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Abstract

Traditionally, object recognition is performed based
solely on the appearance of the object. However, relevant
information also exists in the scene surrounding the object.
As supported by our human studies, this contextual informa-
tion is necessary for accurate recognition in low resolution
images. This scenario with impoverished appearance in-
formation, as opposed to using images of higher resolution,
provides an appropriate venue for studying the role of con-
text in recognition. In this paper, we explore the role of con-
text for dense scene labeling in small images. Given a seg-
mentation of an image, our algorithm assigns each segment
to an object category based on the segment’s appearance
and contextual information. We explicitly model context be-
tween object categories through the use of relative location
and relative scale, in addition to co-occurrence. We per-
form recognition tests on low and high resolution images,
which vary significantly in the amount of appearance infor-
mation present, using just the object appearance informa-
tion, the combination of appearance and context, as well as
just context without object appearance information (blind
recognition). We also perform these tests in human stud-
ies and analyze our findings to reveal interesting patterns.
With the use of our context model, our algorithm achieves
state-of-the-art performance on MSRC and Corel. datasets.

1. Introduction

Traditionally, research on recognizing object categories
in images has focussed on appearance information pertain-
ing only to the object itself. For instance, parts-based ap-
proaches [1, 2] recognize objects by localizing a set of parts
corresponding to the local appearance and structure of the
object. Popular datasets such as the Caltech datasets [3, 4]
have been constructed specifically for such a treatment,
where the object to be recognized is found in the center and
occupies a significant portion of the image.

(a) (b) (c)

(d) (e) (f)

Figure 1: Example of recognition using appearance alone
(a,d), using context alone, i.e. blind recognition (b, e) and
context and appearance combined (c, f) for low resolution
images (a, b, c) and high resolution images (d, e, f). For
low resolution images, context is necessary for recognition
given the small amount of information provided by the ap-
pearance, which is not the case for high resolution. Hence,
we advocate exploring context in low resolution images.

In natural images, relevant contextual information about
the object also lies in the scene surrounding the object. Re-
cently, many works [5–17] have attempted to move beyond
a purely appearance-based approach by incorporating con-
text using several approaches. Global scene information,
such as global texture [8, 17] or 3D scene information [6],
can be used as context to reduce the set of possible ob-
jects that may be present in the scene, or to reduce the
possible locations of the objects [6, 8, 9, 16, 17]. Context
may also be modeled locally by examining neighboring tex-
tures [11, 13], by extracting multi-scale features [10], or by
modelling interactions between neighboring regions in the
images [10, 12, 14].

Instead of using context to model scene or local tex-
ture properties, context may also be used to model higher-
level, potentially semantic, interactions among objects [5,
7]. Torralba et al. [7] detect easier to recognize objects
first, which in turn aid in the detection of harder objects.
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Hoiem et al. [6] use information from multiple object types
by taking advantage of viewpoint information about the
scene. Rabinovich et al. [5] and Singhal et al. [15] pro-
posed the explicit modeling of inter-object context using
object co-occurrence, and hand-coded spatial relationships
respectively. An unsupervised approach to learning object
relationships is proposed by Parikh et al. [18].

In many scenarios addressed by prior works context
is used to increase recognition accuracy, but it is unclear
whether improved use of appearance information could give
similar performance boosts. However, there exist several
scenarios in which an object’s appearance alone is clearly
insufficient for recognition. For instance, the amount of
appearance information may be limited due to bad image
quality, viewing of a scene from a distance, low image reso-
lution, etc. If the amount of intra-class appearance variation
is high, or the inter-class appearance variation is low, con-
text may be needed to disambiguate an object’s category.
For example, clothing varies drastically in appearance and
is mainly defined by its position relative to the body. Some
object categories such as sky and water, or TV screen and
computer monitor have very similar appearance, and may
only vary in their relative locations and object surroundings.

In this paper, we explore object level context in the sce-
nario of impoverished image data. Specifically, our goal
is dense object labeling in extremely low resolution images.
The need for effective computer vision in low resolution im-
ages has many practical standings. Low resolution images
are space efficient and allow for much faster processing and
streaming. Many devices such as cell phone cameras and
web cameras often produce low quality and low resolution
images. Images of far away scenes, or images of cluttered
complex scenes result in the effective resolution of the indi-
vidual objects being quite small. The use of low resolution
images has also been explored by Torralba et al. [19] for the
recognition of scene categories and object detection using a
large database of labeled images. Efros et al. [20] recognize
human actions in distant videos where the effective resolu-
tion of sportsmen is very small.

