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Abstract

In this paper, we propose a novel learning-based face
hallucination framework built in DCT domain, which can
recover the high-resolution face image from a single low-
resolution one. Unlike most previous learning-based work,
our approach addresses the face hallucination problem
from a different angle. In details, the problem is formu-
lated as inferring DCT coefficients in frequency domain in-
stead of estimating pixel intensities in spatial domain. Ex-
perimental results show that DC coefficients can be esti-
mated fairly accurately by simple interpolation-based meth-
ods. AC coefficients, which contain the information of local
features of face image, cannot be estimated well using in-
terpolation. We propose a method to infer AC coefficients
by introducing an efficient learning-based inference model.
Moreover, the proposed framework can lead to significant
savings in memory and computation cost since the redun-
dancy of the training set is reduced a lot by clustering. Ex-
perimental results demonstrate that our approach is very ef-
fective to produce hallucinated face images with high qual-
ity.

1. Introduction

As an active research field in computer vision, super-
resolution is to produce high-resolution image (HRI) or
frames from low-resolution image (LRI) or frames. Re-
cently, an interesting topic within super-resolution, face hal-
lucination, has aroused much attention. This term is firstly
introduced by Baker and Kanade [1], whose particular in-
terest is to generate a high-resolution face image from low-
resolution input. It can be widely applied in many fields
ranging from image compression to face identification. Es-
pecially in video surveillance, a higher resolution face im-
age with detailed facial features will be obviously signifi-
cant to raise the system’s performance.

1.1. Previous Work

Face hallucination from a single low-resolution face im-
age which is also referred as single-image super-resolution
problem received a lot of attention in recent years. A num-
ber of related super-resolution and face hallucination al-
gorithms have been proposed, which can be grouped into
three types. Interpolation-based algorithms (e.g. Bilin-
ear, Cubic B-Spline) suffer from severe blurring problem
especially when the resolution of the input is very low.
Reconstruction-based methods [3] [4], which try to model
the process of image formulation to build the relationship
between LRI and HRI based on reconstruction constraints
and smoothness constraints, are quite limited by the number
of input LRIs and usually cannot work well in single-image
super-resolution problem.

Recently, learning-based methods become very popu-
lar. Usually, the unknown HRI is inferred by making use
of some training set directly or indirectly. Compared with
other methods, learning-based method can achieve higher
magnification factor and output better results especially
for single-image super-resolution problem [5]. Baker and
Kanade [1] [2] presented a pioneering work on hallucinat-
ing face image based on a Bayesian formulation. The target
HRI is inferred by resorting to a training set. Freeman et al.
[6] proposed a well-known parametric Markov network to
learn the statistics between unknown scene and observed
image. This framework was applied to super-resolution
problem as well as some other low-level vision problems.
Such Markov network was extended and adopted by Sun et
al. [7], Bishop et al. [8], Liu et al. [9] and Wang et al. [10].
For instance, Liu et al. [9] developed a two-step statistical
modeling approach for face hallucination which integrates a
global parametric model and a local nonparametric model.
Wang et al. [10] proposed a combination model by inte-
grating the super-resolution constraint and the patch based
image co-occurrence constraint for super-resolution prob-
lem. Besides, Liu et al. [11] hallucinated the low-resolution
face image by introducing a TensorPatch model and then
devised a residue compensation step to enhance the halluci-
nation result. All above mentioned learning-based methods
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are built in spatial domain for the inference of pixel inten-
sities of the target HRI, and differed with each other on the
learning manner from the training set. A major problem
of these methods is the high computation requirement due
to the complex learning process. Especially in the Markov
network based inference model, rather taxing computation
and heavy memory load are required when the training set
becomes very large. Very recently, some transform domain
based methods are presented. Tuan et al. [12] implemented
the prevalent Markov-based work [6] in DCT domain for
fast super-resolving the compressed video. Karl et al. [13]
applied support vector regression (SVR) to super-resolution
and utilized DCT structural properties to aid in solving their
proposed regression structure.

