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Abstract

It has been demonstrated by Serre et al. that the biolog-
ically inspired model (BIM) is effective for object recogni-
tion. It outperforms many state-of-the-art methods in chal-
lenging databases. However, BIM has the following three
problems: a very heavy computational cost due to dense in-
put, a disputable pooling operation in modeling relations
of the visual cortex, and blind feature selection in a feed-
forward framework. To solve these problems, we develop
an enhanced BIM (EBIM), which removes uninformative
input by imposing sparsity constraints, utilizes a novel lo-
cal weighted pooling operation with stronger physiological
motivations, and applies a feedback procedure that selects
effective features for combination. Empirical studies on
the CalTech5 database and CalTech101 database show that
EBIM is more effective and efficient than BIM. We also ap-
ply EBIM to the MIT-CBCL street scene database to show it
achieves comparable performance in comparison with the
current best performance. Moreover, the new system can
process images with resolution 128 × 128 at a rate of 50
frames per second and enhances the speed 20 times at least
in comparison with BIM in common applications.

1. Introduction

Automatic object recognition and fast detection are key
components for many applications, e.g., video surveillance,
multimedia database management, web content analysis,
human computer interactions, and biometrics. In general,
object recognition is a difficult task because of the wide va-
riety of objects potentially to be recognized and the com-
plexity and variety of backgrounds. In particular, efficient

learning and robust recognition are challenged by variations
in lighting, geometric transformations, pose variations, oc-
clusion and clutter. In addition, there is a difficulty of rec-
ognizing object categories under conditions of great intra-
class variability. Beyond categorizing objects into distinct
groups, the question of inter-category relationships remains
largely unexplored.

The last three years have witnessed the significance of
object recognition and a large number of object recogni-
tion algorithms have been proposed. The appearance-based
approaches mainly utilize global low level visual features,
e.g., color, shape, and texture histograms [26, 29]. These
methods ignore local discriminative information and are
sensitive to lighting conditions, object poses, clutter and
occlusions. Local feature based approaches combine the
interest point detectors and local descriptors with spatial
information. Representative local features include Harris
[34], scale-invariant feature transform (SIFT) [21], gradi-
ent location and orientation histogram (GLOH) [22], ro-
tation invariant feature transform (RIFT) [19], shape con-
text [4], and histogram of gradients (HOG) [12]. Although
these features are effective in describing local discrimina-
tive information, they lack higher level information, e.g.,
relations of local orientations. Moreover, though bag-of-
features [20] and bag-of-keypoints [11] are efficient, they
abandon structure information. In summary, all of them
have their strength and weakness and perform poor on dif-
ficult tasks, e.g., working on the CalTech101 database [13].

Visual object recognition is a fundamental, frequently
performed cognitive task for the human vision system and
recent research in computer vision demonstrates that vi-
sual cognitive models are valuable in promoting the perfor-
mance of object recognition, especially for difficult tasks.
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For example, Serre et al. [31] developed a biologically in-
spired model (BIM) for object recognition and it strictly
follows the organization of the human visual cortex. In
experiments on the CalTech101 and the MIT-CBCL Street
Scene database, it recognizes objects at a level competitive
to state-of-the-art approaches.

However, BIM suffers from the following problems:

• First, to increase the selectivity in BIM, in the
prophase, an image is convoluted with Gabor filters
of various scales and orientations. Then, to increase
the invariance, the convoluted image must be matched
with a large number of stored prototypes at every posi-
tion and scale to find the best match. Such a density of
input has a very heavy computational cost and, further,
because it retains some noise with high response val-
ues, this approach tends to produce lots of mismatches.

• Second, in the process that complex cells of the visual
cortex pooling over the afferent responses of simple
cells, BIM adopts for the way in which complex cells
of the visual cortex pool over the afferent responses
of simple cells. BIM uses the maximum pooling op-
eration (MAX operation), which retains only the max
response in a local area. This approach increases in-
variance but it has been found [6] that units (simples
cells), which fire most strongly, will strengthen the re-
sponses of their neighbors. Therefore, MAX operation
may lose some informative input, e.g., neighbors of the
strongest response.