As we show in later sections, human studies verify that
appearance information alone is not enough for accurate ob-
ject recognition in low resolution images. However with
the use of context, we find that humans can recognize ob-
jects quite reliably, as also observed by Torralba et al. [19].
In fact, for the task of blind recognition where appearance
information is withheld and only contextual information is
given to the subject, recognition accuracy is roughly equal
to that of using appearance alone. These studies verify that
the task of recognition in low resolution images is an inter-
esting venue for modeling context.

We achieve dense object labeling by assigning labels to
a set of pre-computed segments. The segment labels are
assigned to be consistent with the contextual information

learned from the training data set. The beliefs in a seg-
ment’s labels are computing using a fully connected Con-
ditional Random Field (CRF) with the segments acting as
nodes. Context is modeled using the pairwise potentials of
the CRF. This formulation allows for the use of a wide va-
riety of contextual information.

Our contributions in this paper are as follows. We per-
form object recognition in low resolution images; an ap-
propriate scenario for exploring context in which context
is necessary for accurate recognition. We model con-
text explicitly, and incorporate inter-object relationships in
terms of relative location and scale in addition to object co-
occurrence. To explore the utility of appearance and con-
textual information we perform tests on both low and high
resolution images, using just object appearance informa-
tion, using context without object appearance (blind recog-
nition), and the combination of appearance and context.
These tests were performed both in human and machine ex-
periments. State-of-the-art performances are achieved on
the MSRC [21] and Corel [22] datasets.

The rest of the paper is organized as follows. Section 2
describes our context model. Section 3 describes the exper-
imental set up for our human studies and machine experi-
ments, and provides results and related analysis.. Section 4
raises some interesting points of discussion, followed by a
conclusion in Section 5.

2. Approach
Our goal is to utilize context for recognizing objects in

very low resolution images. We obtain these low resolu-
tion images by down-sampling images of higher resolution.
The aspect ratio of the original image is maintained while
reducing the larger dimension to 32 pixels. Torralba et
al. [19] show that humans can recognize objects in 32× 32
images, which our human studies also confirm. Further
down-sampling results in a significant degradation in per-
formance [19]. We also apply our method to the original
resolution images to study the trade off between appearance
and context in different scenarios. The following discussion
is common for images of either resolution.

The task we consider is to semantically label every pixel
in an image. We approach this task at the region or seg-
ment level since good spatial support is shown to signifi-
cantly help recognition [23, 24]. Hence, our task is to rec-
ognize the content of every segment in an image from a
pre-determined list of C possible classes. In addition to
the appearance information pertaining to the region itself,
which we refer to as the data term, we wish to capture the
interactions among the different segments through context.

We model this through a fully connected pairwise Condi-
tional Random Field (CRF) similar to [5], where each node
corresponds to a segment in the image, and the edges corre-
spond to pair-wise contextual interactions between the seg-



ments. In our experiments, the number of segments per im-
age was on average 7 and never exceeded 17, which made
such a model feasible. For more complex scenarios contain-
ing a larger number of segments, the structure of the graphi-
cal model should be intelligently chosen or learnt from data.

We define the conditional probability of our class labels
given the segments within our CRF as

P (c|S) =
1
Z

N∏
i=1

Ψi(ci)
N∏

i,j=1

Φij(ci, cj), (1)

where Z is the partition function. The data term Ψi(ci)
computes the probability of class ci given the appearance
of segment Si ∈ {S1, . . . , SN}. The pair-wise potentials
Φij(ci, cj) capture the contextual information between seg-
ments using co-occurrence statistics from training data at
different locations and scales.

2.1. Appearance

Our data term Ψi(ci) = p(ci|Si) depends on the tex-
ture, shape and color of the segment. To incorporate the
texture and shape information, we use the TextonBoost [11]
code [25] with one modification. TextonBoost incorpo-
rates context through the appearance of surrounding texture
patches. Since we are interested in modeling context at the
object level and not implicitly through features, we trained
TextonBoost on individual objects and not entire images,
using the ground truth segmentations. Thus any contextual
information captured by TextonBoost from surrounding ob-
jects was removed. In our experiments 700 rounds of boost-
ing were performed instead of 5000 as used in [11]. The
resulting class likelihoods for each pixel found by Texton-
Boost are averaged across each segment to obtain a vector
with length C equal to the number of possible classes.