1.2. Our Method

In this paper, we propose an efficient learning-based face
hallucination framework built in the Discrete Cosine Trans-
form (DCT) domain which is shown in Figure 1. More
specifically, instead of estimating pixel intensities directly
as the traditional learning-based algorithms, we concern
ourselves with inferring the DCT coefficients, which con-
tains two parts: DC coefficients estimation and AC coeffi-
cients inference. DC coefficient, which represents the av-
erage energy of a target block, can be estimated fairly ac-
curately by some simple interpolation-based methods (e.g.
Bilinear, Cubic B-Spline). AC coefficients, which contain
the information of local features such as edges and corners
around eyes, mouth of face image, cannot be estimated well
by interpolation. Therefore, a simplified learning-based in-
ference model is proposed to tackle this challenging prob-
lem. The basic idea of our method is that we are only inter-
ested in learning the local facial features embodied in AC
coefficients from a specific training set, since common fa-
cial features are very similar and can be shared more easily
in different types of faces. Thus, on the one hand, a more
specific and efficient training set for AC coefficient priors
can be built and used, on the other hand, without consider-
ing DC coefficients, our learning process will be more ro-
bust since it is much less influenced by image illumination.
Moreover, in order to make our method more efficient and
reduce the redundancy of the training set, a compact block
dictionary is built by a clustering-based training scheme as
introduced in Section 5.

Particularly, the intermediate hallucinated results IH in
Figure 1 is defined as a preprocessed image by a prefiltering
scheme [14] [15] which processes the block boundaries to
remove the correlation of neighboring blocks. Then a rea-
sonable assumption can be made that each HRI block in our
AC coefficient inference model is independent with its adja-
cent HRI blocks according to the analysis of AC coefficient
correlation. This is why our inference model is much sim-
plified compared with the common used Markov network.
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Figure 1. The proposed face hallucination framework.

Finally, the output I∗H can be obtained from IH by post-
filtering, which is the inverse of the prefiltering. Besides,
inspired by Locally Linear Embedding (LLE) [17] [18], a
more general way of utilizing training priors is adopted in
our learning process. In details, each target HRI block in
our inference model is derived from multiple nearest train-
ing samples instead of only one.

The rest of this paper is organized as follows. Section 2
is the problem formulation and an overview of the proposed
work. The simplified AC coefficients inference model is in-
troduced in Section 3. The reconstruction of the target HRI
is given in Section 4. The clustering-based training scheme
is stated in Section 5. Experimental results are discussed in
Section 6. Section 7 gives some concluding remarks.

2. Problem Formulation and Overview of the
Proposed Framework

Face hallucination from a single low-resolution face im-
age is a typical ill-posed problem. Usually, the inferred HRI
will suffer from blurring problem especially in the local de-
tails (e.g. edges, corners). For example in Figure 2, Cubic
B-Spline interpolation is used to enlarge a 24 × 32 low-
resolution face image to 96 × 128 high-resolution image.
The difference image shown in Figure 2 (d) shows that Cu-
bic B-Spline works well in the smooth parts of face. But lot
of details are lost in the parts (e.g. eyes, mouth and nose)
with abundant local features. In frequency domain, this is
because of the great loss of AC coefficients which contain
the information of local details. Therefore, the challenging
problem in face hallucination is to infer enough AC compo-
nents which can make the reconstructed HRI remain sharp
in local features.

In the proposed framework shown in Figure 1, face hal-
lucination is treated as inferring DC and AC coefficients for
each block of the prefiltered HRI IH . Such formulation will
benefit us in several aspects:

1. DC coefficient which represents the average energy of
a target block, can be estimated fairly accurately by
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Figure 2. Face Hallucination using Cubic B-Spline Interpolation.
(a) original HRI (96 × 128); (b) input LRI (24 × 32); (c) interpo-
lated HRI using Cubic B-Spline; (d) difference image.

some interpolation-based methods such as Cubic B-
Spline. This can be demonstrated by comparing Figure
3 (c) and (d).

2. As shown in Figure 3 (e), we only need to focus on
building a specific learning-based inference model for
AC coefficients which correspond to the local details
of face image. The basic idea is that we are only inter-
ested in learning the local facial features (e.g. edges,
corners around eyes, mouth, nose) from a specific
training set.

3. A simplified learning-based inference model can be
developed to infer AC coefficients efficiently based on
a reasonable assumption that blocks of the prefiltered
HRI built in DCT domain are independent with each
other.

