
Automatic symmetry plane estimation of bilateral objects in point clouds

Benoı̂t Combès
INRIA∗

bcombes@irisa.fr

Robin Hennessy
RCSI†

John Waddington
RCSI†

Neil Roberts
MARIARC‡

Sylvain Prima
INRIA∗

sprima@irisa.fr

Abstract

In this paper, the problem of estimating automatically
the symmetry plane of bilateral objects (having perfect or
imperfect mirror symmetry) in point clouds is reexamined.
Classical methods, mostly based on the ICP algorithm, are
shown to be limited and complicated by an inappropriate
parameterization of the problem. First, we show how an ad-
equate parameterization, used in an ICP-like scheme, can
lead to a simpler, more accurate and faster algorithm. Then,
using this parameterization, we reinterpret the problem in a
probabilistic framework, and use the maximum likelihood
principle to define the optimal symmetry plane. This prob-
lem can be solved efficiently using an EM algorithm. The
resulting iterative scheme can be seen as an ICP-like algo-
rithm with multiple matches between the two sides of the ob-
ject. This new algorithm, implemented using a multiscale,
multiresolution approach, is evaluated in terms of accuracy,
robustness and speed on ground truth data, and some re-
sults on real data are presented.

1. Introduction
Most natural or manufactured objects exhibit some form

of symmetry. In mathematical terms, it means that they re-
main invariant or almost invariant under certain transfor-
mations, typically: translations, rotations (with respect to
a point or a line) and reflections (with respect to a point, a
line or a plane). A single object can often display different
types of symmetry. In computer vision, it is often crucial
to use these symmetry features for common image process-
ing tasks, such as recognition, denoising, registration, seg-
mentation, etc. There is an extensive literature concerning
the characterisation of symmetries of objects in 2D or 3D
grey level images [23, 17]. Most of the works have been
dedicated to the computation of the symmetry axis/plane
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of bilateral objects, with a specific focus on magnetic res-
onance images (MRI) of the human brain [18, 13]. Inter-
estingly, several methods have been developed separately
for the computation of such a reflection axis/plane in point
clouds, with a focus on the human face. Some applications
include: shape completion/reconstruction [19], face authen-
tication and recognition [22, 15, 17], surgical planning [14],
intra-operative assistance [2], etc.

Two main approaches have been proposed to compute
the symmetry axis/plane of bilateral objects in point clouds.
In a first approach, the normals to the object under study are
computed and stored in an orientation histogram to build the
extended Gaussian image (EGI) associated with the object.
If an object is symmetric, then so is its EGI. The position
and orientation of the symmetry plane is then computed on
the EGI (or the smoothed EGI) using eigen analysis of its
inertia matrix and local optimisation techniques [15, 17].
However, practically this method is dedicated to structured
point clouds (to be able to compute the normals) and is not
robust to important occlusions.

In a second approach [24, 22, 14, 23] that we call the
rigid-body transformation-based approach, the symmetry
plane is estimated using a two-step algorithm. First, an
initial plane K is chosen and the rigid-body transforma-
tion T best superposing the original data with its reflection
with respect to K is computed. Secondly, the symmetry
plane of the object under study is deduced form the result-
ing transformation T . The major advantage of this approach
is to benefit from the ICP algorithm [3] relying on known
closed-form solutions for the absolute orientation problem
[10, 8, 1, 11, 21] to find T . However, computing the sym-
metry plane from the optimal rigid-body transformation is
an ill-posed problem that needs ad hoc choices leading to
different solutions.

