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Abstract

Spatial priors play crucial roles in many high-level vi-
sion tasks, e.g. scene understanding. Usually, learning spa-
tial priors relies on training a structured output model. In
this paper, two special cases of discriminative structured
output model, i.e. Conditional Random Fields (CRFs) and
Max-margin Markov Networks (M3N), are demonstrated to
perform image scene understanding. The two models are
empirically compared in a fair manner, i.e. using the com-
mon feature representation and the same optimization algo-
rithm. Particularly, we adopt online Exponentiated Gradi-
ent (EG) algorithm to solve the convex duals of both mod-
els. We describe the general procedure of EG algorithm
and present a two-stage training procedure to overcome the
degeneration of EG when exact inference is intractable. Ex-
periments on a large scale image region annotation task are
carried out. The results show that both models yield encour-
aging results but CRFs slightly outperforms M3N.

1. Introduction

Prior knowledge on the geometrical configuration or spa-
tial dependencies among objects play crucial roles in high-
level computer vision tasks, such as object detection [25],
object recognition and scene understanding [4, 6, 8, 11, 15,
22, 23, 31]. The basic idea is, to recognize an object, the al-
gorithm should not only consider the local appearance, but
also take the spatial context into account. Markov Random
Fields (MRFs) has been considered a natural model for ex-
ploiting such spatial priors [19]. However, it is trained in
generative way. Recent advances in discriminative train-
ing technique show prominent advantages over generative
ways. For example, Conditional Random Fields (CRFs)
[16], relaxing the independence assumption by being con-
ditionally trained, brings significant improvement to gener-
ative trained MRFs [12, 15, 21, 20, 22, 31]. Another state-
of-the-art method, Max-Margin Markov Networks (M3N)

incorporates the large margin mechanisms into MRFs, mak-
ing it very appealing [1, 24, 26].

CRFs has been broadly utilized in vision tasks [12, 15,
20, 22, 31], but M3N has seldom been explored [3]. In
particular, little has been done to empirically compare the
two discriminative training techniques in computer vision
field. We may naturally ask, what about the empirical per-
formance of M3N on vision problems? Theoretically, CRFs
and M3N differ only in their loss functions [1, 7]. Both
methods can be unified in a framework of structured output
linear discriminant function [7]. This perspective allows us
to present an empirical comparison in a fair manner, i.e.,
with common feature representation and the same optimiza-
tion algorithm.

Therefore, the objective of this paper is two-fold. First,
we are interested in the empirical comparison of CRFs and
M3N. Second, we also want to demonstrate how the dis-
criminative structured prediction approach can be applied
in vision problems, particularly for scene understanding. In
the paper, we briefly introduce CRFs and M3N and present
detailed description to other topics which are rare in vision
literatures. Particularly, we describe how to map the struc-
tured input pattern to feature space and how to learn the pa-
rameters within the models. We adopt online Exponentiated
Gradient (EG) algorithms to solve the convex duals of both
models. Though EG algorithm will converge when exact
inference is possible, it will sometimes fail for approximate
inference in the graphs with cycles. We design a two-stage
EG training strategy to address this problem. Experiments
show that discriminative structured prediction are promis-
ing approaches for scene understanding.

The paper is structured as follows. In Section 2 we de-
scribe the problem setting of scene understanding. In Sec-
tion 3 we introduce the framework of discriminative struc-
tured prediction model, in particular for CRFs and M3N.
Section 4 defines the mapping from the input space to the
feature space. Section 5 describes how to train CRFs and
M3N with online EG algorithm. Section 6 discusses the in-
fluence of approximate inference on EG algorithm. In Sec-
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Figure 1. Region-adaptive label lattice. The state of each filled node indicates the label of a particular grid.

tion 7 we evaluate both models on a scene understanding
task. Finally, Section 8 concludes the paper.