4. The data dimension of training and testing set can be
reduced a lot. For example, the image shown in Figure
3 (a) is encoded by 8 × 8 DCT. Figure 3 (b) shows the
reconstructed image from 16 DCT coefficients (1 DC
plus the first 15 AC coefficients in zig-zag order) by
Inverse DCT (IDCT). It can be observed that Figure 3
(b) are very similar with the original image and con-
tains most of local features of a face image, although
only a small part of coefficients is used in the decoding.
This inspired us it is not necessary to infer all AC co-
efficients as shown in Figure 3 (e) for each block of the
target IH . For 8 × 8 DCT, the first 15 AC coefficients
are enough to produce a satisfying result with detailed
local features as shown in Figure 3 (f). So the dimen-
sion of HRI block can be reduced from 64 in spatial
domain to 15 in DCT domain in this case. This will
make our learning process much faster than traditional
learning-based methods built in spatial domain. More-
over, it will save a lot of computer memory which can

Figure 3. Image coded by 8 × 8 DCT. (a) original image (96 ×
128); (b) reconstructed image with 16 coefficients (1 DC plus the
first 15 AC coefficients in zig-zag order); (c) reconstructed image
only with the original DC coefficients; (d) reconstructed image
only with the DC coefficients which are estimated by Cubic B-
Spline interpolation; (e) reconstructed with all 63 AC coefficients
(absolute image); (f) reconstructed image with only the first 15 AC
coefficients (absolute image).
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Figure 4. Graphical model for AC coefficients inference. (a)
Markov network[6]; (b) our simplified inference model.

allow us to collect more training samples and thus be
less bounded by the limits of learning-based algorithm
[5].

In conclusion, as shown in Figure 1, the proposed frame-
work can be divided into two steps: firstly, infer the pre-
filtered HRI IH in DCT domain, which contains two parts:
AC coefficients inference and DC coefficients estimation;
Secondly, reconstruct the final hallucinated results I∗H from
the prefiltered IH by postfiltering.

3. Learning-based AC Coefficients Inference
Model

The goal of this part is to infer AC coefficients IAC
H for

the target HRI given the input LRI AC coefficients IAC
L . It

can be formulated as a problem of finding the optimal IAC
H

that can maximize the posterior probability:

IAC ∗
H = arg max

IAC
H

p(IAC
H |IAC

L ) (1)

As shown in Figure 4 (a), a typical Markov network
[6] of low-level vision field can be adopted to formulate
the above optimization problem. Node IAC

H (i) and node
IAC
L (i) are used to represent unknown ith high-resolution



block of HRI and the observed ith low-resolution block of
LRI respectively. These links between nodes indicate sta-
tistical dependencies. So the MRF model in Figure 4 (a)
implies two things: 1) HRI block IAC

H (i) provides all the
information about the observed LRI block IAC

L (i), since
IAC
H (i) has the only link to IAC

L (i); 2) HRI block IAC
H (i)

gives information about adjacent HRI blocks by the links
from IAC

H (i) to adjacent HRI blocks.

Since p(IAC
H |IAC

L ) = p(IAC
H ,IAC

L )

p(IAC
L )

and p(IAC
L ) is con-

stant over IAC
H , Eq.(1) can be rewritten as

IAC ∗
H = argmax

IAC
H

p(IAC
H , IAC

L ) (2)

According to the MRF model in Figure 4 (a), the joint
probability of IAC

L and IAC
H can be decomposed as:

p(IAC
H , IAC

L ) = p(IAC
H (1), ..., IAC

H (n), IAC
L (1), ..., IAC

L (n))

=
1
Z

∏

(i,j)

ψ(IAC
H (i), IAC

H (j))
∏

i

φ(IAC
H (i), IAC

L (i)) (3)

Where Z is a normalization constant factor, n denotes
the number of block pairs, (i, j) indicates neighboring
blocks. Both ψ and φ are introduced pairwise compatibil-
ity functions which model the two kinds of dependencies in
Figure 4 (a). They are learned from the training set.

Now the optimization problem of Eq.(1) becomes:

IAC ∗
H =

argmax
IAC

H

∏

(i,j)

ψ(IAC
H (i), IAC

H (j))
∏

i

φ(IAC
H (i), IAC

L (i))

(4)

By using the loopy Belief Propagation (BP) algorithm
[6], the target IAC

H can be inferred from a training set based
on Eq.(4). However, the product of these terms in Eq.(4) is
expensive to evaluate, meaning that attaining a global op-
timum will be difficult and certainly time consuming. In
order to render the inference model as well as the optimiza-
tion more tractable, let’s firstly make a brief analysis on the
correlation among AC coefficients.

3.1. Analysis of AC Coefficient Correlation

As a popular block transform, DCT refers to a separable
orthogonal or nearly orthogonal linear mapping of blocks of
image pixels into blocks of transform coefficients. For ex-
ample, given a KM × LM image, M ×M DCT will map
it into a K × L grid of M ×M coefficient blocks. In this
way, the image can be represented with DCT coefficients
by two forms: block representation and subband represen-
tation [15]. Figure 5 shows an example when M = 4,K =

1 2

3 4
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Figure 5. Block representation (a) and subband representation (b)
for 4 × 4 DCT coefficients.