To incorporate color, we train a Gaussian Mixture Model
(GMM) for each class. We used 7 Gaussians per class in
the three-dimensional RGB space. The likelihoods for each
pixel are averaged across the segments to obtain a C length
vector. In order to combine the results of TextonBoost and
the color GMM to obtain Ψi(ci), we use an approach simi-
lar to He et al. [10]. The two C length vectors are concate-
nated and passed through a multi-layer perceptron neural
network with C outputs. We used 20 hidden layer nodes in
our experiments with a sigmoid transfer function.

2.2. Context

The edge-interactions Φij(ci, cj) capture the contex-
tual information between segments Si and Sj through co-
occurrence counts given the segments’ locations and scales.
This is modeled as

Φij(ci, cj) = [φij(ci, cj) + ε]η. (2)

In all our experiments, ε was fixed to be 1 and corresponds
to a weak Dirichlet prior. η was 0.02, which controls the
effect of context with respect to the data term. Further,

φij(ci, cj) = κ(ci, cj)λij(ci, cj)ϕij(ci, cj), (3)

where κ(ci, cj) captures the likelihood of classes ci and cj
co-occurring in the image, λij(ci, cj) represents the likeli-
hood of segments Si and Sj co-occurring at their observed
locations given assignments to classes ci and cj , and sim-
ilarly ϕij(ci, cj) represents the likelihood of segments Si
and Sj co-occurring with their observed scales given as-
signments to classes ci and cj . We describe these next.

Co-occurrence: κ(ci, cj) is the empirical probability of
classes ci and cj co-occurring in an image. This is learnt
through MLE counts from the labeled training data.

Location: We model the location of a segment in an im-
age using a Gaussian Mixture Model with L = 9 compo-
nents. For our experiments the Gaussian means are centered
in a 3 × 3 grid with standard deviations in each dimension
equal to half the distance between the means. We define the
value αl(li) as the average likelihood of Si’s pixels being
in component l ∈ L. Since most images have a horizon-
tal layout we also tried using only 3 bins spaced vertically
apart, but the results were significantly worse. The value of
λij(ci, cj) is computed as

λij(ci, cj) =
L∑
li=1

L∑
lj=1

αl(li)αl(lj)θl(li, lj |ci, cj), (4)

where θl(li, lj |ci, cj) are parameters estimated from train-
ing data through MLE counts. More specifically,
θl(li, lj |ci, cj) is the empirical probability of the segments
Si and Sj occurring at locations li and lj given their assign-
ments to classes ci and cj . It should be noted that this is a
joint distribution, and thus includes both the absolute loca-
tion and relative location statistics i.e. θl(li, lj |ci, cj) com-
bines the information θl(li|ci) and θl(lj |li, ci, cj). Since
the absolute location is measured relative to the image, the
statistic θl(li|ci) can be viewed as contextual information
relative to the entire image.

Scale: The scale is defined as the proportion of the num-
ber of pixels in the segment with respect to the number of
pixels in the image. As a result, the scale for each segment
has a value between 0 and 1. Similar to location, we model
the scale using a GMM. The GMM has K = 4 components
with means evenly spaced between 0 and 1. The standard
deviation of the components are set to half the distance be-
tween the means. We define αs(si) as the likelihood of a



Figure 2: Low resolution images from the MSRC (top) and
Corel (bottom) datasets. The larger dimension is 32 pixels.
The objects are often very small, for instance there are only
4 pixels in the faces in the top left image.

segment belonging to scale si. ϕij(ci, cj) is then computed
as

ϕij(ci, cj) =
K∑
si=1

K∑
sj=1

αs(si)αs(sj)θs(si, sj |ci, cj), (5)

where θs(si, sj |ci, cj) are parameters estimated from train-
ing data through MLE counts. Again, θs(si, sj |ci, cj) is the
empirical probability of segments Si and Sj having scales
si and sj given their assignments to classes ci and cj . As
with location, the absolute and relative scale statistics are
both captured here.

We use Loopy Belief Propagation to perform inference
on the CRF using a publicly available implementation [26].
After convergence, the label with maximum belief is as-
signed to the segment.

Using equation (3) we maintain the simplicity of the
model proposed in [5], which uses just co-occurrence
counts, while capturing richer information through rela-
tive location and scale statistics. The proposed model also
allows for the straightforward incorporation of additional
contextual information, such as relative 3D orientations if
available, using the same formulation. We do not do any pa-
rameter learning to explicitly increase the likelihood of the
training data under our model. Although the current treat-
ment suffices for our purposes, explicit parameter learning
such as in [5] may further boost performances.