• Finally, BIM uses a feed-forward framework that
blindly selects features for combination. In this
method, a feature has the best match between a con-
voluted image and a prototype. As this prototype is
randomly sampled from convoluted images of positive
samples, the reliability of a match depends on using a
large number of prototypes, which mean very high fea-
ture dimensions. Therefore, the computational cost for
matching stage is very heavy. For example, to obtain
a good recognition performance on the CalTech101
database, BIM requires 5000 feature dimensions and
it takes around 600 seconds for patch extraction and
160 seconds for C2 layer generation in dealing with an
image with size 128 × 128 in MATLAB.

In this paper, we develop an enhanced BIM (EBIM) that
reduces the computational cost and the risk of mismatch by
removing uninformative input by imposing on BIM with the
sparsity constraints. It improves the sensitivity and infor-
mativeness of the pooling operation model by applying a
novel local weighted pooling operation which weights and
then sums the max response and its neighbors. Finally,
rather than using the feed-forward procedure in BIM, it se-
lects effective features for combination based on a feedback

procedure. It is worth emphasizing that the feedback pro-
cedure is consistent with the biological theory [16]. Em-
pirical studies on the CalTech5 and CalTech101 databases
have shown that EBIM is much more effective and efficient
than BIM. For object detection based on MIT-CBCL Street
Scene database, the proposed EBIM also achieves compet-
itive performance in comparison with state-of-the-art algo-
rithms while its computational cost is much less than con-
ventional ones and it can be applied to real time applications
directly.

The organization of this paper is as follows. In Section
2, we briefly introduce BIM, describe its three problems in
detail and review representative extensions. In Section 3,
we develop the EBIM and show how problems in BIM can
be solved in EBIM. Section 4 details empirical studies on
CalTech5, CalTech101, and the MIT-CBCL Street Scene
database and shows EBIM is a competitive model for ob-
ject recognition and detection in comparing with state-of
-the-art algorithms. Section 5 concludes the paper.

2. BIM: Problems and Extensions

BIM consists of four layers of computational units: S1,
C1, S2, and C2, where S and C are respectively simple and
complex cells in the visual cortex [31]. In the following, we
first describe operations and problems associated with each
of these four layers. Representative extensions of BIM are
reviewed at the end of this Section.

2.1. Computational units in BIM and Problems

S1 units: The units in the S1 layer correspond to simple
cells in the visual cortex. These units combine initial inputs
using a group of Gabor filters and each of which is the prod-
uct of an elliptical Gaussian envelope and a complex plane
wave,

F (x, y) = exp(−x0 + γ2y2
0

2σ2
) × cos(

2π

λ
x0) (1)

where x0 = xcosθ + ysinθ, y0 = −xsinθ + ycosθ, the
range of x and y decides the scales of Gabor filters and θ
controls orientations. Gabor filters have good spatial lo-
calization, orientation selectivity, and frequency selectivity.
However, this kind of dense input results in a heavy com-
putational cost in the S1 units, because each image has to
be convoluted with Gabor filters of different parameters in
BIM. Apart from heavy computational cost, such dense in-
puts are more likely to produce mismatches, because noises
responses are retained for later match in the S2 units.

C1 units: The C1 units correspond to complex cells in
the visual cortex. C1 units pool over S1 units using a max-
imum operation which keeps only the max response of a
local area of S1 units from the same orientation and scale.
The size of local area is decided by the scale band index of
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Figure 1. Framework of EBIM

the S1 units. Maximum operation shows some tolerance for
shift and size but it loses some informative responses.

S2 units: The S2 units pool over C1 units in a Gaussian-
like way between afferent C1 unit and a stored prototype,

γ = exp(−β||X − Pi||2) (2)

where β defines the sharpness and Pi is one of the N fea-
tures (prototypes). Eq. (2) reflects the similarity between
an input image and stored prototypes. The prototypes are
randomly sampled from C1 units of all positive samples.
This process is computed in all orientations respectively. To
achieve a good performance for recognition, a large number
of prototypes should be sampled at random and this results
in a very heavy computational cost.

C2 units: The C2 units are the global maximum over all
scales and positions of S2 units in every direction. For an
image, BIM will produce N × d maximum values, as the
feature vector, where N is the number of stored prototypes
and d is the number of orientations of Gabor filters.