In Section 2, we discuss the rationale behind the rigid-
body transformation-based approach and show its limita-
tions. In Section 3, we develop a simpler approach based
on an explicit formulation of the searched plane. We derive
a closed-form solution for the problem of finding the op-
timal symmetry plane when the matches between the two
sides on the object are known, and then we propose an

978-1-4244-2243-2/08/$25.00 ©2008 IEEE



iterative, ICP-like, algorithm to compute this plane when
these matches are unknown. In Section 4, we experimen-
tally show that this approach outperforms the rigid-body
transformation-based approach in terms of computational
time, accuracy and simplicity. Then, in Section 5, using this
purely reflection-based approach, we reformulate the prob-
lem in probabilistic terms and estimate the optimal symme-
try plane using the maximum likelihood principle and the
expectation-maximisation (EM) algorithm. In Section 6, we
evaluate the accuracy, robustness and computational time
of this multiscale, multiresolution algorithm on synthetic,
ground truth data, before proposing some useful applica-
tions on real data.

2. Rigid-body transformation-based methods
2.1. Formulation

Without loss of generality, we consider in the rest of this
article that the object under study is represented by a cloud
of points noted O, with card(O) = N . For an ideal bilateral
object having a perfect symmetry, there exists a plane P
superposing each point x with its counterpart in the other
side of the object. The fact that P is a perfect symmetry
plane simply writes:

O = SP (O)

Based on the observation that for any plane K, SK ◦
SK = I3 (where I3 is the 3 × 3 identity matrix) and noting
T = SP ◦ SK , the previous relation can be rewritten as:

∀K, O = T ◦ SK(O)

Then one can note that:
• if K ‖ P then SP ◦ SK is a translation
• if K ∦ P then SP ◦ SK is a rotation

In other words, for any plane K, T = SP ◦SK is a rigid-
body transformation. Based on this observation, and on the
need to deal with only grossly symmetrical objects, a first,
intuitive approach to compute the symmetry plane of O is
to fix a plane K and to find the rigid-body transformation T̃
best superposing O and SK(O). In practice, this approach
can be implemented efficiently using the classical ICP al-
gorithm (or one of its numerous variants) between the two
point clouds. Once K is fixed, T̃ is then simply defined as:

T̃ = arg min
T,y1,...,yN

∑
xi∈O

||yi − T ◦ SK(xi)||2 = arg min
T,y1,...,yN

ET ,

where the points y1, . . . , yN belong to the cloud O. The
ICP algorithm then iterates between computing the optimal
matches {yi}while T is kept fixed (the solution is simply to
choose yi as the closest point of T ◦ SK(xi) in O) and then

computing a new estimate of T given these matches {yi}.
Different closed-form solutions exist for this last problem
using, for instance the unit quaternions [10, 8] of the singu-
lar value decomposition [1, 11, 21].

2.2. Limitations of this approach

Unfortunately, this approach suffers from a major flaw:
the optimal transformation T̃ , composed with SK , does not
necessarily define a proper reflection, and thus the optimal
plane P̃ cannot be computed directly using SP̃ = T̃ ◦ SK .
For instance, if T̃ is a pure translation that is not perpendic-
ular to K then T̃ ◦ SK is not a reflection.

Three approaches have been proposed in the literature to
estimate the optimal plane P̃ from T̃ ◦ SK , and are illus-
trated in Fig. 1:

• For each point x ∈ O, one can compute the perpendic-
ular bisector plane Px of the segment [x, T̃ ◦ SK(x)].
The symmetry plane P1 can then be estimated as the
plane whose parameters (typically, unit normal and
distance to the origin) are closest to that of the planes
Px, x ∈ O in the least squares sense [22].

• Another solution is to compute the middle point mx of
the segment [x, T̃ ◦ SK(x)] for each point x ∈ O. The
symmetry plane P2 can then be estimated as the plane
that best fits the points mx, x ∈ O in the least squares
sense [24].

• A last approach is to consider the symmetry plane P3

as the perpendicular bisector of the segment [g(O), g ◦
T̃ ◦SK(O)], where g(.) provides the centroid of a point
cloud [14].

Figure 1. Illustration of the rigid-body transformation-based
method. Example of computation of the plane Px and the point
mx extracted from point x in O.