3. Results
In our experiments we use the MSRC dataset [21] and a

subset of the Corel dataset [22]. The MSRC dataset con-
tains 591 images with pixel-wise labels coming from 23
classes. Following previous works, we remove 2 classes
(horses and mountain) because of very few training in-
stances. The Corel dataset consists of 100 images with
labels coming from 7 classes. As stated earlier, we work
with images at their original resolution (∼ 320× 320) pix-
els, as well as at low resolution (∼ 32 × 32 pixels). In
both datasets, a random subset of 45% of the images were

used for training, 10% for validation and the rest for test-
ing, while maintaining consistent class distributions in these
three sets, similar to [11]. We show sample low resolution
test images from both datasets in Figure 2. We first describe
our human studies, followed by our machine vision experi-
ments and finally some analysis of the results obtained.

3.1. Human Studies

Our human studies were performed on the MSRC dataset
using 11 subjects. The task assigned to them was to iden-
tify the outlined segment in the displayed image. Each sub-
ject had to complete two sessions. The first session was
on the low resolution images and the second on the origi-
nal images. In each session, there were three scenarios un-
der which the subjects had to recognize the segments. The
first studied appearance-based recognition by only display-
ing the segment to be recognized without the rest of the im-
age, Figure 1(a, d). The second studied blind recognition
in which the subject was shown the image with the pixels
removed from the segment to be recognized, Figure 1(b, e).
The final scenario displayed the entire image allowing the
subject to use both appearance and contextual information
for recognition, Figure 1(c, f). In each scenario the images
were displayed with the segment outlined, as well as with-
out the segment outlined to avoid distraction. For low res-
olution images, the images were displayed at four different
scales (32 × 32, 64 × 64, 128 × 128 and 256 × 256) us-
ing bicubic interpolation so that the subjects could focus on
whichever scale they desired, without increasing the amount
of information being displayed [19]. The list of possible
classes from which the subjects could choose was displayed
below the images, as shown in Figure 3. Each subject was
asked to recognize 70 segments for each scenario for each
resolution (a total of 420 segments per subject). The seg-
ments to be recognized were selected randomly from a total
of 650 segments in 265 images (per resolution) from the
MSRC dataset. On average, subjects took 35 minutes to
complete the entire study. The segment boundaries were
marked using the ground truth segmentations provided with
the MSRC dataset.

Human accuracies have been studied in low resolu-
tion images for face recognition [27, 28], scene recogni-
tion [19, 29, 30] and more recently for object detection and
segmentations [19]. However, separating the roles of con-
text from that of appearance as the amount of appearance
information varies has not been studied.

The accuracies of the subjects, computed as average
class-wise accuracies, are shown in Figure 4 and Table 1.
There are several observations we can make. First, the need
for context is minimal in the original high resolution im-
ages. Appearance alone performs at 96% accuracy with
context increasing performance by 2%, which is below sta-
tistical significance. Secondly, appearance provides less in-



Figure 3: A snapshot of the interface used for human studies
on low resolution images for blind recognition.

formation in low resolution images as seen by the drop in
accuracy from 96% to 66%. Interestingly, blind recogni-
tion using context alone provides a similar accuracy of 67%
for low resolution images. The combination of appearance
and context increases accuracy by a statistically significant
amount to 89%. This is in agreement with Torralba et al.’s
observations that human recognition in 32×32 images does
not reduce drastically as compared to full resolution images,
and we demonstrate here that this is due to inclusion of
context. These experiments further support the notion that
low resolution images are an interesting venue for modeling
context, where the need for context is important.

It should be noted that the subjects were given a choice of
21 possible category labels. Experiments in which the set of
labels is unknown and determined by the subject may yield
different results. For some objects the segments are not ex-
act so small amounts of surrounding information, such as
grass, may be present for the appearance only tests. Finally,
for the task of blind recognition the information inside the
segment was removed. However, the rough shape of the
segment was still visible and in some cases can supply ap-
pearance based information. As a result, the accuracies of
the blind recognition tests may be artificially high.

3.2. Machine Experiments

We replicate the human studies in our machine experi-
ments. For consistency with the human studies, recognition
was performed on the ground truth segmentations (later re-
sults use automatic segmentation). In the appearance-only
scenario, the MAP estimates of the data terms were used
to label the segments. For blind recognition, the data term
corresponding to the segment to be recognized was set to a
uniform distribution before running inference on the CRF.