2. Problem Description
Our study follows the recent work on automatic image

region annotation. Region annotation, also known as re-
gion naming or object recognition [6, 8, 20, 22, 23, 31],
aims to learn a model which automatically assigns seman-
tic labels to segmented image regions. Frequently, dif-
ferent concepts may display similar appearances, e.g. sky
and sea often appear in blue regions. Incorporating spatial
priors over semantic concepts may reduce such ambigui-
ties [6, 22, 23, 31]. For example, sky often appears above
mountains or buildings while sea does not. Nevertheless, it
is usually difficult to characterize the spatial layout of re-
gions, due to the irregular shapes and arbitrary sizes. Here
we adopt a region-adaptive grid partition approach (see de-
tails in [31]). As shown in Figure 1, we apply adaptively
partitioned grids to approximating the segmented regions.
The nodes in the lattice are firstly annotated, their labels are
then propagated to corresponding regions. In this way, re-
gion annotation actually becomes grid annotation. The key
problem is how to exploit the spatial dependencies of labels
of adjacent grids.

3. Discriminative Structured Prediction
Let (x,y) denote the pair of the grid-based features and

labels. The goal of discriminative structure prediction can
be thought of learning a w-parameterized linear discrimi-
nant function

F (w,x,y) = 〈w,Φ(x,y)〉, (1)

where Φ maps the pattern (x,y) from input space X×Y to a
feature vector Φ(x,y) ∈ RQ; w is a weight vector in RQ.
The definition of feature representation Φ depends on appli-
cations. For our task, we will define it in Section 4. With
the discriminant function, the prediction rule is determined
by

y∗ = f(w,x) = arg max
ŷ∈G(x)

F (w,x, ŷ), (2)

where the function G(x) enumerates a set of label configu-
ration candidates for input x; the value of F (w,x, ŷ) can be
understood as a score evaluating the compatibility between
x and ŷ. This framework unifies many common classifica-
tion methods. It can not only predict labels of individual
objects but also can output meaningful internal structures
within y. Both Conditional Random Fields (CRFs, [16])
and Max-Margin Markov Networks (M3N, [24, 26]) are in-
stances of such discriminative structured prediction frame-
work.

CRFs firstly defines a conditional distribution over labels
with function F (w,x,y)

p(y|x;w) =
1

Z(w,x)
exp{F (w,x,y)}, (3)

where Z(w,x) =
∑

ŷ∈G(x) exp{F (w,x, ŷ)} is the parti-
tion function. Given a training set {(xi,yi)}n

i=1, the pa-
rameter w can be learned by minimizing the following reg-
ularized log-loss [16, 7, 21]

w∗ = arg min
w

n∑
i=1

�LL(i) +
λ

2
‖w‖2 (4)

where �LL(i) = − log p(yi|xi;w) and λ is a constant de-
termining the trade-off between empirical risk and model
complexity.

M3N is a model of Support Vector Machines (SVMs)
with structured output [24, 26]. Learning parameter w
amounts to solving the following constraint quadratic op-
timization problem

arg min
w

∑n
i=1 ξi + λ

2 ‖w‖2 (5)

s.t. 〈w,Ψ(xi,y)〉 ≥ ei(y) − ξi, ∀i,∀y∈G(xi),

where Ψ(xi,y)=Φ(xi,yi)−Φ(xi,y) and ei(y), defined in
Section 5.3, measures the error between the true labels yi

and the candidate labels y. Assuming ei(yi) = 0 for all i,
the so-called hinge loss can be written as

�MM (i) = max
y∈G(xi)

[ei(y) − 〈w,Ψ(xi,y)〉]. (6)



Hence, the constraint optimization in Equation 5 can be
written as

w∗ = arg min
w

n∑
i=1

�MM (i) +
λ

2
‖w‖2 (7)

Comparing Equation 4 and 7, we can find that CRFs and
M3N differ only in their loss functions. Both models have
a regularization term, which is understood as Bayesian pa-
rameter estimation with Gaussian priors for CRFs [21] and
as large margin criterion for M3N[24, 26].

