
Correspondences between Parts of Shapes with Particle Filters

Rolf Lakaemper
Temple University
Philadelphia, USA

lakamper@temple.edu

Marc Sobel
Temple University
Philadelphia

marc.sobel@temple.edu

Abstract

Given two shapes, the correspondence between distinct
visual features is the basis for most alignment processes and
shape similarity measures. This paper presents an approach
introducing particle filters to establish perceptually correct
correspondences between point sets representing shapes.
Local shape feature descriptors are used to establish corre-
spondence probabilities. The global correspondence struc-
ture is calculated using additional constraints based on do-
main knowledge. Domain knowledge is characterized as
prior distributions expressing hypotheses about the global
relationships between shapes. These hypotheses are gener-
ated during the iterative particle filtering process. Exper-
iments using standard alignment techniques, based on the
given correspondence relationships, demonstrate the ad-
vantages of this approach.

1. Introduction and Related Work
The goal of our work is to find correspondences between

visually similar shape features. Feature correspondences
are used as a pre processing procedure for shape recogni-
tion in Computer Vision. For example,[2] define the steps
to distinguishing shape similarity as, (i) correspondence, (ii)
alignment, and (iii) similarity measurement. Devising con-
sistent feature correspondences, in accordance with human
perception, is necessary for this task.
Our research aims at a general description of correspon-

dence. This includes correspondences between shapes and
parts of shapes. In the sequel, we equate shapes with (ap-
propriately sampled) sets of points; each such point has one
or more (local) features assigned to it. Examples of such
local features include curvature (if the shape is defined by a
surface, [13]), point density, shape context [2], or features
based on the Poisson equation [5]. Selecting which local
features to use depends on the particular setting and goals
involved. The challenge is to determine correspondences
between shapes using local descriptors in a globally consis-
tent manner. This challenge includes resolving ambiguities

caused by combining the information contained in each lo-
cal descriptor.
We approach this problem using Particle Filters (PF).

Particle filters employ probabilities and multiple hypothe-
ses to build correspondences between shapes. Particle fil-
ters have been successfully utilized in both Computer Vi-
sion (mostly for object tracking [16] and image segmen-
tation [3]) and robot mapping [21]. General information
about particle filtering is given e.g. in [4], [11].
In our setting, we assign a probability to each possible

configuration of single point correspondences. It is based
on the fitness of each participating single point-point cor-
respondence. The probabilities model the visual correct-
ness of correspondences; visually better correspondences
are assigned higher probability values. Under certain as-
sumptions, this assignment leads to the calculation of prob-
abilities for sequences of correspondences, called particles
below. Probabilities attached to particles are, in confor-
mity with statistical terminology, called ’likelihoods’, be-
low. The global consistency of particles is enforced using
prior distributions. The search space consists of the set of
all possible particles.
The goal of particle filters (PF) is to estimate the poste-

rior distribution over the entire search space using discrete
distributions (constructed dynamically at each of a number
of different iterations) based on a limited number of par-
ticles. In this sense, particles represent hypotheses about
what the true relationship between shapes really is; we oc-
casionally use this terminology below. The best correspon-
dence is the most likely particle (Maximum Likelihood Par-
ticle, MLP) surviving at the end of the PF process [11].
All particles compete in an iterative process, each iter-

ation consisting of two steps: prediction and evaluation.
In the prediction step, particles are augmented by adding
single correspondences; the resulting set of particles is
called the ’preliminary sample’ below. Correspondences
are selected based on a correspondence-weight distribution,
which represents single correspondence probabilities as de-
fined by the local feature descriptors. Using Bayes rule,
each particle is assigned a weight representing its strength,