The results obtained on the MSRC dataset are shown in
Figure 4 and in Table 1 with results on the Corel dataset.
For consistency, we use the same 265 images of the MSRC
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Figure 4: The recognition accuracies of human subjects and
machine on low and high resolution images using appear-
ance alone (A), blind recognition using context alone (C)
and both appearance and context (A+C). The error bars are
also indicated for human accuracies.

Table 1: Machine and human accuracies on MSRC and
Corel datasets

A C A+CO A+CO+L A + C

MSRC

Low 65.51 55.62 71.91 76.65 78.33

High 85.55 61.21 87.04 87.73 88.65

MSRC Human

Low 65.81 67.23 - - 89.42

High 95.85 87.12 - - 97.90

Corel

Low 74.57 62.77 86.19 86.64 87.29

High 91.23 70.84 97.38 98.23 98.16

A→ appearance; C→ context→ co-occurrence CO + relative loca-
tion L + relative scale

dataset for testing as were used in the above human stud-
ies. The results on other random splits are consistent with
those shown here. We see very similar trends in the ma-
chine numbers as with those from the human studies. With
low resolution images, we see that combining appearance
and context significantly boosts performance over each in-
dividually, to 78% for MSRC and 87% for Corel. Tests on
images with their original resolution show a comparatively
smaller, however non-trivial boost in performance. It is in-
teresting to note that identical context models were used for
images of both resolutions, while the appearance informa-
tion was trained separately.

Different sources of context: We present some analysis
to evaluate the contribution of the different forms of context
(co-occurrence CO, relative location L and relative scale S).
Figure 5 shows the per class accuracies on low resolution
images using only appearance, and subsequently adding the
three forms of context. We can see that different object cat-
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Figure 5: Average accuracies for the 21 categories in the MSRC dataset using appearance alone, using blind recognition with
context alone, and using subsequently more complex context models with appearance.

egories benefit from different forms of context. Some cat-
egories such as books and chairs do not receive any bene-
fit from context due to peculiarities of the dataset, such as
they rarely co-occur with other objects, Figure 6. Categories
such as body and boat gain significantly from context. Their
appearance cues are very weak (0% in the case of body),
but they are very strongly associated with other categories
(Face and Water respectively) whose appearance cues are
quite reliable. In fact, for some categories such as Body and
Building, blind recognition performs much better than ap-
pearance information alone as well as combined appearance
and context. In several categories, relative scale does not
provide a boost in performance. This may be due to lack of
scale related dependencies due to inherent semantics of the
categories, or due to depth variations of the objects across
images, to which our scale measure is not invariant. This
lack of dependency is automatically learnt by our model. In
some categories, albeit rarely, certain forms of context hurt
performance. This may be attributed to a category’s strong
dependence on categories with poor appearance cues. For
instance, Sign commonly co-occurs with Building whose
appearance term has 0% accuracy.

Average class-wise accuracies using both low and high
resolution images from the MSRC and Corel datasets for
each of the different forms of context are summarized in
Table 1. The Corel dataset has fewer classes and the only
prominent interactions are the co-occurrence of polar bears
with snow, and rhinos/hippos with water. Hence, while co-
occurrence gives a significant boost in performance on the
Corel dataset, relative location and relative scale do not. For
MSRC, which is a richer dataset, all forms of context give a
significant boost on low resolution images.

In Figure 7 several examples are shown where different
types of context helped recognition. Let us consider the
last example, where the test image contains Tree, Car, Road
and Sky. The appearance alone labels the objects as Tree,
Cat, Road and Sky, but the very low likelihood of finding
a Cat on the Road along with Tree and Sky made the co-
occurrence information flip the label of the Cat to a Build-
ing. The location of the Building seems consistent with re-

Figure 6: Images in the MSRC dataset containing books.
They occur at similar locations across images, and rarely
interact with other categories. Contextual information does
not boost the performance of such categories.
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Figure 7: Illustrations of the effects of different forms
of context on recognition. A → appearance, CO → co-
occurrence, L → relative location, S → relative scale.
(Viewed better in color)
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Figure 8: Illustrations of incorrect labelings provided by the
context model. (Viewed better in color)

Figure 9: Illustrations of automatic segmentaitons

spect to the Tree, Road and Sky - so the relative location
information left the labels untouched. However, the relative
scale information discarded the possibility of the Building
being so small with respect to the Sky, Tree and Road, and
flipped the label of the Building to Car - which matches the
ground truth labeling. Other intuitive examples are shown
in Figure 7 as well. Examples of incorrect labels provided
by the context model are shown in Figure 8.