4. The Definition of Feature Function Φ(x,y)

Let (xi, yi) denote the feature/label pair for the i-th grid
of an image1, we assume xi ∈ RD, yi ∈ Σ and |Σ| = K.
We use (x,y)={(xi, yi), i=1, · · · , m} to denote the input
pattern for an image with m = H×V grids where H and
V indicate the number of rows and columns respectively.
We follow the way described in [1] to define the feature
function Φ(x,y). In our case, the structure of the input
pattern (x,y) can be characterized by a graphical model
similar to that of Figure 2. Each label variable y associates
a state node and each low-level feature vector x associates
an observation node. There are two types of cliques in the
graph. We denote the set of cliques covering observation-
state nodes by Co and denote the set of cliques covering
state-state nodes by Cs. We define Φ(x,y) over the clique
set C = Co

⋃Cs. The components of Φ(x,y) can be cate-
gorized into two types according to what types of cliques
they are defined over. Each component defined over clique
in Co conjunctively combines an input attribute xd∈R (i.e.
the d-th entry of the low-level feature vector x) with a state
σl∈Σ

φo
l,d(x,y)=

∑
(xi,yi)∈Co

�yi = σl�x
i,d, (8)

where �·� denotes the indicator function of the enclosed
predicate. There are KD such components in Φ(x,y).
Each component defined over clique in Cs deals with a pair
of adjacent states σl∈Σ and σl̄∈Σ

φs
l,l̄(x,y)=

∑
(yi,yj)∈Cs

�yi = σl��y
j = σl̄�, (9)

There are 2K2 such components in Φ(x,y).

5. Learning w with Exponentiated Gradient
Algorithm

The EG algorithm is originally proposed by Kivinen and
Warmuth to learn linear predictors [13]. Bartlett et al. show

1Please distinguish xi and xi. We use subscript for image-level vari-
able while use superscript for grid-level variable
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Figure 2. Clique decomposition for graphical model.

that EG can solve M3N [5]. Globerson et al. show that EG
can also solve CRFs [10]. Collins et al. present a compre-
hensive study and provide better theoretical justifications
to EG algorithm for solving CRFs and M3N [7]. Previ-
ous work [5, 7, 10] show that EG empirically outperforms
or are competitive to other state-of-the-art approaches (e.g.
LBFGS[21], stochastic gradient descent [28] for CRFs and
SMO [24], cutting plane algorithm [26] for M3N). EG al-
gorithm solves the dual problems of CRFs and M3N. We
firstly introduce the dual problems of both models.

5.1. The Dual Problems of CRFs and M3N

Lebanon and Lafferty [7, 18] derive the dual of primal
CRFs in Equation 4 as

min
α

QLL(α)=
n∑

i=1

∑
y

αi,y log αi,y+
1
2λ

‖w(α)‖2

s.t.
∑
y

αi,y =1, αi,y ≥ 0,∀i,∀y∈G(xi), (10)

where w(α) =
∑n

i=1

∑
y αi,yΨ(xi,y). The primal so-

lution can be constructed from the dual one according to
w∗ = 1

λw(α∗). Tasker et al. [5, 7, 24] derive the dual of
M3N in Equation 7 as

min
α

QMM (α)=
n∑

i=1

∑
y

αi,yei(y)+
1
2λ

‖w(α)‖2

s.t.
∑
y

αi,y =1, αi,y ≥ 0,∀i,∀y∈G(xi), (11)

where w(α)=
∑n

i=1

∑
y αi,yΨ(xi,y). We can also get the

primal solution from the dual one by w∗ = 1
λw(α∗). In the

following, we use �i to denote the constraints {∑y αi,y =
1, αi,y ≥ 0}. Constraints �i imply the feasible dual vari-
ables for the i-th example, i.e. αi = {αi,y,y∈G(xi)}, are
in a probability simplex.