3. An adapted reflection-based method
3.1. Formulation

The main advantage of rigid-body transformation-based
approaches is to be easy to implement using the ICP al-
gorithm and to benefit from the numerous theoretical and



practical works performed in the literature to assess its be-
haviour. However, this rigid-body transformation-based
formulation of the symmetry plane problem is ill-posed:
the resulting optimal rigid-body transformation does not al-
low direct, unambiguous estimation of the optimal plane, as
T̃ ◦ SK is usually not a reflection. In fact, it can be shown
that T̃ ◦ SK defines a proper reflection if and only if:

- T̃ is a pure rotation whose axis is in K, or
- T̃ is a pure translation perpendicular to K.

In practice, to our knowledge, these additional constraints
on T̃ have never been taken into account, probably because
no closed-form solution is readily available in the literature
for this problem.

We believe that a much more natural (but original) ap-
proach than searching for such a constrained rigid-body
transformation is to look for the symmetry plane directly,
i.e., without relying on an intermediate rigid-body transfor-
mation. As a result, we can simply formulate the problem
as:

P̃ = arg min
P,y1,...,yN

∑
xi∈O

||yi − SP (xi)||2 = arg min
P,y1,...,yN

EP ,

where the points y1, . . . , yN belong to the cloud O. In a
word, we propose to replace the two-step methods (compu-
tation of T̃ and then P̃ ) of Section 2 by the one-step, purely
reflection-based, minimisation of EP .

3.2. Algorithm

To our knowledge, there is no closed-form solution to
minimise EP . Thus, we devise the following iterative
scheme, inspired by the ICP algorithm, and that can be eas-
ily shown to converge to a (at least local) minimum of EP :

Step 0: Initialise P̃
Step 1: ỹ1, .., ỹN = arg miny1,...,yN

∑
xi∈O ||yi − SP̃ (xi)||2

Step 2: P̃ = arg minP

∑
xi∈O ||ỹi − SP (xi)||2

Step 3: if P̃ has changed go to Step 1 else finish

In Section 4, we call this optimal plane P4 and compare
it with the planes P1, P2 and P3 obtained in Section 2.

3.3. Solving Step 1

One has to find N points ỹi in O so as to minimise EP

while P is kept fixed. The trivial solution to Step 1 is to
simply choose ỹi as the closest point of SP (xi) in O.

3.4. Solving Step 2

To solve Step 2, we first characterise the plane P using a
minimal parametrization: its unit normal n and its distance
to the origin d. It can be easily shown that :

SP (x) = (I3 − 2nnT )x + 2dn

where x ∈ O. We then reformulate the problem of Step
2 in a more general way and state the following theorem
(proof in Appendix):

Theorem :
For a given square matrix A of size N ×N (independent
of P ), the plane P = (d, n) that minimises∑

xi∈O

∑
xj∈O

Ai,j ||xj − SP (xi)||2

is characterised by:
• n colinear with the eigenvector corresponding to the

smallest eigenvalue of the 3 × 3 matrix B, where

B =
∑

(xi,xj)∈O2

Ai,j [(xi − g1 + xj − g2)(xi − g1 + xj − g2)T

− (xi − xj) (xi − xj)
T ]

and
g1 = 1P

i

P
j Ai,j

∑
(xi,xj)∈O2 Ai,jxi

g2 = 1P
i

P
j Ai,j

∑
(xi,xj)∈O2 Ai,jxj

.

• d = 1
2 (g1 + g2)T n.

Notice that the proof we give and the resulting formu-
las are linked to that obtained by Horn [10] and Faugeras
and Hebert [8] for rigid-body registration of point clouds.
There is an analogy between our parameters (n, d) (unit
normal vector, distance to the origin) and their parameters
(q, t) (unit quaternion, translation component).

In practice, in the problem of Step 2, the matrix A is a
binary matrix built such that Ai,j = 1 ⇔ xj is the closest
point of SP (xi) in O.

4. Comparison of the approaches
In this section, we show experimentally that the rigid-

body transformation-based approach is outperformed by the
reflection-based solution. We use a dataset of about 80,000
points representing a human face (description in Section
6.3) and generate a perfectly symmetrical image from this
raw data. Then we create three images with different levels
of occlusions by removing a given number (1%, 3%, 7%)
of adjacent points (example in Fig 3).

