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Abstract

Even if the class label information is unknown, side in-
formation represents some equivalence constraints between
pairs of patterns, indicating whether pairs originate from
the same class. Exploiting side information, we develop al-
gorithms to preserve both the intra-class and inter-class
local structures. This new type of locality preserving pro-
Jjection (LPP), called LPP with side information (LPPSI),
preserves the data’s local structure in the sense that the
close, similar training patterns will be kept close, whilst the
close but dissimilar ones are separated. Our algorithms
balance these conflicting requirements, and we further im-
prove this technique using kernel methods. Experiments
conducted on popular face databases demonstrate that the
proposed algorithm significantly outperforms LPP. Further,
we show that the performance of our algorithm with par-
tial side information (that is, using only small amount of
pair-wise similarity/dissimilarity information during train-
ing) is comparable with that when using full side informa-
tion. We conclude that exploiting side information by pre-
serving both similar and dissimilar local structures of the
data significantly improves performance.

1. Introduction

Finding the optimal discriminant subspace is one of the
most important topics in computer vision and pattern recog-
nition. It has been extensively studied and widely applied
in face recognition, document indexing and text categoriza-
tion, where the data is usually represented by vectors of high
dimensionality. The high dimensionality may incur compu-
tational difficulty and classification deficiency. The classi-
cal linear discriminant analysis (LDA)[7] tries to maximize
the class separability by maximizing the Fisher criterion

J(G) = trace{(GT S,G) " H(GT S,G)} ()

where G is the projection matrix, S, is the within-class
scatter matrix and .S is the between-class scatter matrix.
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The solution of G is a set of leading eigenvectors of S, 1.5
if Sy, is nonsingular. In face recognition, the number of
training images is often less than the data dimensionality
and thus S, is singular. To overcome this so-called small
sample problem, several variants of LDA have been devel-
oped [1, 24, 22, 23, 6, 17, 28, 18, 16]. Since LDA and its
variants use class means to represent the class, the local
structure of data is ignored. A number of recent research
efforts have shown that the face images possibly reside on
a nonlinear sub-manifold [5, 11]. To overcome the draw-
backs of LDA and its variants, locality preserving projec-
tion (LPP) seeks projections to preserve the local structure
of the data and has been successfully applied in face recog-
nition [11, 2] and document indexing [3]. LPP can be ap-
plied for both supervised and unsupervised learning. In the
supervised case, one simple way to use the label informa-
tion is to set the weights to be zero on the dissimilar training
pairs [10, 15] and thus LPP just preserves the intra-class lo-
cal structures of the training patterns. That is, close patterns
with same label will be kept close after projection. How-
ever, the local structure of the inter-class training pairs was
ignored. Recently, a method called locality discriminating
indexing [12], utilizes label information by minimizing the
ratio of the close intra-class and inter-class distances.

There is a large class of applications for which although
sample labels are unknown, information exists as to whether
individual samples belong to the same class or not. This in-
formation is called side information and represents some
equivalence constraints between pair of patterns, indicat-
ing whether a pair of patterns originate from the same class
(similar patterns) or from different classes (dissimilar pat-
terns). This is a weaker condition than that required for full
supervision, but more than that required for unsupervised
training. For example, in applications of access control or
attendance management, images from both the access group
and outside the group can be included. Although we may
not have information on who the people outside the group
are, the similarity and dissimilarity information between the
images from within and outside the group can be calculated.
In designing such access control systems, we need to ensure



the inter-class pairs between the people in and outside the
group are kept separate.

Side information has been exploited and successfully ap-
plied in metric learning [26, 25] and video object classi-
fication with support vector machine and Kernel Logistic
Regression [27]. To incorporate side information in LPP,
[4] suggest minimizing the modified LPP cost function by
adding intra-class distances and subtracting inter-class dis-
tances according to side information.

Our major contribution in this paper is to systematically
exploit side information and develop algorithms to balance
the preservation of intra-class and inter-class local struc-
tures. We preserve the inter-class local structure in the
sense that the close patterns with different labels are kept
separate. This new type of locality preserving projection
is called LPP with side information (LPPSI). In the super-
vised case, where the labels of training patterns are avail-
able, LPPSI exploits the label information in a more effi-
cient way than LPP and potentially improves classification
performance. In the unsupervised case (say clustering, im-
age or document retrieval), where some side information is
available, the proposed method can utilize this information
to improve the clustering or retrieval performance.We suc-
cessfully apply the proposed method to face recognition and
experiments demonstrate that LPPSI significantly outper-
forms LPP and that LPPSI performs quite well when only
a small amount (say, 2%) of side information is available.
Further, a kernel version of LPPSI is developed to utilize
the nonlinear structure of face images and we demonstrate
its superior performance to LPPSIL.