5.2. Online EG Updates of Dual Variables

Online EG is an iterative algorithm. In each iteration, the
dual variables for a specific example is updated. Concretely,



given the current dual variables αi for the i-th example, the
updated dual variables α

′
i can be obtained by [7]

α
′
i,y =

1
Zi

αi,y exp{−η∇i,y},∀y ∈ G(xi), (12)

where ∇i,y = ∂Q(α)
∂αi,y

; Zi =
∑

ŷ αi,ŷ exp{−η∇i,ŷ} is a nor-

malization constant ensuring the new variables α
′
i still con-

stituting a valid probability distribution; the parameter η>0
is a learning rate. For the dual problem of CRFs, the gradi-
ent is

∇i,y = 1 + log αi,y +
1
λ
〈w(α),Ψ(xi,y)〉 (13)

and for the dual problem of M3N, the gradient is

∇i,y = −ei(y) +
1
λ
〈w(α),Ψ(xi,y)〉. (14)

For online EG algorithm, Collins et al. [7] prove that, to
get an approximate optimal solution with accuracy ε, CRFs
require O(log( 1

ε )) EG updates and M3N requires O( 1
ε ) EG

updates. A notable problem is that the size of αi equals to
that of G(xi), which means the number of dual variables
may be exponential in size, e.g. |αi| = Km for an image
with m grids. Directly operating α is infeasible. Next, we
introduce how to overcome this challenge.

5.3. Part Factorization Trick for Dual Variables

As aforementioned in Section 5.1, for the i-th example,
the feasible dual variables αi constitute a probability dis-
tribution. Taskar et al. [24] originally show that the dis-
tribution αi can be represented by polynomial number of
marginal terms. Thus, we do not need to directly manipu-
late the exponential number of dual variables. Specifically
for EG algorithm, Bartlett et al. [5] and Collins et al. [7]
show that, if we constrain the probability distribution αi to
Gibbs distribution, an efficient EG update algorithm can be
designed, meanwhile it does not affect the theoretical con-
vergence properties. Here we apply their results and intro-
duce how to implement it in our scenario.

Given a clique c∈C, we define Y(c) to be the set of pos-
sible label configurations for that clique and define y(c) to
be the value of y on that clique. For example, if c ∈ Co,
Y(c) equals to Σ, while if c ∈ Cs, Y(c) equals to Σ×Σ.
We decompose each y∈G(x) into set of parts based on the
clique decomposition C, with a part for each clique. Con-
cretely, the set of parts for input pattern (xi,yi) is defined
as

R(xi,yi) = {(c, y(c))|c∈C}, (15)

and the set of parts for all the possible patterns with obser-
vation xi is defined as

R(xi) =
⋃

y∈G(xi)

R(xi,y) = {(c, a)|c∈C, a∈Y(c)}.

(16)

It is straightforward that R(xi,yi) and R(xi) have 3m−H−
V and mK+(2m−H−V )K2 elements respectively. If we
define a variable θi,r ∈R for each part r ∈R(xi) and con-
strain αi in exponential families, any αi can be determined
by θi[5, 7]

αi,y =σ(θi,y)=
exp{∑r∈R(xi,y) θi,r}∑

y′∈G(xi)
exp{∑r∈R(xi,y

′ ) θi,r} ,

(17)
which means, Km components of αi can be represented by
θi with much fewer components (i.e. mK+(2m−H−V )K2).
Moreover, the following lemma shows that, multiplicatively
updating αi with Equation 12 can be accomplished by ad-
ditively updating θi.

Lemma 1 (Collins et al. [7]) For a given α∈�n, and for
a given i∈ [1, · · · , n], take α

′
i to be the updated value for αi

derived using an EG step in Equation 12. Suppose that for
some Gi and gi,r, we can write ∇i,y =Gi+

∑
r∈R(xi,y) gi,r

for all y ∈ G(xi). Then if αi can be parameterized in an
exponential form according to Equation 17, that is, αi =
σ(θi) with some θi ∈R|R(xi)|, we define θ

′
i,r = θi,r−ηgi,r

for all r∈R(xi), it follows that α
′
i =σ(θ

′
i).