We then run the ICP algorithm and the ICP-like algo-
rithm we devised in Section 3 on these data to find the op-
timal (rigid-body transformation-based) planes P1, P2, P3

and the optimal (reflection-based) plane P4. At the end of
each iteration of the two algorithms, we record the values
ET (T ) and EP (P4). For each current estimate of T , we
compute the three planes Pi (i = 1, 2, 3), for which we cal-
culate the criterion values EP (Pi). We plot these values,
together with ET (T ) and EP (P4), for the image with 7%



of occlusions, on Fig. 2. We also display the final values
EP (Pi) (i = 1, 2, 3, 4) for the three images in Tab 1.

For a fair comparison, the two algorithms are initialised
in the same way:

. the initial plane P for the ICP-like algorithm of Sec-
tion 3 and the initial plane K for the ICP algorithm are com-
puted using the principal axes and the centre of mass of an
uniformly resampled version of O [17].

. the initial transformation T for the ICP algorithm is the
identity.

Note that the comparisons of the different algorithms on the
perfectly symmetrical image is of little interest, as in this
case this initialisation already gives the optimal symmetry
plane. Our conclusions are threefold, and suggest the supe-
riority of the reflection-based approach over the others:
• The final value of ET (T ) is lower than that of EP (P4).

This observation was expected; considering that any reflec-
tion SP can be rewritten as the composition of a rigid-body
transformation and of a reflection with respect to a fixed
plane K, we have necessarily min ET (T ) ≤ min EP (P ).
However, as mentioned earlier, the optimal rigid-body
transformation T , combined with SK , does not always de-
fine a proper reflection.

• The convergence to T is two times slower than for
P4 in terms of computational speed and number of itera-
tions, because six parameters have to be estimated instead
of three.

• The three planes Pi, i = 1, 2, 3 perform worse than
P4. For instance, for 1% of occlusions, the final EP values
for P1, P2 and P3 are 2%, 7% and 6% larger than for P4.
Interestingly, these percentages drastically increase with the
level of occlusions, and become equal to respectively 40% ,
70% and 66% when there are 7% of occlusions.

Figure 2. Values of the different criteria through the iterations for
a perfectly symmetrical face with 7% of points removed.

EP (P4) EP (P1) EP (P2) EP (P3)
1% 4.67 4.80 5.04 4.98
3% 17.09 19.11 24.09 22.01
7% 52.62 74.33 93.33 87.02

Table 1. Final values of the criterion EP (Pi), i = 1, 2, 3, 4, for the
three images with different levels of occlusions (1%, 3% ,7%).

5. A fast, robust and accurate algorithm
In Section 3, we have proposed to define the symme-

try plane as the minimiser of the criterion EP , and we have
shown how to perform this minimisation using an ICP-like
scheme with iterative, closed-form formulas. We have also
shown this approach to be superior than two-step meth-
ods based on the intermediate minimisation of ET . How-
ever, as the classical ICP algorithm, which is essentially a
least squares minimisation, our ICP-like algorithm is not
robust to outliers. Classical techniques can be adapted to
deal with this issue [4, 12] and we have recently proposed
a solution based on M-estimators [5]. However, another
critical problem is that, as the criterion ET in the classi-
cal ICP algorithm, EP (and our modified criterion based on
M-estimators) is based on discrete, one-to-one matches be-
tween the two sides of the object under study, relying on the
closest point principle. In practice, this causes the criterion
EP to exhibit lots of local minima, which are prone to make
the ICP-like algorithm (which has a monotonic, local con-
vergence) fail. To deal with this limitation, in the context
of rigid-body registration of point clouds, Rangarajan and
colleagues proposed to define a new criterion using multi-
ple, weighted matches [16]. They showed this criterion to
be well-behaved and smoother, with a reduced number of
local minima, than ET . A simple way to implement this
idea, and to include such fuzzy matches between points, is
to cast the problem in a probabilistic framework, and then to
use classical techniques of statistical inference to estimate
the unknown transformation.