The novelty of the techniques relies in combining side
information with locality preserving projection and demon-
strating its application to face recognition. The significance
of this approach is as follows: First, in exploring the local
structures of the data, LPPSI exploits side information and
considers both inter-class and intra-class structures which
are more complete in describing the data’s local properties.
Second, the proposed algorithms are developed based on
side information and thus are applicable to the case only
pairwise similarity/dissimilarity is available from the train-
ing patterns. In the case where it is expensive to label the
training patterns (say, a large amount of images), one can
select a small amount of the training pairs and identify their
pairwise similarity. Also, in a broad family of applications,
side information can be obtained partially without supervi-
sion. We can get unsupervised equivalence constraints us-
ing temporal continuity in data such as video sequences.
Sometimes side information is the natural form of supervi-
sion. For example, in image retrieval, there is no concept of
category but there is the notion of similarities between the
query and retrieved images.

The layout of the rest in this paper is as follows. In Sec-
tion 2, we briefly review the formulation of LPP and its

properties. Section 3 addresses LPP with side information.
In Section 4, we address the nonlinear extension by kernels,
i.e. kernel LPP with side information. Section 5 provides
experimental results on some popular face databases to il-
lustrate the performance of the proposed algorithms with
comparison to LPP.

2. A Brief Review of Locality Preserving Pro-
jection

Let x;,7 = 1,2,--- ,n, denote the training patterns of
m classes. We use X = [x1, 22, -+ , T, ] to denote the data
matrix and use [(z;) to denote the label of x,, say, I(x;) = k
implies that x; belongs to class k.

Locality Preserving Projection (LPP) aims to preserve
the local structure of the data and can be obtained by solving
the following minimization problem

Gopt = arg ming Zi,j [gT(xi - Ij)]Z‘S’ij )
= argming ¢g"XLXTg
with the constraint
g"XDXTg=1. 3)

where L. = D — S'is the graph Laplacian, D is a diagonal
matrix with D;; = > j S;; which measures the locality den-
sity around z;, and S 1s the similarity matrix. A typical way
of defining S is as follows: S;; = exp(—||z; — z;[|?/0?) if
llz; — x;|| > €, and S;; = 0 otherwise. In the supervised
case, where the labels of the training patterns are known,
one simple way to use the label information is to let S;;
equal 0 if x;, x; belong to different classes.

The optimal solution g, is the minimum eigenvector of
the generalized eigenvalue problem

XLXTg=~XDX"Ty. 4)

For multi-dimensional projection, the LPP uses the d
largest eigenvectors, say g1, g2, - , gd, as the columns of
the projection matrix G = [g1, g2, - , gdl-

The heavy penalty on the close training pairs will force
them to keep close in the reduced subspace.

3. Locality Preserving Projection with Side In-
formation

3.1. Motivation

In this section, we consider the cross-validation errors of
nearest neighbor classifiers. It will be shown that the cross-
validation errors are dominated by the intra- and inter-class
differences with relatively smaller distances and this mo-
tivates us to develop algorithms to find a projective map



which preserves the neighborhood of close intra-class pat-
terns, while preserving the separability of close inter-class
patterns.

Cross-validation is a typical way to estimate the gener-
alization performance of learning algorithms [19]. In [-fold
cross-validation, one divides the data into [ subsets of (ap-
proximately) equal size and trains the classifier [ times, each
time leaving out one of the subsets from training, but using
the omitted subset to compute the classification errors. If
l equals the sample size, this is called leave-one-out cross-
validation (LOO-CV).