Comparison with other works: We also perform the
same experiments with automatic segmentations. We use
the Felzenshwalb and Huttenlocher [31] segmentation algo-
rithm (example segmentations in Figure 9). Our results are
shown in Table 2 along with a comparison to results from
previous works when available. In addition to the segment-
wise accuracies metric we have used so far, we report pixel-
wise accuracies as well. To obtain a pixel-wise label map
from our model, all pixels falling within a segment were
assigned the segment’s predicted label. For our own algo-
rithm, we report results on original (high) resolution images
that all other works use, as well as on low resolution images.
We report average class-wise accuracies, as well as overall
accuracies (within parentheses). Even when using low res-
olution images, our algorithm outperforms previous works
on these datasets.

We believe this is due to several reasons. He et al. [10]
and Shotton et al. [11] make decisions at the level of pixels
or small patches, while we do so on segments which re-
quires only a few decisions per image. This also allows us
to train on segments making the training information more
reliable due to inherent aggregation and grouping. Our ex-
plicit use of color was found to give a significant boost in
performance. A notable observation is that the difference
between our average class-wise accuracies and overall ac-
curacy is not very large.

4. Discussion

In this section we draw attention to some interesting
points of discussion.

Table 2: Comparisons of accuracies *

MSRC Corel

pixel segment** pixel segment

[11] 58(72) – (71) – (75) –

[32] 62(75) – – –

[33] 64(74) – – –

[10] – – 81(80) –

[34] – – – (81) –

[5] – – (68) – –

High 85(91) 84(89) 94(93) 95(93)

Low 81(83) 77(81) 86(86) 85(84)

* Different splits may have been used for training and testing data
** Segment-wise accuracies may not be directly comparable because the
exact settings under which the accuracies were computed may differ

Humans vs. Machine: We analyze some commonalities
and discrepancies between the behavior of humans and ma-
chines in incorporating context into recognition. The four
categories from the MSRC dataset that got the highest boost
in performance on low resolution images by incorporating
context for the human subjects were found to be Body, Face,
Water and Boat with Body and Face, and Water and Boat
being complementary categories. The top four categories
for the machine were Body, Boat, Building and Sheep, but
not Face and Water. This is due to the fact that the appear-
ance based recognition for Body and Boat were low (0%
and 30%) while Water and Face were very high (85% and
100%), leaving little room for further improvement.

Improving features or context models? We explore the
question “Do we need to improve our data terms further or
our context models to achieve close to human accuracies?”
Looking at the MSRC high resolution results in Figure 4
we find that machines are lagging significantly behind on
using appearance information alone. For low resolution im-
ages, in which the appearance only tests between humans
and machines are similar, the use of context helps humans
significantly more. Thus it appears improvements on us-
ing both appearance and contextual information need to be
made to match the performance of humans. Since tests us-
ing only appearance information are similar for humans and
machines on low resolution images, this task provides a
good scenario for evaluating context models.

Context as representing the structure in the world: As
we see in our results, the gain from context is certainly a
characteristic of the dataset. The more complex a scene,
the greater the likelihood of it benefitting from context. As
the complexity and number of objects increases, obtaining
training datasets with sufficient information will be more



difficult. Means of learning context from outside sources
such as Google Sets as recently proposed by Rabinovich et
al. [5] or extensive collection of image data such as La-
belMe [35] may need to be explored. The easy availability
of training data is needed to learn the generic structure of
our world, as opposed to potential peculiarities of a dataset.

5. Conclusion

In conclusion this paper contains two main contributions.
First, we propose a model for context that includes relative
location and scale information, as well as co-occurrence in-
formation. Our results show relative location and scale con-
textual information produces state-of-the-art performance
on both the MSRC and Corel datasets even with low res-
olution images. Second, we explore the tradeoffs of appear-
ance and contextual information using both low and high
resolution images in human and machine studies. Low res-
olution images provide an appropriate venue for exploring
the role of context since recognition based on appearance
information alone is limited.

In future work, we wish to explore weakly-supervised
or even unsupervised learning of the context model, while
maintaining its richness. Difficult scenes such as kitchens,
offices and streets may require the inclusion of more objects
and richer context models.
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