Following Chui & Rangarajan [6] and Granger & Pen-
nec [9], who introduced these techniques in the context of
rigid-body registration of point clouds, we propose an adap-
tation of the criterion EP , based on mixture models, to com-
pute the symmetry plane of the object.

5.1. Algorithm

The cloud SP (O) is now considered as a noised ver-
sion of O. In practice, we define the probability function
of the data points yi ∈ SP (O) as a mixture density, using
the points xj ∈ O as follows:

p(yi|P ) =
∑

xj∈O

p(yi, xj |P ) =
∑

xj∈O

Ai,jp(yi|xj , P )

There are as many mixture components as there are



points in O. The unknown mixture component Ai,j repre-
sents the unknown probability that yi ∈ SP (O) is a measure
of a given point xj ∈ O, knowing nothing else. Intuitively,
Ai,j conveys the affinity between the points yi and xj . Note
that

∑
j Ai,j = 1. If we consider all the data points yi to be

independent, then the likelihood of the cloud SP (O) can be
written as (noting xi = SP (yi) ∈ O):

L(P ) =
∏

xi∈O

∑
xj∈O

Ai,jp(SP (xi)|xj , P )

We then define the optimal plane P using the maximum
likelihood principle. Considering the noise as isotropic
Gaussian with variance σ, the EM algorithm can be used
for this purpose [7] and can be shown to yield the very sim-
ple following iterative scheme:

Step 0: Initialise P̃

E-step: Ãi,j = exp(−||xj−SP̃ (xi)||2/(2σ2))P
xk∈O exp(−||xk−SP̃ (xi)||2/(2σ2))

M-step: P̃ = arg minP

∑
(xi,xj)∈O2 Ãi,j ||xj − SP (xi)||2

Step 3: if P̃ has changed go to E-step else finish

The M-step can be solved efficiently using the general
theorem we stated in Section 3.4. The ICP-like algorithm
we presented in Section 3 can actually be seen as a simpli-
fied version of this EM algorithm. The point xj with the
highest value Ai,j is the closest point of SP (xi) in O, so
the E-step is very similar to Step 1. If the matrix A is made
binary, by keeping only this closest point into account, then
the M-step is identical to Step 2.

5.2. Multiscale scheme

The convergence of this new algorithm is very dependent
on the σ parameter. A small σ allows to be very selective on
the pairs of points to be significantly taken into account for
the estimation of P . Thus, if the algorithm is given a good
initial plane, a small σ allows good accuracy. If this is not
the case, there is little chance that two mismatched points
will ever be matched properly during the iterations. On the
contrary, a large value of σ allows these symmetrical, but
initially mismatched points, to have growing influence dur-
ing the iterations. Based on this, to allow both accuracy
and robustness, we follow a multiscale approach, by run-
ning successive EM algorithms with decreasing σ values.
In this scheme, σ acts as a scale parameters, and allows to
progressively refine the plane estimation. In practice, the
initial scale factor σ0 is successively divided by a constant
value f > 1 until it is equal to, or lower than a predefined
final value σf . Note that this approach is slightly different
from that of Granger & Pennec, who update the scale fac-
tor at each iteration of the EM algorithm. Experimentally,
we observed that letting the EM algorithms converge and
choosing a higher f value led to better results in our case,

in terms of both robustness and accuracy, without signifi-
cantly increasing the computational time. This multiscale
scheme can be seen as a deterministic annealing procedure
where σ is analogous to the temperature parameter.