Nearest neighbor is the simplest, but also most popular
classifiers in pattern recognition. One often applies near-
est neighbor classifiers to identify the test patterns after di-
mension reduction using LDA or LPP. Now we consider
the LOO errors of the nearest neighbor classifier with train-
ing patterns x;,7 = 1,2,--- ,n, in the original or projected
subspaces. Suppose xj, is left-out for testing. The near-
est neighbor classifier compares the distances of xj, to all
the other training patterns and identifies z, to belong to the
same class as its nearest neighbor. Let

ming {||zr — 2|, 5 # k, Uzx) = 1(z;)}
ming {||zx — 2|, j # k, l(zx) # l(l’j)}(s)
xy, 18 correctly identified in the LOO procedure, if and
only if, d;(xx) < dg(xg). This is true for all x4, k =
1,2,--- ,n. Hence the generalization performance of the
nearest neighbor classifier estimated by cross-validation is
dominated by the close intra-class and inter-class training
patterns. More precisely, we have the following observation

d](l'k)

1. Among the intra-class differences in {x; — x;,1(x;) =
l(z})}, the ones with smaller distances are more domi-
nant in determining the generalization performance of
the nearest neighbor classifier;

2. Among the inter-class differences in {x; — x;,1(x;) #
l(z;)}, the ones with smaller distances are more domi-
nant in determining the generalization performance of
the nearest neighbor classifier.

Hence, a good projective map needs to ensure that: 1)
close intra-class pairs remain close after projection; and
2) close but dissimilar pairs, are kept separate after pro-
jection. For the first requirement 1), we need to mini-
mize the weighted sum of the intra-class distances with
heavy weights on the close intra-class pairs in the original
space. On the other hand, for 2), we need to maximize
the weighted sum of the inter-class distances with heavy
weights on the close inter-class pairs in the original space.
The heavy weights on the close inter-class pairs will force
them to be kept separate, while the heavy weights on the
close intra-class pairs will force them to remain close.

However, these two tasks may be conflicting. Next, we
will develop an algorithm to balance these two tasks.

3.2. The Objective Function

Let ©, and €, denote the sets of available similar and
dissimilar training pairs respectively and let S;; denote the
similarity of a training pair (z;,z;) in Q4 (or g). In su-
pervised learning, we have the labels of all training patterns
and thus the full side information is available. In this case

{(i, 25), U(
{(@i,z5),1

In the case only partial side information is available,
Qs and €, represent some subsets of similar and dissimi-
lar training pairs respectively. For notational convenience,
we assume that (z;,z;) belongs to Q (or 4) as well if
(x;, ;) € Qs (or Qg respectively).

The similarity S;; can be defined as

0, =

i) = Uz))}
o (©)

() # U(x;)}

—llzi—=; 1%

Sij=e 7 (7N
or
]
S, = Tl @®)
N AR

The latter computes the cosine of the angle between vec-
tors z; and x;. It is often called cosine similarity and is
widely used to measure similarities of images and docu-
ments.

Different objective functions yield different algorithms
with different properties. While LPP aims to ensure close
patterns remain close by minimizing the intra-class dis-
tances, we aim to preserve both intra- and inter-class local
structures by minimizing the following objective function

Ji(g) = A Y g (@i -2 )PWE + (1 Ny
(24,25)€Qs

AT Csg+ (1= N)gTg

9
with the constraint
g Cag=1. (10)
where
CS = Z (l‘l — :vj)(xz - $j)TWi(;)
(zi,2;)€Qs (11)
Cqy = (wp — o) (2 — xz)TW,ﬁf)-
(z4,2;)EQq

and the weights W, ;) and W,gld) are determined by the sim-



ilarities and can be defined as

W(b) _ Sij if Sij > €, and (.’L'Z',.’L'j) € QS
i 0;  Otherwise.

W(d) _ Sk if Sp > €4 and (mk,xl) € Qy
kl

0;  Otherwise.
12)

The thresholds €, and €4 control the similar and dissimi-
lar neighborhoods, and may be different since the inter-class
distances are usually larger than the intra-class distances.

It is easy to check that the optimal solution g, is equal
to the optimal solution g, up to a scale factor, of the follow-
ing maximization problem

max, Jo(9) = g7 Cag (13)

with the constraint
A Cog+(1=N)g'g=1. (14)

From (13), one can see that the optimal solution maxi-
mizes the weighted sum of inter-class distances when A =
0. And from (9), one can see that the optimal solution
minimizes the weighted sum of intra-class distances when
A = 1. Hence, the objective function can be interpreted
as a balance for two possibly conflicting tasks: minimizing
intra-class distances and maximizing inter-class distances
and the balance is controlled by the parameter A € [0, 1].

3.3. The Algorithms

The solution g,,; of (9) is the eigenvector associated with
the smallest eigenvalue of the following generalized eigen-
value problem

[ACs + (1 = M I]g = vCag. (15)

Suppose the projection matrix is of rank d. We need to
find the d eigenvectors associated with the d smallest eigen-
values.