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

proportional to its posterior probability. The evaluation step
selects particles from the preliminary sample using these
weights. We evaluate particles using residual sub-sampling
[10]. This selection causes stronger hypotheses (particles)
to dominate weaker ones, yet randomly permits some weak
hypotheses (outliers) to survive and possibly prosper in later
iterations. In this way we protect against choosing particles
which are only local maxima [10].
The PF algorithm converges to particles with nearly op-

timal posterior probability because: (i) at each stage cor-
respondences with greater weight tend to be chosen, and
(ii) residual re-sampling has the effect of removing parti-
cles with relatively small posterior probability. Although
we slightly extend the PF process by a recede step, we do
not focus, below, on the question of how best to improve
it. There are many different ways of designing particle fil-
ters; each such design is associated with techniques which
optimize their performance [14].
The main contribution of our research is to introduce

the use of PF to solve the correspondence problem, and,
more specifically, the problem of correctly designing the
prediction step. Prediction is based on an iteratively up-
dated feature probability distribution. This distribution is
composed of two parts: (i) the local part, representing the
correspondence probability based on the local feature de-
scriptors, and (ii) the global part, representing non local
constraints. The constraints can describe topological or
geometrical features of the shape and are used to achieve
global consistency. The constraints are built into each iter-
ation of the PF process; they are enforced using the (condi-
tional) information available from the already constructed
correspondence sequence. This has the advantage of allow-
ing us the easy task of learning constraints at each iteration,
rather than the hard task of predicting them a priori. We use
prior distributions, built conditionally at each iteration, to
enforce the learning constraints.
The process of finding correct correspondences can be

seen as a labeling process. The features of one shape cor-
respond to the labels; the features of the other have to be
labeled. In 1976, Rosenfeld et al. [17] introduced the tech-
nique of relaxation labeling (RL) to approach this class of
problems. It has since been a topic of successful ongoing
research ([7], [8], [22]. In the soft version, a weight ma-
trix defines the correspondence probabilities between data
point and label. The property of consistency is defined
in terms of certain given neighborhoods. RL is used to
solve an optimization problem subject to the given consis-
tency requirements. RL is a gradient descent method which
guarantees convergence towards some local optimum. It is
an iterative, deterministic approach, highly dependent on
the initial correspondence probability matrix. In this same
connection, our approach can be interpreted as sequential,
non-deterministic, multiple hypotheses relaxation labeling.

Sequential, because of the aforementioned prediction step,
which assigns a single label unchangeably to a data point.
By contrast, in each iteration, relaxation labeling re-labels
all the data simultaneously. PF enhances strong local fea-
ture properties, while RL subsumes them, enhancing the
global labeling structure. For these reasons particle filters
have the drawback of being easily lured into local optima.
This drawback is counterbalanced by the assumption, at
each iteration, of multiple hypotheses which compete with
one another.

Our research is designed as a general framework, yet the
examples and results explore the particular case in which
correspondences are built between 2-dimensional bound-
aries. Sebastian et al. [20] showed the importance of order-
ing constraints in matching curves. We use this constraint
as an example. It shows how to integrate the constraint of
contiguity conservation for the simpler case of non-partial
shape matching. This special case can also be solved using
Dynamic Programming (DP); successfully applied e.g. in
[12], [19],[18]. Particle filters PF guarantee only a nearly
optimal solution, as compared with DP methodology which
guarantees an optimal solution in this case. Nonetheless,
particle filters generalize in cases where DP methodology
does not. For example, particle filters generalize easily to
the task of building shape and part correspondences. Our
final result shows how we learn constraints in the example
of partial shape matching, used to build similarity measures
for purposes of querying shape databases with shape parts.

Since local descriptors are imprecise, the optimum, cal-
culated using these descriptors, is not necessarily a more ac-
curate solution; an example is given in section 6.1. We note
that the prediction step for particle filters, described above,
samples a new correspondence from the possible correspon-
dences; this selection does not depend on any implicit or
explicit ordering of features. In contrast to the DP approach
in [19], we do not need a designated start correspondence
and handle shape-reflection (clockwise/anti clockwise or-
der of boundary points) automatically. We also don’t need
additional parameters characterizing the minimum number
of correspondences.