5.3. Coarse-to-fine approach

At the beginning of this multiscale scheme, large values
of σ only lead to a gross estimation of the unknown plane.
Consequently, it is useless to take the entire point set O into
account at these stages. As a result, we propose a coarse-to-
fine approach, where O is decimated at large σ values, and
then refined progressively when σ decreases. We use the
same technique as Granger & Pennec to compute the suc-
cessive decimated clouds, named O

′
, in which are chosen

the points xi. At a given σ value, we iteratively merge each
point of O included in spheres of radius kσ (where k is a
constant to define). Each of these spheres finally contains
Nm points (with

∑
m Nm = N = card(O)), which are

then replaced by their centroids. The set of centroids, each
one being given a weight Nm (later used in the estimation
of P ), constitutes the decimated cloud used at scale σ. Note
that the original set O is entirely taken into account when
kσ is lower than or equal to the minimal resolution of O.

5.4. Rejection of outliers

The E-step involves the computation of the distance be-
tween each point SP̃ (xi), xi ∈ O

′
and all the points xj of

O. Actually, when the point SP̃ (xi) is far away from O
(which can happen for instance when xi has no satisfying
counterpart on the other side of the object), the values Ai,j

can be not negligible because of the normalisation term (see
E-step) and thus influence negatively the criterion to max-
imise. A simple way to tackle this problem is to reject the
points xj in O that are farther from SP̃ (xi) than a prede-
fined threshold, which amounts to give them a null weight
Ãi,j . This last process can be seen as a threshold on a Ma-
halanobis distance and one can easily show that the algo-
rithm converges to a local maximum of a modified likeli-
hood function. In practice, the threshold must depend on σ:
there is a high uncertainty on the matches when σ is large,
while there is increased confidence on these matches when
σ decreases. Thus we choose to set this threshold at the
value lσ. The E-step then becomes:

i) Initialise Ã as the null matrix
ii) ∀xi in O

′

Li = {xj ∈ O such that ||xj − SP̃ (xi)|| < lσ}
∀xj ∈ Li, Ãi,j = exp(−||xj − SP̃ (xi)||2/2σ2)
Normalise the ith line of Ã

The set Li is built by a search in a kd-tree space-
partitioning built at the beginning of the algorithm.

Note that Granger & Pennec [9] have experimentally



shown (in case of rigid-body registration) that the transfor-
mation yielding the global maximum likelihood is different
from that globally minimising the ICP criterion. Tsin &
Kanade [20] have actually shown that in case of two identi-
cal, aligned point clouds, the identity transformation is usu-
ally not a stationary point of the likelihood function. The
same can be said about our problem, where we look for a
reflection best superposing the cloud with itself. However,
the bias between the correct solution and the ML estimate
is virtually null when σ is very small, as at the end of the
multiscale scheme.

5.5. Algorithm and implementation details

Finally, we have the algorithm (called mEM, as modified
EM):

Initialise P̃ and σ
Repeat
Decimation O

′
= decimation of O with a radius kσ

Repeat
E-step: see Section 5.4
M-step: P̃ = arg minP

∑
xi∈O′ ,xj∈O NjÃi,j ||xj − SP (xi)||2

Until P̃ does not change
Decrease scale factor σ = max(σ/f, σf )
Until P̃ does not change and σ = σf

The initialisation of P
Each iteration of this new algorithm is about three times

longer than that of the ICP-like algorithm we devised in
Section 3. As a consequence, we propose to initialise it
with the plane given by the ICP-like algorithm rather than
the plane deduced from the analysis of the inertia matrix, to
allow faster convergence. In practice, we propose a slight
modification of the ICP-like algorithm to make it more ro-
bust to outliers and asymmetries, based on a least trimmed
squares technique [4]. The rejection rate of this LTS is ar-
bitrarily set to 40% and our implementation includes also
an acceleration step, analogous to that proposed by Besl &
McKay [3], within a multiresolution process. In the fol-
lowing this algorithm will be called tICP. This tICP algo-
rithm is preferred to the modification based on M-estimators
we proposed before [5] (termed mICP here) because of its
lower run time.

The stopping criterion
We choose as ad hoc stopping criterion ||P t − P t−1|| ≤ ε

where ε is a parameter to define and P t = (n, d)t is the
parameter of the searched plane P at the end of iteration t.