Feed-forward scheme: BIM is a feed-forward proce-
dure, which combines responses from S1, C1, S2, and C2
units. It blindly selects features because of the lack of a
feedback stage to hint which features are important. There-
fore, a large number of prototypes should be sampled at
random for feature matching and thus the matching com-
putational cost is very heavy.

2.2. Representative Extensions

Extensions of BIM have been developed recently. Wolf
et al. [36] enumerated some of the alternative hierarchies

for object recognition and empirically studied based on
BIM showed that the strategy reverse-hierarchies for recog-
nition could be effective. Mutch and Lowe [7] refined BIM
in several biologically plausible ways using versions of
sparsification, lateral inhibition, and feature selection. Stan-
ley et al. [25] proposed four new image features, inspired by
the gestalt principles of continuity, symmetry, closure, and
repetition. All these extensions improved BIM in terms of
effectiveness. However, all of them have very heavy com-
putational cost for object recognition.

3. Enhanced Biologically Inspired Model

As discussed in Section 2, the conventional BIM has
three particular drawbacks: very heavy computational cost
associated with computing many inputs (input density), dis-
putable MAX pooling operation in modeling relations of
the visual cortex, and feed-forward framework based blind
feature selection. In this section we describe our solu-
tions to these drawbacks, the Enhanced Biologically In-
spired Model (EBIM). EBIM responds to these problems by
imposing sparse constraint, proposing a new pooling opera-
tion, and utilizing a feedback procedure for effective feature
selection, as shown in Figure 1.

3.1. Sparsity of input information

BIM processes dense input, actually all pixels of an im-
age, although only a very small part of the input is useful for
classification tasks. The additional sparsity constraint can
contribute to learning biologically plausible models from



the natural image statistics. Sparsity means that a random
variable is far from the Gaussian-like distributions [18].
This constraint is important because first, it simplifies struc-
tures and reduces computational costs; second, it obtains
a sparse estimation corresponding to performing feature or
variable selection; and finally, it helps to enhance the gener-
alization ability of learning machines, e.g., SVM [10, 32].

To take sparsity into account, we remove uninformative
input, and retain only areas of interest. Unlike BIM, which
computes every pixel of an image using all kinds of Gabor
filters, the sparse approach in EBIM is concerned only with
interesting points and associated neighbors. To implement
this objective, we compute the horizontal and vertical gradi-
ents over outputs of S1 layer and retain special points, each
of which satisfies the following condition:

|Fx(i)| + |Fy(i)| ≥ α

n

n∑

k=1

(|Fx(k)| + |Fy(k)|) (3)

where Fx and Fy are respectively horizontal and verti-
cal gradients; n is the number of pixels in the image of the
C1 layer; and α is a predefined constant for threshold con-
trol. We then dilate the filtered image several times so as
to also retain the neighborhood around the interest points.
This sparsity operation preserves informative pixels, which
will be encountered in the later processes; and significantly
reduces the number of pixels, which are uninformative. An
example of sparsity constraint effect is shown in Figure 2.

3.2. A new pooling operation

Basically, there are three computational pooling models,
which can be embedded in BIM. They are the maximum
model, the energy model and the half-wave model [28], as
shown in Figure 3. They connect simple cells with complex
cells in the visual cortex of primates.

Maximum model: The response of complex cells is the
maximum of the responses of all simple cells over a spatial
neighborhood.

input 0 0.5

1 3 5

(no sparsity)

Figure 2. An example of sparsity constraint effect. α is the pa-
rameter in Eq.(3). The first image is input and others are different
image of S1 layer of the input image.
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Figure 3. Three models of pooling operation.

Energy model: The response of complex cells is the lin-
ear summation of the energies (square values) of all simple
cells in a certain area.

Half-wave model: The complex cells use the linear
summation to pool outputs of energies of simple cells over a
spatial neighborhood whose value is above a certain thresh-
old.

Many theories about pooling functions for relationship
modeling have been proposed. They have shown that each
of these methods has its own strengths but describes par-
tially the relationship between simple cells and complex
cells. Lau et al. [23] found that the relation between the
output of units (simple cells) and the output of the units
(complex cells) is approximately quadratic (mean expo-
nent 2.3±1.1). This proves the rationality of the energy
model. Recently, Berkes and Wiskott [6] found that the
most strongly activated units (simple cells) strengthen re-
sponses of their neighbors. Therefore, the weights of re-
sponses of simple cells are not identical in the pooling func-
tion. Based on above descriptions, we propose a new pool-
ing function for EBIM.