L = 2. Each block (x, y) (0 ≤ x < K, 0 ≤ y < L) gathers
all coefficients at the same spatial location (x, y) from every
subband, represents different frequency components of a lo-
cal spatial region. The coefficient (u, v) (0 ≤ u, v < M)
is located at position (x, y) in subband (u, v). So, subband
(u, v) collects all coefficients at (u, v) from every block.
Figure 5 shows that every coefficient in each block has two
kind of neighbors: block neighbors and subband neighbors.
As a result, there are two kinds of correlation for each AC
coefficient.

From the view of block representation as shown in Fig-
ure 5 (a), each AC coefficient is highly uncorrelated with its
block neighbors because it is surrounded by these AC coef-
ficients corresponding to different orthogonal or nearly or-
thogonal subbands. Therefore, this correlation is very weak
and can be ignored.

From the view of subband representation as shown in
Figure 5 (b), each AC coefficient is surrounded by its sub-
band neighbors. Since each subband contains a part of the
global information of the image, this correlation referred as
interblock correlation is stronger than the last correlation.
But compared with the correlation of neighboring blocks
in spatial domain, it can also be regarded as neglectable.
In fact, this correlation is not considered too in most block
coding algorithms such as JPEG [16].

Besides, in order to avoid the blocking artifacts which of-
ten occur in block-based technology, a prefiltering scheme
[14] [15] as shown in Figure 6 (a) is performed block-wise
locally along the the block boundaries to remove the corre-
lation between neighboring blocks in spatial domain. For
instance, prefilter P , depicted in Figure 7 (a), is performed
in a separable fashion similar with DCT to remove the 8×8
block neighboring correlation of the training HRI priors by
the prefiltering scheme. As stated in Section 2, the interme-
diate result IH of the proposed framework is defined as the
prefiltered HRI. Given IH , postfilter P−1 depicted in Figure
7 (b) as the inverse of the prefilter, is adopted to reconstruct
the final HRI result I∗H by the postfiltering scheme as shown
in Figure 6 (b).

Now we get a conclusion that each AC coefficient of
the prefiltered image can be assumed to be neither corre-
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Figure 7. Prefilter P (a) and Postfilter P−1 (b) for 8 × 8 block
processing.

lated with its block neighbors nor correlated with its sub-
band neighbors. As a result, a reasonable assumption can be
made that each block IAC

H (i) in the target prefiltered HRI is
independent with its adjacent HRI blocks.

3.2. A Simplified AC Coefficients Inference Model

Since each block IAC
H (i) of the target prefiltered IH is

independent with its neighboring HRI blocks, the Markov
network as shown in Figure 4 (a) can be simplified a lot
by taking out of all links among HRI blocks. Namely, in
our AC coefficients inference model as shown in Figure 4
(b), it is not necessary to consider the compatibility function
ψ which models the dependencies among HRI blocks. So
Eq.(4) can be simplified as:

IAC ∗
H = argmax

IAC
H

∏

i

φ(IAC
H (i), IAC

L (i)) (5)

Thus the next problem is to build a reasonable compati-
bility function φ(IAC

H (i), IAC
L (i)) for our inference model.

3.2.1 Compatibility Function Building based on Lo-
cally Linear Embedding (LLE)

LLE [17] is a promising manifold learning method which is
to map high dimensional data into a low dimensional space

by preserving the neighborhood relationship. This theory
was extended in some super-resolution work [18] [19] with
a similar assumption that for each pair of corresponding
LRI and HRI blocks (patches), their local neighborhoods
on some proper manifolds would be similar. More detailed,
each HRI block xi and its nearest neighbors in high di-
mension lie on or close to a locally-linear manifold. This
local structure can be characterized by a weighting vec-
tor Wi which contains the linear coefficients that recon-
struct xi from its k nearest neighbors xj selected from the
high dimensional space. Wi can be solved by minimizing
the reconstruction error ε(Wi) in Eq.(6) with the constraint∑k

j=1Wi(j) = 1. Since low-resolution and high-resolution
manifolds have similar structure, the weights Wi minimiz-
ing ε(Wi) on the HRI blocks should also yield a small value
when the data are replaced with the LRI blocks, and vice
versa.