Values of the parameters
In the following, we will take as default parameters:

σ0 σf f ε l k
5 0.5 1.5 0.01 3 1

6. Evaluation and results
6.1. Evaluation on symmetrical data

In this section, we investigate the accuracy and capture
range of the mEM algorithm on perfectly symmetrical data.
For this, we work on face data (description in Section 6.3).
We apply angular offsets between 0 and 40 degrees and lin-
ear offsets between 0 and 60 mm to the ground truth sym-
metry plane and use it to initialise our algorithm. After con-
vergence, we compute the angular and linear errors (called
respectively θ and τ ) of the estimated plane compared to
the ground truth solution. With a step of 1 mm and 1 de-
gree, this yields over 3200 experiments. For large linear off-
sets (below 60 mm) and large angular offsets (below 31 de-
grees), the algorithm always converges to a plane for which
θ and τ are less than 10−15. The tICP and mICP algorithms
have a similar capture range expect that they always pro-
vide angular and linear errors greater than 0.1 degree and
0.05 mm.

6.2. Evaluation on asymmetrical data

In this section, we evaluate the robustness and accuracy
properties on mEM on asymmetrical data. For this purpose,
we add artefacts to the perfectly symmetrical face point
cloud of the previous section whose symmetry plane is still
considered as the ground truth. We generate artefacts as
follows:

. Noise is modeled by an isotropic Gaussian white noise
of variance δ2 and is added to each point.

. Occlusions are generated by removing a given quan-
tity of adjacent points. In the following, we term outliers
the points with no symmetrical counterpart resulting from
this removal.

. Asymmetries are generated by choosing a point D
close to the surface and deforming each point P of the cloud
to a new position P ′ according to:

. P ′ = P + K ×Gv(P −D)
−−→
PD

||
−−→
PD||

where Gv is a 3D non-normalised Gaussian function
of variance v2 and K is the deformation strength.

By randomly combining these artefacts, we generate a
set of 150 images with varying levels of artefacts. The pa-
rameters are chosen such that: (K, v2) ∈ [0, 20] × [0, 25]
(one deformation on the right cheek and another on the
right forehead), 0 to 20% of outliers and a noise of vari-
ance δ2 = 0.3. Example of data built this way are shown
on Fig 3 (middle) and the resulting estimated plane on Fig 3
(right).

Tab. 2 and 3 show statistics over the 150 experiments
for mICP, tICP and mEM. We observe that over the 150
experiments, mEM has a very low mean and maximum er-
ror for both θ and τ , with very low variance. These values



Figure 3. Estimation of the symmetry plane on ground truth,
asymmetrical data. Left: Original point cloud, acquired with a
laser scanner. Middle: The original point cloud is made symmetri-
cal, and then noise, occlusions and deformations (color-coded) are
added. Right: Estimation of the plane by mEM.

mICP tICP mEM
max τ 0.61 5.14 0.12
max θ 1.2 2.82 0.15

mean (θ, τ) (0.12,0.65) (0.76,1.14) (0.06,0.04)
var (θ, τ) (0.02,0.01) (0.75,0.16) (10−3,0.01)

Table 2. Statistics on (θ, τ) for mICP [5], tICP and mEM ini-
tialised with tICP.

tICP mEM init by PA mEM init by tICP
mean t 30s 600s 160s
max t 80s 1360s 380s

Table 3. Statistics on run time t for tICP, mEM initialised with PA
and mEM initialised with tICP performed on a standard PC with
an Intel Core Duo T7700 at 2.4GHz with 2GB Ram.

are higher for tICP and mICP, but we also demonstrate the
relevance of using tICP rather than PA (principal axes) to
initialise mEM in terms of computational time.