In the EBIM model for pooling between simple and
complex cells, we first find the maximal response and its
neighbors; then other weak responses are removed due to
the inhibition effect; and finally, we sum the energy of
all responses remained by using different weights for S1
units. The weight of a point is defined as the inverse of
the standard deviation of its neighbors. This definition has
been shown to be effective in modeling feature relevance
[9, 35, 27]. Therefore, the pooling function in EBIM is

C =
1

NI0

∑

xi,yi∈I0

[wiS
2(xi, yi)] (4)

where S(xi, yi) is the response of the ith simple cell; C
is the responses of complex cells; I0 is the neighborhood of
the maximal response point in the local area of the domain
of simple cells; NI0 is the number of responses in I0; and
the weighting Wi =

√
D(Ii). Here, D is deviation opera-

tion and Ii is the neighborhood of the ith simple cell.



3.3. Feedback framework

BIM, a feed-forward system, consists of four levels and
each level of the hierarchy is used only to produce the next
level. That is once a level produces a new one, it can be
discarded. However, a feedback system passes information
from higher levels to lower levels for considering the com-
bined information, as shown in Figure 1. This differs from
the feed-forward mechanism that conforms to certain pre-
sumed constraints on high speed object recognition in the
primate visual cortex, i.e. it takes place in the first 100-
200 milliseconds. Feedback is important in a biologically
inspired object recognition theory. Hochstein and Ahissar
[16] developed reverse hierarchy theory (RHT). In this the-
ory, visual information initially travels through the feed-
forward visual hierarchy; and then reacts at higher levels.
After that, visual information reaches lower levels via feed-
back connections, forming a reverse hierarchy. And in any
case, the first 100-200 milliseconds reflects only one factor
in recognition and need not to be a limiting factor to high
level information, e.g., prior knowledge and inference. This
is because the high level information serves as a significant
role for classification tasks. The use of feedback is nec-
essarily biological and it could be useful to combine high
level and low level information in the training process. This
inclusion of cognitive factors in object recognition is sup-
ported by Murphy and Medin [24] on similarity, which is
not an absolute quality but rather a relative quality defined
by feature selection and combination. Feedback is an im-
portant way to provide these varieties for different aspects.
In any case, without feedback for feature selection and com-
bination, BIM is left to randomly sample a large number of
prototypes from C1 layer of positive samples with results
that the computational cost is very heavy in the matching
stage. Consequently, we utilize a feedback framework to
modify random patch selection.

In EBIM, the feedback part consists of cascade-rejecters
in the manner of Adaboost similar to [33]. Support vector
machine (SVM) is selected as the weak classifier, although
various classifiers, e.g., decision tree and neural networks,
can be utilized as the same role. We choose SVM because
SVM usually performs better than others and thus we can
achieve a better convergence rate for AdaBoost in order to
enhance efficiency. Apart from the efficiency obtained by
combining AdaBoost and SVM, this combination reduces
the classifier imbalance problem in SVM and generalizes
better than a single SVM.

4. Experimental results

To prove the effectiveness and the efficiency of the
proposed approach, we make comparisons on both object
recognition and detection. For object recognition, we test
the proposed approach on several public image databases,

including CalTech5 [1] and CalTech101 [13], and baseline
algorithms are BIM [30] and SIFT [21]. For object detec-
tion, we conduct comparison on MIT- CBCL street scene
database and baseline algorithms are C1 [7], HoG [12], and
BIM [30].All the experimental results are the average of ten
independent tries using a PC with 3.4GHz CPU and 2GB
memory. The final classifier we adopted is Lib-SVM [8].

4.1. CalTech5

Figure 4. Images from CalTech5 database. The last image is back-
ground.

This database contains 5 classes of objects: frontal-face,
motorcycle, rear-car, airplane and leaf [1]. Examples of
CalTech5 is shown in Figure 4. In this experiment, each
category consists of several hundreds of images. We split
each category into two parts for training and testing respec-
tively and each part has 1/2 examples.