The above lemma requires that the gradients in Equation 13
and 14 can be factorized into the sum of a global value Gi

and some part-based values gi,r for any r ∈ R(xi). Next,
we show how to accomplish it. To do this, we firstly show
Ψ(xi,y) and ei(y) for y ∈ G(xi) can be factorized into
parts. According to the definition of feature functions in
Equation 8 and 9, it is easy to get

Ψ(xi,y)=
∑

r∈R(xi,yi)

Φ(xi, r)−
∑

r∈R(xi,y)

Φ(xi, r), (18)

where the components of Φ(x, r) are defined as

φo
l,d(x, r) = �(xi, yi)∈r��yi = σl�x

i,d, (19)

φs
l,l(x, r) = �(yi, yj)∈r��yi = σl��y

j = σl̄�. (20)

Also ei(y) can be defined in factorization style

ei(y)=
∑

r∈R(xi,y)

ei(r)=
∑

r∈R(xi,y)

�r /∈ R(xi,yi)�. (21)

With the above factorization results of αi,y (in Equation
17), Ψ(xi,y) (in Equation 18) and ei(y) (in Equation 21),
the gradient ∇i,y = ∂QLL(α)

∂αi,y
can be factorized as

Gi = 1 − log Z(y) +
1
λ
〈w(α), Φ(xi,yi)〉, (22)

gi,r = θi,r − 1
λ
〈w(α), Φ(xi, r)〉, (23)



where Z(y) =
∑

y′∈G(xi)
exp{∑r∈R(xi,y

′ ) θi,r} is a nor-

malization constant. And the gradient ∇i,y = ∂QMM (α)
∂αi,y

can
be factorized as

Gi =
1
λ
〈w(α),Φ(xi,yi)〉, (24)

gi,r =−ei(r) − 1
λ
〈w(α),Φ(xi, r)〉. (25)

Therefore, suitable updates over part-based variables θi for
QLL and QMM objectives respectively are [7]

θ
′
i,r = θi,r−η

(
θi,r − 1

λ
〈w(α),Φ(xi, r)〉

)
, (26)

θ
′
i,r = θi,r−η

(
− ei(r) − 1

λ
〈w(α),Φ(xi, r)〉

)
. (27)

6. Learning with Approximate Inference
We need to solve three types of inference problems ei-

ther for training or for decoding the structured output mod-
els. They are, (i) computing marginals, (ii) calculating par-
tition functions (iii) finding maximum a posterior (MAP)
label configuration. Since there exist cycles in the graph
structure of our problem, exact inference is intractable. We
resort to approximate inference. In the following, we will
identify the cases when we need to solve these inference
problems and discuss what are the influences of approxi-
mate inference on EG.

First, either for getting the primal solution according to
w∗ = 1

λw(α∗) or for performing the updates in Equation
26 and 27, we need to calculate w(α) by

w(α)=
n∑

i=1

Φ(xi,yi)−
n∑

i=1

∑
r∈R(xi)

μi,r(θi)Φ(xi, r), (28)

where μi,r(θi) =
∑

y:r∈R(xi,y) αi,y [7]. Note that αi fol-
lows gibbs distribution as defined by Equation 17, implying
μi,r(θi) can be thought of marginal probability for part r.
For this case, we use loopy sum-product algorithm. Second,
we need to calculate the partition functions to obtain the ob-
jective values for both the primal and dual models of CRFs.
For this case, we use the Bethe free energy approximation
approach [30]. Third, we need to solve Equation 2 for de-
coding both CRFs and M3N, and we also need to calculate
the hinge loss for each example to get the objective value of
primal M3N. All these cases resort to the third type of infer-
ence problem. We adopt Tree Reweighted Message Passing
approach for MAP inference [29].