If Cy is not of full rank, one can use (13) and solve the
following generalized eigenvalue problem

Cag =v[ACs + (1 = N1y (16)

to find the d largest eigenvectors.

Note that the columns of the projection matrices ob-
tained by solving (15) and (16) are identical up to a scale
factor which can be computed using the constraints. In our
experiments, we normalize the eigenvectors to be of unit
norm.

In summary, the proposed algorithm includes the follow-
ing four steps:

1. Compute the similarity matrix S, and then set the
weight matrices W) and W'D for intra-class and
inter-class training patterns respectively;

2. Compute the similar and dissimilar weighted covari-
ance matrices Cy and Cy;

3. Solve the generalized eigenvalue problem (16) (or
(15)) to find the d largest (or smallest respectively)
eigenvectors,

4. Project the training patterns and the test patterns into
the selected eigenvector space and use nearest neigh-
bor classifier to identify the test patterns.

3.4. Comparison to LPP

Let us define the similar and dissimilar graph Lapla-
cians as
L, = D& _we

L, = D@ _w@ a7

where D) is a diagonal matrix with diagonals Dl(f ) =

Zj WZ-(;), and D@ is a diagonal matrix with diagonals

Dgf) = Zj ng). Then we have Cy = XL X7 and
Cy=XLsXT, and (9) can be described as

min \g? XL, X g+ (1 —NgTg (18)
g

with the constraint
' XLyXTg=1. (19)

If we use the same similarity measure and use the same
thresholds ¢; = €, L is the same as the graph Laplacian L
in the formulation (2) of LPP for supervised learning. For
any training pattern x;, LPP minimizes the distances of x;
to any similar patterns in its neighborhood which is deter-
mined by the threshold e. This ensures the closeness of x; to
its similar neighbors but also raises risk in making z; close
to its dissimilar neighbors as well. This risk is avoided in
LPPSI. By introducing dissimilar graph Laplacian L4 and
the controlling parameter A, LPPSI achieves a good balance
between minimizing the distances to similar neighbors and
maximizing the distances to dissimilar neighbors. In prac-
tice, one can use cross-validation [19] to find the optimal A
by minimizing the cross-validation errors.

4. Kernel LPP with Side Information

In this section, we present a kernel version of LPPSI,
named as KLPPSI. Consider a nonlinear map z; —
®; = O(z;) induced by a kernel where k(z;,z;) =
O(z;)T®(x;). Let ® = [®1, Py, -+ ,®,] and let K denote
the matrix with K; ; = k(x;, z;). The optimal LPPSI in the
kernel induced feature space can be obtained by solving

ming J(g) A Lo (@i — %)PWZ-(; + (1= MNg"g
= MToL®Tg+ (1-N)glyg

(20)



with the constraint
gToLdTg =1 21

where Lg, Ly are the similar and dissimilar graph Lapla-
cians and are defined in (17).

First, we show that g,,; € span{®}. Itis trivial if ® is of
full column rank. Now assume that ® is not of full column
rank and let &+ denote a basis of its null space. Then gop¢
can be represented as go,r = g1 + g2 Where g1 € span(®)
and go € span(®t). Note that g7® = 0,979, = 0,
we have J(g) = J(g2) + (1 — N)g3 g2 > J(g2) and g»
also satisfies the constraint (21). Hence if g, is the opti-
mal solution, then g must be the zero vector and therefore
Gopt € span{ ®}.

So there is hope such that gope = Phope and hgye can be
obtained by solving

miny J(h) = MTKL,Kh+(1-MNRTKh (22)
with the constraint
hW'KLyKh=1. (23)

The solution is the minimum eigenvector of the follow-
ing generalized eigenvalue problem

ALK + (1 — A\)I]h = vyLyKh. (24)

Similarly, the objective function (13) can be kernelized
as

min, J(h) = WTKL,Kh (25)
with the constraint
MTKL,Kh+ (1 -MNhTKh=1. (26)

And its solution is the largest eigenvector of the following
generalized eigenvalue decomposition problem

LaKh = v[AL,K + (1 = A\)I]h. @7)

Let {h;}2_, be the eigenvectors of (27)(or (24)) associ-
ated with the d largest (or smallest respectively) eigenvalues
and denote H = [hy, ha, - - , hg). Then the projection ma-
trix will be ®H and the projection of a pattern x will be

p(r) = HT®Td(x)
= HT[k(z,m1), k(x,22), - k(z,2,)]T.
(28)
Hence, in either training or testing stages, we don’t need
to access the nonlinear features @ (). With the kernel func-
tion (-, -), one can compute the kernel matrix & and solve
the eigenvalue problems (27) or (24) to obtain H. Then the
training and test patterns can be projected into the selected
feature space using (28) directly without computing ¢. We
summarize the KLPPSI algorithm as follows:

1. Compute the weight matrices W'®) and W@ for intra-
class and inter-class training patterns respectively;

2. Compute the similar and dissimilar Laplacian matri-
ces L, and Ly;

3. Compute the kernel matrix K with K;; = k(x;,;);

4. Solve the generalized eigenvalue problem (27) (or
(24)) to find the d largest (or smallest respectively)
eigenvectors and normalize them to be unit norm;

5. Compute the projections of the training patterns and
the test patterns using (28)and use nearest neighbor
classifier to identify the test patterns.

Typical kernel functions k(-,-) include linear kernel
k(x;,z;) = xlz;, polynomial kernel (z7z; + 1)¢ and
Gaussian kernel k(z;,2;) = exp (—||z; — z;*/o?). The
performance of KLPPSI is governed by the kernel param-
eters and the controlling parameter A\. One can use cross-
validation [19] to find the optimal hyper-parameters by min-
imizing the cross-validation errors.

5. Experimental Results

Experiments were conducted on two databases: CMU
PIE [20, 21] and the original and Extended Yale Face
Database B (Yale B) [9, 14] to test the performance of the
proposed algorithms with comparisons to LPP. The CMU
PIE face database contains 68 individuals with 41368 face
images. The face images were captured by 13 synchro-
nized cameras and 21 flashes, under varying pose, illumi-
nation and expression. The extended Yale Face Database B
[14] contains 16128 images of 28 human subjects under 9
poses and 64 illumination conditions. The data format of
this database is the same as the original Yale Face Database
B [9] which contains 5760 images of 10 people under the
same 9 poses and 64 illumination conditions.

We provide three experiment results. The first one com-
pares the performance of LPPSI to the reported perfor-
mance of LPP in the study by [2]. The second one aims to
test the performance in robust face recognition across pose
and lighting variations. And the third experiment tests the
performance of LPPSI when only a small amount of side
information is available.

We used cosine similarity through all the experi-
ments since it is popular in measuring image similarities.
For KLPPSI, we used the Gaussian kernel k(xz;,x;) =
exp (=i — x;[?/(20?)). The parameters for LPPSI and
KLPPSI are provided in Tables 1-2. For convenience of
comparison to LPP where all the similar pairs were used in
supervised learning, we set the threshold €, to be zero in all
the experiments.



Table 1. Parameters for LPPSI on CMU PIE and Yale B face
databases.

Parameters €4 €s A

CMU PIE 08 0 0.7
Yale B-Experiment 1 0.7 0 0.7
Yale B-Experiments 2&3 0.7 0 099

Table 2. Parameters for KLPPSI on CMU PIE and Yale B face
databases.

Parameters €d €s A o
CMU PIE 08 0 07 0.7
Yale B-Experiment 1 0.7 0 0.7 1.2
Yale B-Experiments 2&3 0.7 0 099 05

5.1. Experiment 1

For convenience of comparison, this experiment adopts
the same procedure as that in the study by [2]. From
CMU PIE, we choose the five near frontal poses
(C05,C07,C09,C27,C29) and use all the 11544 images un-
der different illuminations, lighting and expressions, where
each individual has 170 images except for a few bad images.
From the Yale B Database B, we choose all the 2414 frontal
images (except for a few bad images) for 38 people. All test
image data used in the experiments are manually aligned,
cropped, and then re-sized to 32x32 images.

A random subset with I(= 5, 10, 20, 30) images per indi-
vidual was taken with labels to form the training set, and the
rest of the database was considered to be the testing set. For
each [, we average the results over 50 random splits and we
used the same splits and the same Matlab data files | which
were used in [2].

Table 3. Performance (error rate ) comparison on CMU PIE face
database.

Method 5 Train 10 Train 20 Train 30 Train

LPP 30.8%(67) 21.1%(134)  14.1%(146)  7.13%(131)
LPPSI 23.52%(60)  11.39%(40) 5.77%(50) 4.13%(50)
KLPPSI  27.88%(20)  12.32%(30) 5.48%(30) 3.62%(60)

Table 4. Performance (error rate ) comparison on the Yale B
Database.