The performance measure reported is the classification
accuracy at the equilibrium point, i.e., the classification ac-
curacy at the point that the false positive rate equals to the
miss rate (false negative rate).

To justify the effectiveness of each component of EBIM,
three experiments are designed: first, we justify the effec-
tiveness of the sparsity constraint by imposing it on BIM
and performance curves shown in Figure 5 demonstrate that
sparsity constraint is valuable to improve accuracy; second,
we justify the effectiveness of the new pooling function by
replacing the MAX with the new pooling function in BIM
and performance curves shown in Figure 6 demonstrate that
the new pooling function is useful to improve the classifica-
tion accuracy; and finally, we justify the effectiveness of the
feedback procedure by incorporating it into BIM and per-
formance curves shown in Figure 7 demonstrate that feed-
back procedure is valuable for ameliorating the classifica-
tion accuracy.

In Figure 5, results obtained by using BIM imposed with
sparsity constraint are superior to BIM by setting the pa-
rameter α in Eq. (3) as a proper range, i.e. 0 < α < 3.5.
Informative input may be removed if α is too large accord-
ing to Eq. (3), which will result in the decrease of accuracy.

In Figure 6, results obtained by using a modified BIM,
which MAX pooling function is replaced by the new pool-
ing function, are superior to BIM.

In Figure 7, results obtained by BIM incorporated with
a feedback procedure are superior to BIM, especially when



the dimension of C2 feature defined in section 2 is not too
high. BIM is more sensitive to the number of C2 features
because it samples patches at random to construct the final
features. If the patches sampled in BIM are not enough,
it is more possible that bad feature greatly affect the clas-
sification result. EBIM effectively chooses and combines
features by feedback, which reduces the affection of bad
features in BIM.
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Figure 5. Comparison between BIM and EBIM according to spar-
sity of input information on CalTech5. α is the parameter in Eq.
(3). α = 0 denotes the performance of BIM
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Figure 6. Comparison between BIM and EBIM on CalTech5 ac-
cording to the new pooling function.

By combining all three new components together, we
have EBIM and the performance is shown in Table 1. In
accordance with this table, EBIM is superior to previous
state-of-the-art algorithms.

The speed of EBIM is enhanced greatly especially when
the number of feature is large. For example, BIM takes
approximately 2 seconds to deal with an image (300× 200)
in the case of randomly sampling 1000 C2 features in the
C++ version (completed by us) and more than 30 seconds
with the Matlab version (completed by Serre et al. [2]). For
the same task, EBIM needs only 0.1 second. Actually, for
EBIM in common application, 100 features is enough.
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Figure 7. Comparison between BIM and EBIM on CalTech5 ac-
cording to feedback framework.

Databases Benchmark SIFT BIM EBIM

Leaves 84.0 87.0 97.0 98.1
Cars 84.8 96.4 99.7 99.8
Faces 96.4 83.3 98.2 99.0
Airplanes 94.0 96.5 96.7 98.5
Motorcycles 95.0 99.5 98.0 98.3

Table 1. Results obtained with benchmark before BIM, SIFT with
1000 key-points, BIM with 1000 C2 features and EBIM with 1000
features.The results of Benchmark, SIFT and BIM are from [30]

4.2. CalTech101

Figure 8. Images from CalTech101 database

CalTech101 database contains 101 object classes plus a
background class collected by Fei-Fei et al. [13]. There are
about 40 to 800 images per category and most categories
have more than 50 images. The size of each image is around
300 × 200. Example images are shown in Figure 8.

To conduct this experiment, we use 1000 features with
best parameters learnt in CalTech5 test. The result reported
here are the average and standard deviation, taken over all
101 classes, of the object recognition performance obtained
from 10 independent trails. In each trial, 15 images are sam-
pled at random for training and 50 images are sampled at
random for testing. For classification, the pairwise SVM
[15, 8] with majority voting rule is utilized.