Note that approximate inference may affect the conver-
gence properties of EG algorithm. With approximate in-
ference, we can only get approximate gradient gi,r for up-
date. However, we do not know whether EG will converge

(a) Stage 1 (b) Stage 2

Figure 3. Primal and dual objective values for CRFs and M3N in
two-stage training procedure. The coordinates of x-axis indicate
the number of iterations.

with approximate inference, since the theoretical guaran-
tees for convergence of EG are obtained by assuming exact
gradients can be computed [5, 7, 10]. In our experiments,
both CRFs and M3N trained by EG with approximate infer-
ence yield very poor performances, even worse than those
of multi-class Logistic Regression (MLR) and multi-class
Support Vector Machines (MSVMs). Note that MLR and
MSVMs are special cases of CRFs and M3N respectively,
which only use the feature functions in Equation 8 but do
not incorporate the label interaction features in Equation 9.
Kulesza et al. [14] observe similar phenomena that learning
may fail with approximate inference. They argue that ap-
proximate inference can reduce the expressivity of models
and may lead the learning algorithm astray. In our case, the
reason may be that, the errors in Cs caused by approximate
inference are propagated to cliques Co and make the EG
algorithm fail. To overcome this problem, we design a two-
stage training approach to prevent the error propagations. In
the first stage, only the part variables for the cliques in Co

are updated, which amounts to training models of MLR and
MSVMs. In this stage, exact inference can be performed,
convergence is theoretically guaranteed. As the example
shown in Figure 3(a), the dual gap in the first stage con-
verges to zero. In the second stage, the part variables for
cliques in Co are kept unchanged and only the variables for
cliques in Cs are updated. In this stage, approximate infer-
ence is performed. Also see the example in Figure 3(b), the
dual gap gradually shrinks but does not converge to zero.
With two-stage setting, the inaccuracies caused by approx-
imate inference will not affect the weights with respect to
the cliques in Co.

7. Experiments

In this section, we evaluate both CRFs and M3N on the
task of scene understanding. In particularly, we are inter-
ested in two problems, i.e. the effectiveness of discrimina-
tive structured prediction and the empirical comparison be-
tween CRFs and M3N.



(a) MLR (b) CRFs (c) MSVMs (d) M3N

Figure 4. Confusion matrix of average categorization accuracy for the four implemented algorithms. The brightness of intersected block
indicates the probability of classifying the concept in y-axis as the concept in x-axis.

Table 1. Categorization accuracies of the four approaches.
MLR CRFs MSVMs M3N

Accuracy 0.597 0.623 0.591 0.612

7.1. Experimental Setup

Discriminative training for structured output model re-
quires image set with region-level groundtruth. Unfortu-
nately, in most available image set, descriptive keywords
are associated with entire images rather than individual re-
gions. Some image sets with region-level groundtruth con-
tain only several hundred images (e.g. MSRC [22], Sowerby
[12]). Alternatively, we use a much larger scale data set
[31]. 4002 outdoor images are chosen from Corel Stock
Photo CDs. All the images are segmented into regions by
JSEG algorithm [9]. Totally, 104,626 regions are obtained.
For each region, 9-dimensional color moment in HSV color
space and 20-dimensional Pyramid-structured wavelet tex-
ture are extracted to describe its appearance. One of 11 se-
mantic concepts are manually annotated to each region, in-
cluding sky, water, mountain, grass, tree, flower, rock, earth,
ground, building and animal. The data set is randomly split
into two sub-sets in equal size for training and testing re-
spectively. For every algorithm, we use the same region-
adaptive approach to construct the grid-structure graphical
model. More detailed information on data set can be found
in [31].