6.3. Results on real data

6.3.1 Results on difficult data

A population of 131 healthy subjects, 49 males and 82
females has been face scanned with a portable hand-
held laser scanner with resolution and accuracy below
1 mm (Polhemus FastScan, Polhemus Inc, VT, USA,
http://www.fastscan3d.com). Each of these point
clouds contains about 80,000 points. In Fig. 4, we display
the symmetry plane obtained with mEM for one of these
point clouds, representing a woman’s face with a large area
of missing points on the left cheek. We also display a point
cloud of about 26,000 points representing a chair with a
missing leg, acquired with the same device, and the Stan-
ford bunny, represented by a cloud of about 36,000 points.

6.3.2 Asymmetry mapping

Once mEM has converged and a symmetry plane P has
been estimated, we quantify the local asymmetry at xi ∈ O
by computing the distance between SP (xi) and O.

The symmetry plane can also be conveniently aligned
with the centre of the image coordinate system, allowing

Figure 4. Estimation of the symmetry plane using mEM on dif-
ferent objects.

improved display of the point cloud or easier further post-
processing. If we name C the plane at the centre of the
coordinate system, it can be shown that rigid-body trans-
formation (SC ◦ SP )−1/2 aligns P with C [18] (where SC

and SP are respectively the reflection symmetry with re-
spect to planes C and P ). Once P has been aligned with
C, there are three remaining degrees of freedom (two trans-
lations and one rotation), and additional constraints can be
specified to completely define the position of the object on
the grid. We show mappings of face asymmetry for four
subjects with this improved display on Fig. 5.

Figure 5. Asymmetry maps. Four healthy males. Blue (resp. red)
corresponds to symmetrical (resp. asymmetrical) areas.

6.3.3 Profile extraction

Once the symmetry plane is estimated on human face data,
one can easily extract the vertical profile. This can be highly
useful for face recognition and identification [22]. To com-
pute this profile, we project each point of the cloud on the
plane, provided its distance to the plane is lower than a pre-
defined threshold (typically 1mm for the laser data). Two
such profiles are shown on Figure 6.

Figure 6. Two vertical profiles and corresponding faces. Left: a
male. Right: a female.

7. Conclusion
In this paper, we have presented a new general formu-

lation for the problem of estimating the symmetry plane of



bilateral objects in point clouds. We have shown this for-
mulation to outperform the classical one. Then we have
encompassed the problem in a probabilistic framework, and
devised a multiscale, multiresolution algorithm shown to be
fast, robust and accurate. A possible improvement could
be to automate the choice of σ through the iterations of the
multiscale scheme. Alternative approaches, based on ker-
nel correlation for instance [20], could also be implemented
and compared to our ML-based method. We expect our al-
gorithm to have numerous applications in many domains
where point clouds of symmetrical objects are obtained.

Appendix: Proof of theorem 2
The Lagrangian L(d, n, λ) associated to EP is equal to:∑
(xi,xj)∈O2

Ai,j

∣∣∣∣xj −
(
I3 − 2nnT

)
xi − 2dn

∣∣∣∣2−λ
(
||n||2 − 1

)
Lmust be stationary at the optimal values d and n. We must
have ∂L

∂d = 0, which writes:

∑
(xi,xj)∈O2

Ai,j

[
−2nT

(
xj − (I3 − 2nnT )xi − 2dn

)]
= 0

⇔ d =
1
2
(g1 + g2)T n

with g1 = 1P
i

P
j Ai,j

∑
(xi,xj)∈O2 Ai,jxi,

g2 = 1P
i

P
j Ai,j

∑
(xi,xj)∈O2 Ai,jxj

Substituting this expression of d in L, we obtain:

L(n, λ) =
∑

(xi,xj)∈O2

Ai,j (xi − xj)
2 − nT (B− λI3)n + λ

with B =
∑

(xi,xj)∈O2 Ai,j [(xi − g1 + xj − g2)

(xi−g1 +xj−g2)T −(xi − xj) (xi − xj)
T ]

∂L
∂n

= 0 ⇔ (B − λI3)n = 0

so L(λ) =
∑

(xi,xj)∈O2

Ai,j (xi − xj)
2 + λ at the optimum

and L is minimised by the (unit) eigenvector of B with the
smallest eigenvalue λ.
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