RL is a common way of computation for Markov ran-
dom fields [15]. Typically, this involves specifying a prior
over the search space of particles at any given iteration con-
ditional on all others. This differs from the priors advocated
here which are defined conditional on previous iterations.
We leave comparisons between this approach and ours to
future work. Another single hypothesis probabilistic ap-
proach to find correspondences is given in [1]. It evaluates
shape matchings based on properties of the correspondence
set itself, therefore focusing on the global shape properties.

10 20 30 40 50

5

0

5

20

25

30

35

40

45

50

0

0

0

0

0

0

0

0

0

0

Figure 1. 2 shapes defined by a 2d polygonal boundary and their cor-
respondence weight matrix. The shapes are indexed from the bottom,
counter clockwise. The bottom right area of the weight matrix shows dis-
tinct correspondence probabilities, these are strong correspondences be-
tween the cross-shaped parts of the objects based on equal and distinct
curvature.

1.1. Notation
If we deal with closed shape boundaries, all index-math

is understood module ni=number of points on boundary.
Throughout the paper, φσ(x) will denote the mean 0 Gauss
distribution with standard deviation σ of a random variable
x. |g| denotes the cardinality of a set g. For matrices M1,
M2, M1¯M2 denotes the element-wise multiplication. For
all colored figures the color scale is equal to fig.1, right.

2. Shape Features and Probability MatrixW
The shapes, S1 = v1, .., vn1 and S2 = u1, ..., un2 are

sets of n1,2-dimensional points vi, uj ∈ Rn1,2 . To describe
a shape, we assign local feature descriptors to each of its
points. Throughout the paper we use 2d polygonal bound-
aries as examples for shapes, the points are the vertices of
the polygon. The local descriptors used for the examples
are local centroid distance and curvature. The power of
these descriptors is naturally limited, which is reflected in
the correspondence ambiguity between vertices: a single
vertex of shape S1 might have a large number of possible
partners (vertices with similar features) in the second shape
S2. The power of the system comes from its ability to solve
these ambiguities in a logical manner. Insufficient regional
or global description by local feature descriptors is, in con-
sequence, not a problem 1.
The matrix, W , consisting of correspondence probabil-

ities for each pair of points (ui, vj) vi ∈ S1; uj ∈ S2,
using the local features of vi, uj is described below. Let
F (vi) : Rn → R be a feature (e.g. curvature) of a shape
point vi ∈ S. We first compute the correspondence like-
lihood for all mutual point correspondences based on the
distance between features:

L = [lij], lij = φσl(D(F (vi), F (uj))); (1)

with, D(., .) being a distance measure in the feature space
and σl a given standard deviation. We create a row-
normalized versionLr of L as well as a column-normalized

1ambiguity can even be seen as a positive descriptor property, allowing
a particle to choose between multiple local correspondences, all of which
do not prematurely claim to be certain

version Lc. Lr = P (uj|vi), 1 ≤ i ≤ n1; 1 ≤ j ≤ n2
is the conditional correspondence probability in the direc-
tion S1 → S2; Lc, defined analogously, describes the con-
ditional correspondence probability in the direction, S2 →
S1. We define the correspondence probabilityW as the nor-
malized joint probability:

W =
Lr ¯LcPn1

i=1

Pn2
j=1(l

r
ijl

c
ij)

(2)

The definition ofW as a joint probability ensures cognitive
symmetry. This means that the correspondence between ui
and uj is order independent, i.e. there is no distinction be-
tween query and target shape. We therefore determine the
symmetric correspondence between shapes, not the (one-
sided) correspondence of one shape to another. If the shapes
are defined by multiple feature descriptors F1, .., Fd we de-
fineWFi according to eq.2 and defineW as the joint prob-
abilityW = WF1 ¯ ...¯WFd . Figure 1 gives an example
for two shapes and their correspondence probability matrix
W .

3. Correspondences and Groupings
Given two shapes S1,S2 with n1, n2 vertices, we define

the set of correspondences C as the set of all pairs of vertices
of S1 and S2:

C = {{vi, uj}|vi ∈ S1, uj ∈ S2} = S1 × S2.