7.2. Results

We implement four approaches for comparison, includ-
ing multi-class Logistic Regression (MLR), multi-class
SVMs (MSVMs), CRFs and M3N. The first two approaches
are special cases for CRFs and M3N respectively. They only
use feature functions defined in Equation 8, which amounts
to learning the mapping between appearance features and
semantic labels without considering the spatial dependen-
cies among labels. The last two approaches use both fea-
tures in Equation 8 and 9, taking the spatial dependencies
among adjacent labels into account. For all the algorithms,

we use the fixed learning rate η = 0.5 and λ = 0.005. 408
images from training set are held out for cross validation
purpose. We found that λ = 2 is a good choice for all
the models. In the following, we report the performance
of each algorithm under the best chosen parameters. In Ta-
ble 1 we summarize the grid-based categorization accura-
cies for all the approaches. Note that the criterion adopted
here is different from that used in [31], which uses aver-
aged recall and precision to measure the performances. We
have several observations from the results. First, the per-
formances yielded by structured output models outperform
those of non-structured output models. For example, CRFs
obtains a relative 4.4% increasement over MLR and M3N
gains a relative 3.6% performance increasement compared
to MSVMs. Second, we have not found the superiors of
hinge-loss models over log-loss models, because MLR and
CRFs have outperformed MSVMs and M3N respectively.
This is inconsistent with the conclusions of previous work
[24, 26] which find that M3N slightly outperforms CRFs.
We guess this may be due to inaccuracies caused by approx-
imate inference, because the previous results favoring M3N
are obtained in tasks where exact inference is tractable (e.g.
graphical models without cycles). Nevertheless, our result
is consistent with the observation of Vapnik [27], who has
not found the superiors of SVMs over logistic regression.
Therefore, it is difficult to say which is better. Both hinge
loss (e.g. MSVMs, M3N) and log loss (e.g. MLR, CRFs)
are state-of-the-art methods. The final observation is that
EG for M3N converges slower than that for CRFs, which is
consistent with the theoretical results and empirical obser-
vations in [7].

For details on the classification accuracies of each cat-
egory, we show the confusion matrices of the four models
in Figure 4. As shown in Figure 4(a) and 4(c), MLR and
MSVMs tend to classifying mountain and building as rock.
When combined spatial context, CRFs and M3N reduces
such ambiguities and boost the accuracies of rock and ani-
mal. We also present several examples of region annotation
in Figure 5. For most images, we can find that models with
spatial priors (i.e. CRFs and M3N) improve the recogni-
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(a) JSEG (b) MLR (c) CRFs (d) MSVMs (e) M3N (f) Groundtruth

Figure 5. Some example results. The first row shows the color-concept correspondence relationship. The first column show the segmented
regions by JSEG. From the second to the fifth columns, we show the annotation results by MLR, CRFs, MSVMs and M3N respectively.
The last column shows the groundtruth.

tion accuracies compared to those without spatial priors(i.e.
MLR and MSVMs). However, note that if the clues from
spatial priors dominate the clues from local appearances,
the approaches may yield over-smoothed results, e.g. the
image in the last row.

8. Conclusions
In this paper, CRFs and M3N are demonstrated to solve

scene understanding task. More specifically, we describe
how to unifiedly represent local appearances and spatial pri-
ors with structured output model. We also show how to
solve both models with online EG algorithm. In particu-
larly, we discuss the influences of approximate inference on

EG approach. Both CRFs and M3N yield encouraging re-
sults and their performances are comparable. Theoretically,
the two implemented models differ only in their loss func-
tion, i.e. with log-loss and hinge loss respectively. Altun et
al. [1] proved that both log-loss and hinge loss upper bound
the desired zero-one loss. Our work can be thought as an
empirical study to the effect of loss functions on scene un-
derstanding. Finally, we would like to point out that, though
discriminative structured prediction models is unified with
linear discriminant function, that does not mean the method
can only model linear dependencies. Note that both duals
for CRFs and M3N are determined only by the inner prod-
uct matrix of feature representation, which means the mod-



els can be conveniently kernelized just as what SVMs does
[2, 17, 24]. With nonlinear kernels, more complex depen-
dencies among x and y can be modeled. It is promising to
evaluate whether kernelized model will bring benefits to the
categorization accuracies to tasks such as scene understand-
ing.
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