Method 5 Train 10 Train 20 Train 30 Train

LPP 24%(37) 11.4%(76) 7.1%(193) 7.5%(251)
LPPSI 20.44%(180)  9.40%(180)  3.86%(150)  1.92%(40)
KLPPSI 24.74%(50) 9.93%(60) 3.15%(50) 1.39%(40)

1" which were downloaded from http://ews.uiuc.edu/ deng-

cai2/Data/data.html
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Figure 1. Performance vs Reduced Dimensions on Yale B
Database.
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Figure 2. Performance vs Reduced Dimensions on PIE Database.

The performance is shown in Tables 3-4 and Figures 1-2.
The performance for LPP in Tables 3-4 are taken from [2]
for CMU PIE database and from http://ews.uiuc.edu/ deng-
cai2/Data/data.html. for the Yale B Database. The numbers
in the brackets are the best dimensions. The performance
of LPPSI is consistently and significantly better than LPP.
The kernel method further improves the performance when
training sample size is large (20 Train and 30 Train). How-
ever, when training sample sizes are small (5 Train and 10
Train), KLPPSI is more likely to suffer overfitting and thus
performs worse than LPPSIL.

5.2. Experiment 2

In the second experiment, to demonstrate robust face
recognition across pose and lighting variations, we use all



the images of the full Yale B database where each people
have 576 images with 9 poses and 64 lighting conditions.
We found that most of the excluded bad images in the stud-
ies [9, 14, 2] are identifiable after histogram equalization
[13] and include all the images in our experiment. We man-
ually find the positions of eyes and mouths for each person
under each pose, and then align and crop all the images ac-
cording to these positions. Then all the images are re-sized
to 32x32 images and preprocessed by histogram equaliza-
tion.

Our procedure is as follows: First, we choose 10 peo-
ple in the original Yale B database to understand the critical
configurations for varying pose and lighting conditions. We
do this by applying affinity propagation clustering[8] and
find a universal configuration of 35 cluster centers of the
total 576 images for each person. These 35 cluster centers
represent 35 critical viewing conditions among 9 poses and
64 lighting conditions. We consider these 35 critical view-
ing conditions are universal for each person in the full Yale
B database. Next, for each subject, we take the 35 images
associated with these 35 critical viewing conditions as train-
ing images to train the classifiers. Finally, we compare the
distances of the test images to all the training images and
identify them using the nearest neighbor method.

The performance is shown in Table 5 and Figure 3, which
demonstrate the clear advantage of LPPSI and KLPPSI over
LPP. Note that LPPSI achieves an error rate of 3.36% with
dimension 40. It shows that robust face recognition under
varying lighting and poses can be achieved in quite a low
dimensional subspace. In the training procedure, we need
images under the critical viewing conditions. In case these
images are not available, one may apply face synthesis tech-
niques to generate these images.

Table 5. Performance (error rate ) comparison on the Yale B
Database with 9 poses and 64 lighting conditions.

Method LPP LPPSI KLPPSI
Errorrates  19.63%(60)  3.36%(40)  1.43%(40)
5.3. Experiment 3

This experiment adopts the same procedure as experi-
ment 2 but using only a small amount of side informa-
tion. We used the similarity/dissimilarity information of
randomly selected 1% of dissimilar training pairs and half
of the similar pairs. The total used pairs of side information
(6866+11305=18171) is 2.06% of the total 883785 pairs of
the (35 x 38 = 1310) training images.

The performance is shown in Figure 4. With around 2%
of the total side information, LPPSI achieves an error rate
of 3.52% (averaged on 10 runs) which is very close to the
error rate of 3.36% achieved with full side information. For
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Figure 4. Performance of LPPSI on Partial and Full Side Informa-
tion vs Reduced Dimensions.

higher dimensions than 40, LPPSI performs even better us-
ing partial rather than full side information.

6. Conclusion

By exploiting side information, we have presented a pro-
jection method to preserve both the intra-class and inter-
class local structures of the data. The experiments in face
recognition demonstrate that the proposed method signif-
icantly outperforms the previously developed locality pre-
serving projection which ignored the inter-class local struc-
ture, and that robust face recognition across pose and light-
ing can be achieved in quite a low dimensional subspace.
Although we focus on supervised learning and face recogni-
tion in our experiments, the proposed method has potential
to improve performance over locality preserving projection
in unsupervised learning with some side information, or in
other pattern recognition problems such as digit recognition
and document indexing.
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