Using this protocol, the performance of EBIM reaches



Dataset Car Pedestrian Bicycle
mearsure tp@fp=fn tp@fp=.01 tp@fp=fn tp@fp=.01 tp@fp=fn tp@fp=.01 time

BIM 90.0 51.0 82.5 45.0 88.5 51.0 ≈ 2s
HoG 91.38 61.36 90.19 62.62 87.82 52.90 ≈ 0.5s
C1 94.38 81.73 81.59 32.83 91.43 59.79 −

C1+Gestalt 96.40 90.90 95.20 85.20 93.80 84.70 > 80s
EBIM 98.54 96.02 85.33 70.00 96.49 93.43 ≈ 0.02s

Table 2. Object detection results obtained by several state-of-the-art methods in the experiments of MIT-CBCL Street Scene database.
”tp@fp=fn” denotes the true-positive-rate when false-positive-rate equals false-negative-rate. ”tp@fp=.01” denotes the true-positive-rate
when false-positive-rate is set to 1%. The last column is the averaged time cost to process a 128×128. Results of HOG, C1 and C1+Gestalt
are obtained from [7]. Results of BIM are obtained from [30, 12] and EBIM is the proposed one.

above 49.8% ± 1.25% correct classification rate. Some
of the best performances achieved include: BIM [30] for
44% ± 1.14%, 51% in [25], 49.5% in [14], 44% in [17]
and 45% in [5]. Although the training process takes sev-
eral hours, the speed in test process is very fast: less than
30 second to deal with a test image with the resolution of
300× 200 (Note that every test image needs to be classified
more than 5000 times using all-pairs method in this experi-
ment). As we know other methods are very time-consuming
and nearly unbearable in this experiment, e.g., BIM com-
bined with gestalt-like features [7] requires approximately
80 seconds to compute the feature vector for an image with
size 128 × 128.

4.3. MIT-CBCL Street Scene database

MIT-CBCL Street Scene database [3], which is usually
used for object detection, contains three kinds of objects:
car, pedestrian and bicycle.

There are two groups of approaches for object detection:
windowing based approaches and non-windowing based ap-
proaches. Windowing based approaches extract large num-
ber of (usually several thousands) image windows from an
image at various scales and positions. Each of sampled win-
dows has to be classified for a target object to be present
or absent. Thus, windowing based approaches are time-
consuming and not fit for fast practical applications. In this
test, we use non-windowing strategy for detection based on
MIT-CBCL street scene database, which equals to take the
whole image as a window. Table 2 shows the performance
comparison of EBIM with C1 [7, 30], HoG [12], and BIM
[30].

In this object detection experiment, although EBIM uses
non-windowing strategy, it achieves the best performance in
car and bicycle detection and is comparable to C1+Gestalt
[7] and HOG [12] in pedestrian detection. Moreover, EBIM
significantly reduces the time complexity for detection, e.g.,
it works at a rate of about 50 frames per second and is ready
for real-time applications. In comparison with C1+Gestalt,
EBIM improves the detection speed around 4000 times.
Demonstrations of detection are shown in Figure 9.

Figure 9. Demonstrations of detection in MIT-CBCL Street Scene
database. Some best patches are selected from each of classes.

5. Conclusion

In this work, inspired by physiology and psychology,
we have presented an enhanced biologically inspired model
(EBIM) with three new components to improve Serre’s
biologically inspired model (BIM). These three particular
components include: the sparsity constraint, a new pool-
ing operation, and an AdaBoost based feedback procedure.
They solve three popular problems in BIM respectively: a
very heavy computational cost due to the dense input, a
disputable pooling operation in modeling relations of the
visual cortex, and blind feature selection in feed-forward
frameworks. EBIM is superior to BIM in terms of both ef-
fectiveness and efficiency. Experiments on CalTech5 and
CalTech101 have demonstrated that EBIM improves the ac-
curacy and speed in object recognition. Further experiments
in the MIT-CBCL street scene open database prove that it
works effectively and efficiently for object detection appli-
cation. It is worth emphasizing that EBIM accelerates bi-
ologically inspired methods 20 times at least in common
applications.

In the future, we would like to further enhance EBIM in
the following aspects: first, it is possible to combine some
results in cognitive vision with image processing methods to
reduce more redundant input in the proposed sparsity con-
strained input; second, there is a chance to consider weight-
ing schemes in machine learning to improve the pooling
function for recognition; and finally, variants of boosting
schemes have been demonstrated to be more effective to
enhance the classification accuracy, so to replace conven-
tional AdaBoost with other machines will be reasonable to
achieve some benefits, in terms of efficiency and effective-
ness for object recognition and detection.
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