ε(Wi) = (xi −
k∑

j=1

Wi(j)xj)2 (6)

Our AC coefficients inference model is also based on this
assumption that HRI block set and LRI block set share the
the similar locally-linear structure. But in our algorithm,
this structure will be estimated more reasonably as shown in
Eq.(11) by both considering the LRI block and HRI block
manifolds instead of only considering one manifold.

In details, it is assumed that LRI blocks and HRI blocks
differ from the approximations obtained with their k near-
est neighbors and weights in each corresponding manifold
space by zero mean Gaussian noise of variance σ2

L and σ2
H ,

respectively. Therefore, the two local geometry similarity
can be described as:

IAC
L (i) =

k∑

j=1

Wi(j)IAC
L (j) +N(0, σ2

L) (7)

IAC
H (i) =

k∑

j=1

Wi(j)IAC
H (j) +N(0, σ2

H) (8)

Where IAC
L (j) and IAC

H (j) denote the nearest neighbor of
IAC
L (j) and IAC

H (j) in training set Φ, respectively. Unlike
traditional learning-based work, this is a more general way
to use the training data, because the target HRI block is
generated depending on several nearest neighbors instead
of only one. Based on Eq.(7) and Eq.(8), the compatibility
function φ(IAC

H (i), IAC
L (i)) can be defined as:



φ(IAC
H (i), IAC

L (i)) = exp{−(IAC
L (i) −

k∑

j=1

Wi(j)IAC
L (j))2

/2σ2
L} × exp{−(IAC

H (i) −
k∑

j=1

Wi(j)IAC
H (j))2/2σ2

H}

(9)

A factor λ is introduced as λ = σ2
L/σ

2
H , then

φ(IAC
H (i), IAC

L (i)) = exp{−((IAC
L (i) −

k∑

j=1

Wi(j)IAC
L (j))2

+ λ(IAC
H (i) −

k∑

j=1

Wi(j)IAC
H (j))2)/2σ2

L} (10)

An energy term is introduced as

E(IAC
H (i),Wi; IAC

L (i)) = −2σ2
L × ln(φ(IAC

H (i), IAC
L (i)))

= E1(IAC
L (i),Wi) + λE2(IAC

H (i),Wi) (11)

Where

E1(IAC
L (i),Wi) = (IAC

L (i) −
k∑

j=1

Wi(j)IAC
L (j))2 (12)

E2(IAC
H (i),Wi) = (IAC

H (i) −
k∑

j=1

Wi(j)IAC
H (j))2 (13)

According to Eq.(10) and Eq.(11), the optimization
of Eq.(5) can be solved by minimizing the energy
E(IAC

H ,W ; IAC
L ) =

∑
iE(IAC

H (i),Wi; IAC
L (i)).

3.2.2 Energy Minimization

The parameter λ in Eq.(11) can be set empirically in
the experiments because it effects as a weighting fac-
tor to balance the contributions of E1(IAC

L (i),Wi) and
E2(IAC

H (i),Wi). Given the training set, the minimiza-
tion of E(IAC

H ,W ; IAC
L ) with respect to IAC

H (i) and to Wi

can be solved respectively and iteratively. For ith block,
firstly set IAC

H (i) =
∑k

j=1Wi(j)IAC
H (j) with the initial-

ized Wi. Then update Wi with IAC
H (i) by minimizing

E(IAC
H (i),Wi; IAC

L (i)) in Eq.(11) as a constrained least
squares problem. The whole AC coefficients inference al-
gorithm is summarized in Figure 8.
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Figure 8. AC coefficients Inference Algorithm.

4. HRI Reconstruction by IDCT and Postfilter-
ing

As shown in Figure 1, all DCT coefficients of each block
in the target prefiltered HRI IH can be recovered by com-
bining the following two parts: 1) the selected AC coeffi-
cients which constitute IAC

H (i) are estimated by the above
AC coefficients inference model and other residue AC co-
efficients are set to zero; 2) interpolate the LRI to HRI by
Cubic B-Spline method and the target DC coefficients are
estimated from the corresponding block of the interpolated
HRI. Given all DCT coefficients for each block, the target
prefiltered HRI IH can be reconstructed by IDCT. Then the
final HRI result I∗H can be derived from IH by the above
postfiltering scheme.

5. Learning Block Dictionary by Clustering

As discussed in [5], the performance of learning-based
method often depends on how well the input LRI matches
the samples in the training set. Theoretically, the more
training samples are collected, the more robust the learning-
based algorithm is. However, a huge training set makes it
difficult to design a fast algorithm due to the taxing com-
putation and heavy memory load. Fortunately, the blocks
cropped from the face images do not have much variation,
since face images are similar and the subparts of face im-
ages are more similar. This is especially true in our case be-
cause our training set only contains AC coefficients which
represent local facial features. The raw training set should
have much redundancy and it is possible to learn those most
representative blocks and build a compact block dictionary
by performing clustering method.

