximate the shortest path by applying Dijk-
stra’s algorithm (treating the fine-scale mesh edges/vertices
as a graph) so that no cutting through sheet elements is in-
volved. Additional constraints are applied in the shortest
path searching to ensure that the swallow-tail topology is
completely removed. Similar approach is used in the A2

1A3-
I curve-contract transform, where only one such trimming
is sufficient at the end of the tab T , Figure 6d. The cor-
responding shape changes of these two transforms are typ-
ically small and can be safely ignored. The costs are ap-
proximated using the length of the A3

1 curve C under con-
traction. We observe in practice that the two transforms
simplify the topology near the MS boundary significantly,
Figure 9f,g.

The four transforms introduced so far simplify the
boundary of the MS by removing medial sheets (by el-
ements or by component) and can be performed explic-
itly on both scales of the MS. In contrast, the remaining
seven transforms edit the interior of the MS and require a

‘simulation’ of edits on the coarse-scale hypergraph, while
keeping the fine-scale elements intact. Their costs can be
roughly estimated using the length of the curve (or area of
the sheet) under contraction or merging. The modification
of corresponding shape changes require detailed investiga-
tion and is omitted here.

In the A5
1 curve-contract transform, an A3

1 axial C is con-
tracted into an A5

1 node N by keeping one of C’s end point
asN and repeatedly merging C with other A3

1 curves on the
three incident sheets (S1,S2,S3), Figure 6e. The A5

1 sheet-
contract transform is performed similarly that the sheet S is
separately merged with with two sheets S1 and S2 so that
N is the final A5

1 node, Figure 6f. The curve pq previously
bordering S , S1, and S2 is virtually removed (in the coarse-
scale) 11. The above ‘merging’ operations involves cloning
of fine-scale MS elements, which can be done by simply
adding a pointer to the coarse-scale object. The two scales
of representations may thus contain different (but each self-
consistent) topology. The A4

1 sheet-contract transform is
performed similarly by merging S and S2, Figure 6g.

The merge transforms merge medial curves or nodes
and are also performed in a simulated fashion. In addition,
a geodesic distance transform is required to detect candi-
date positions in the MS hypergraph for these transforms.
Both the Dijkstra’s algorithm or the popular fast marching
method (FMM) can be applied to approximate such a dis-
tance field. Figure 7 show two examples in taking all vertex
elements on the medial curves as sources and computing
the distance field on all medial sheets using FMM. In the
A1A3-II node-node merge transform, two tabs T1 and T2

are merged at a node N , Figure 6h. In the A2
1A3-I node-

curve merge transform, a node N is merged with a curve C
and split it into C1 and C2, Figure 6i. The A4

1 and A1A3-
II curve-curve merge transforms are similar that two nodes
N1 andN2 are merged into a nodeN , Figure 6j,k. We omit
implementation details due to the space limit.

11 The A5
1 node should have 6 incident curves and 9 sheets, the A4

1 node
should have 4 curves and 6 sheets, which are all correctly simulated.



(a) (b)
Figure 7. The use of geodesic distance transform on the medial
sheets to detect the next possible transition with the lowest cost:
(a) The distance map of the MS near an A2

1A3-I transition taking
all vertex elements on the sheet boundary as sources (blue). (b)
Result of the distance map on the MS of the Stanford bunny.

(a) (b) (c)

Figure 8. Regularizing the MS of a prism shape. (a) The imme-
diate MS after the shock segregation (meshing) process [6] con-
tains numerous noisy “spiky” medial tabs. (b) Grouping the me-
dial sheets inside a bounding box into components (yellow: a sin-
gle sheet element, green: component with 2 elements, gray: sheets
connecting to the exteriorMS, other sheets are in random colors).
(d) The splice transforms remove the spiky tabs; the remaining
MS hypergraph is shown in wire frame to depict its structure.

The above 11 transforms completely cover all 7 transi-
tions in [13]. Our framework is augmented with two ad-
ditional transforms, namely, the gap and loop transforms.
The gap transform has been used in [6] to segregate the full
MS to reconstruct the surface and yield an initialMS . The
loop transform can be used to remove noisy sample points
(see [19] for its use in 2D).

5. Computational Scheme for MS Transforms
The proposed transforms could be applied to regularize

theMS in any arbitrary order, and finding the optimal order
is computationally expensive and not practical. We consider
all transforms in a greedy fashion based on their costs. Ide-
ally, we can start with any initial MS and apply all trans-
forms (including the gaps and loops) until finish. But this is
also not practical, since initially the set of medial elements
are large and only a few of them shall remain. Our strategy
is to (i) group together transforms of the same type with
similar costs into iterations, and (ii) perform the transforms
that are local and which simplify the MS effectively, then
(iii) construct the coarse-scale MS and continue to apply
all transforms. The computational pipeline is as follows.