In our training, all collected training images are firstly
aligned by affine transform based on three marked points:
the centers of the two eyes and the center of the mouth.



  (a)                  (b)                 (c)                 (d)                 (e)                 (f)                  (g)

Figure 9. Face hallucination results and comparison. (a) input LRIs (24 × 32); (b) our intermediate prefiltered results IH ; (c) our final
results I∗

H ; (d) Cubic B-Spline Interpolation; (e) Baker et al.; (f) C.Liu et al.; (g) original HRIs (96 × 128).

Then each image is cropped to a canonical 96 × 128 image
as the HRI. Its corresponding 24 × 32 LRI can be obtained
by downsampling and smoothing. After being preprocessed
by the above prefiltering scheme, all HRIs are transformed
from spatial domain to frequency domain by 8 × 8 DCT.
So the HRI blocks of the training data and testing data are
non-overlapped 8 × 8 blocks and represented by only us-
ing the first 15 AC coefficients in zig-zag order. Since the
LRIs will be initially enlarged via Cubic B-Spline interpo-
lation, AC coefficients of the corresponding LRI blocks are
obtained by performing 8 × 8 DCT similarly on the inter-
polated HRIs. Finally, the block dictionary is built by the
clusters obtained by adopting the affinity propagation clus-
tering method [20] on these raw training samples. Thus
lots of redundancy of the raw training samples has been re-
moved and a condensed training set is obtained. Besides,
the dimension of block size is also reduced a lot as stated in
Section 2. Therefore, our learning process is more efficient
than traditional learning-based work.

6. Experimental Results

6.1. Comparison

The experiment is conducted with a large number of
frontal face images from FERET data set [21] [22] and other
collections, which consist of many different races, illumina-
tions and types of face images. Among all these samples,
about 1600 images are selected as training data and the re-
mainder images are for testing.

Our approach is compared with some of the existing
methods as shown in Figure 9. Cubic B-Spline interpo-
lation suffers from severe blurring problem. Baker et al’s
method produces noisy results in some important facial fea-
tures. C.Liu et al’s results seem better and the whole visual
quality is satisfying, but some subtle characteristics can not
be generated correctly and smoothly, especially the details
around eyes. It can be concluded that our method shows su-
periority over others on recovering smoothed HRI with high
quality facial details.



Figure 10. Face hallucination with a small training set. (a) training
HRI priors; (b) input LRI (24 × 32); (c) our method; (d) learning
in spatial domain; (d) Baker et al.; (f) original HRI (96 × 128).

6.2. Robustness to Image Illumination

As stated in Section 1 and 2, we only concern ourselves
with learning local features embedded in AC coefficients
from the training priors. It is found that without consid-
ering DC coefficients will make the learning process more
robust since the matching from input to training samples is
much less influenced by image illumination. An experiment
as shown in Figure 10 is conducted to test the learning ro-
bustness of our method. All the five 96 × 128 images as
shown in Figure 10 (a) and (f) are taken for the same person
at different time, with different expressions and illumina-
tion conditions. Four images as shown in Figure 10 (a) with
high illumination are selected for training, Figure 10 (f) cap-
tured under low illumination is used for testing. Given the
LRI input Figure 10 (b), Figure 10 (c) is hallucinated by our
method. It is obvious that our algorithm is nearly exempted
from the illumination influence and capable of learning high
quality local features from such a small training set. In con-
trast, Figure 10 (d) which is inferred by learning the pixel
intensities directly (considering both DC and AC compo-
nents) in spatial domain with an example-based manner, is
very bad because the input LRI can not match well with the
training samples due to the influence of image illumination.
Although Baker et al’s method produces a better result as
shown in Figure 10 (e), it still fails in digging out some sub-
tle features from the training samples. Since the training set
is too small to be used in C.Liu et al’s method, we exclude
their method in this comparison.

7. Conclusion

In this paper, we presented an efficient learning-based
framework for face hallucination from a single LRI. Our
method is novel in that the problem is formulated as DCT
coefficients estimation in frequency domain. DC coeffi-
cients were estimated by Cubic B-Spline interpolation. AC
coefficients were learned efficiently from a condensed train-
ing block dictionary. Experiments clearly demonstrated the

effectiveness and robustness of our approach.
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