Our approach takes unorganized sample points (or poly-
gon clouds with a sampling) as input and compute the full

Figure 9. Regularizing the MS of a complex shape—the Stan-
ford dragon head (127k points). (a) Both the interior and exte-
riorMS (74k sheets) after shock segregation are extremely noisy.
The interior MS (35k sheets) in (b) is simplified in a first stage,
splice regularization, into 285 sheets, and the coarse-scale hyper-
graph (1, 695 curves, 1, 446 nodes) is built as in (c). The MS
hypergraph is then further regularized by a second stage involving
all transforms, ending up with only 76 sheets, 262 curves, 219
nodes in (d). (e) shows the effect of splice transforms to remove
and merge several sheets. (f-g) shows numerous A5 swallow-tails
removed by the contract transforms: near the tooth (f) and the
horn (g). (h) shows the MS graph of (d) with sheets implicit to
better visualize its interior structure. (i-j) depicts the effect of con-
tract and merge transforms in simplifying the interior hypergraph
topology: near the neck (i) and tongue (j).



Figure 10. The regularized MS of (a-c) a toy dinosaur model
(14, 050 points) and (d-f) a rocker arm (40, 177 points), data from
Cyberware. Both MS after regularization appear to be neat in
structure and are close to the object surface to capture fine details.
The tightly-coupled surface regions of the MS in (b,e) are suit-
able for further shape modelling and segmentation use.

MS [20]. The shock segregation [6] is then performed,
where the gap transforms reconstruct the object surface
and produce an initial MS , which typically contains very
noisy ‘spiky’ medial tabs, Figures 8a,b and 9a. We perform
the splice regularization—a greedy iteration of only splice
transforms to remove such small tabs (ordered by their as-
sociated number of generators) which greatly simplifies the
MS , Figures 8b-c and 9b-c. The coarse-scale MS is then
built by a connected component analysis. Finally, we apply
the greedy iteration considering all transforms on the MS
(the all-transform regularization), where all unstable tran-
sitions with costs less than a threshold are removed.

Two optional steps can be applied in the above process to
refine the MS: (i) Select the interior/exterior MS compo-
nent(s) by e.g., filtering the MS with a bounding box (Fig-
ure 8a-b) and picking the largest MS component. (ii) Reg-
ularize the rib curves in two ways: (a) Apply splice trans-
forms to remove MS elements with radius smaller than a
threshold (an idea related to the λ-MA [7]). (b) Smooth
the rib curves using discrete curve shortening: move each
rib vertex of high curvature toward the bisector of the two
neighboring vertices.

6. Experimental Results and Conclusion
We have extensively tested the proposed framework on

a large variety of 3D dataset, including artificial shapes to
simulate all transitions (Figures 2 and 8), general shapes
with salient structure and local details (bunny (Figure 7),
dragon (Figure 9), dinosaur (Figure 10a-c), pot fragments
(Figure 11)), shapes for industrial applications (fan disk
(Figure 4) and rocker arm (Figure 10e-f) from Cyberware),
and medical applications (hand (Figure 1), carpal bones

(a) (b) (c)
Figure 11. (a) Mapping theMS rib curves to the surface yields the
ridge points (in red, see also [17]). (b-c) The structural informa-
tion of theMS graph/hypergraph is useful in matching the ‘break
curves’ (ridges) in assembling archaeological pot sherds [36].

(a) (b)

(c) (d) (e)
Figure 12. The regularized MS of the carpal bones (hamates)
from several patients are similar in the structure, suggesting the
application in shape matching and shape-based diagnosis (data is
courtesy of Dr. Crisco, RI Hospital [23]).

(Figure 12)).
Our system handles up to 300k points of input (the bot-

tleneck is the large initial full MS limited by 2GB of com-
puter memory). The regularized MS is computed from
a few seconds to a few minutes. In comparing to exist-
ing Voronoi refinement results, ours exhibits three advan-
tages: (i) The MA is better regularized on both the bound-
ary and the interior topology, (ii) The MS (rib curves) are
closer to the object surface, indicating that our regulariza-
tion is better in capturing finer details, even in the case of
sparsely-sampled or ill-sampled inputs (for example see the
dinosaur’s hands in Figure 10a). (iii) All our results are ob-
tained from the sole assumption of unorganized points with
reasonable sampling (and nothing further). We can handle
shapes with boundary where there is no distinguishing be-
tween the interior/exterior MA.

Applications: The regularized MS is promising in sev-
eral shape modeling applications, due to its stability: (i)
Figure 11 shows an application to detect ridges as well as
match the rib curves and the interior structures of theMS to
match the shape fragments. (ii) The corresponding surface
regions of the medial sheets are made explicit (Figure 10b,e)
to capture the (volumetric) solid of the shape, which also
give an initial segmentation of it (which can be further re-
fined). (iii) The regularized MS is particularly useful in
skeleton-based shape matching [5]. Figure 12 shows a set of
carpal bones with variations while theirMS are still highly
similar in the structure, demonstrating the potential to ro-



bustly match/register 3D shapes. (iv) The regularized MS
also fits well in skeleton-based animation [37] and shape
morphing.

Conclusion: We have presented a framework of MS
transforms to stably regularize the MA across transitions
and propose a dual-scale representation to realize it in prac-
tice. Future works include deriving a better cost estimation
and a consistent way to update shape changes for the inte-
rior contract and merge transforms, so that the MS trans-
forms can fully model generic shape deformations.
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