The matrixW defines a probability PC over the set C of cor-
respondences: PC(vi, uj) = wij .
A Grouping g ∈ G is a member of the power set PC of C.
A grouping defines a configuration of correspondences. G
defines the search space for our PF process. Each element
g ∈ G takes the form g = {{vi1 , uj1}, .., {vik , ujk}}. Fur-
ther constraints (e.g. contiguity conservation, see section 5)
on groupings can limit the search space to a subset G− ⊂ G.
A grouping g is complete, if it is maximal with respect to the
containment ordering in the set G−. In quantitative terms,
∀g0 ∈ G− : g ⊂ g0 → g = g0

Figure 2 shows an example of a complete grouping, com-
puted under the constraint of strong contiguity conservation
(defined in section 5), i.e. here G− is the set of contiguity
conserving groupings. Defining a grouping as edges of a
graph with vertices S1 ∪ S2, fig.2 visualizes this graph by
drawing edges as well as by the connectivity matrix (the
connectivity matrix is superimposed over the probability
matrixW).

3.1. Optimal Sets of Correspondences
We define the weight of a grouping as,

WG(g ∈ G) =
|g|Y
l=1

exp (PC(vil , ujl)) =
|g|Y
l=1

exp (wil,jl)

(3)

0 50 100 150 200 250 300 10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

Figure 2. Left: A complete, strongly contiguity conserving grouping.
Each blue line is a single correspondence. Right: Connectivity matrix of
the same grouping, superimposed over correspondence weight matrixW .
Each red dot is a single correspondence (red dot means conn.matrix=1.
Note that the grouping is complete although not all points are participat-
ing.

When there is no possibility of confusion, we use the sim-
plified notation, W(g) for this quantity. We formulate the
correspondence problem as one of choosing the complete
grouping, ĝ ∈ G− from the set of constrained groupings,
G− with maximal weight or, more specifically,

ĝ = arg max
g∈G−

(WG(g)) (4)

The optimal grouping is complete as a consequence of the
fact that correspondence weights are defined to be larger
than 1. Thus, groupings with more correspondences domi-
nate those with fewer correspondences. This is in contrast to
the joint probability,

Q
(wij), which decreases as the num-

ber of correspondences increases. The optimal grouping
can therefore be understood as a search for a grouping with
as many connections as possible, subject to optimizing the
overall weight. Dynamic Programming methodology [19]
solves a special case of this optimization problem: entire
shape matching under the constraint of contiguity conser-
vation. In contrast to that approach, we need no additional
parameters to ensure that the optimal grouping has some
minimal number of correspondences. This is a consequence
of our use of complete groupings.
Specific tasks of shape matching, like the matching of

parts, requires far stronger constraints. Typically, in this
case, additional domain knowledge is required to achieve
success. Particle filters are well designed to properly formu-
late and use this knowledge; we employ them below for this
purpose. It will be seen that this approach provides more
flexibility in solving the optimization problem when these
additional constraints are present. PF enable us to (interac-
tively) learn constraints during the iteration process leading
to optimization.

4. Near Optimal Labeling using Particle Filters
Below, we refer to a grouping g ∈ G− as a single parti-

cle. We employ the notation, g1:t for a particle at time (itera-
tion) t. Particles are built by adding single correspondences
at each iteration. Correspondences are selected based on

an updated version Wt of the correspondence-weight dis-
tribution W . The update of W → Wt defines additional
constraints. The following sections will explain the predic-
tion and evaluation step of PF in our setting, as well as the
new step of recede. In what follows we use the definition:
all correspondences are admissible at iteration t = 1. At
iteration t > 1, a correspondence c ∈ C is admissible if, for
a given particle, g1:t−1 ∈ G− (at iteration t−1), the particle
g1:t = g1:t−1 ∪ c is in G−.

4.1. Prediction Step
The prediction step consists of 2 parts: a) select a cor-

respondence based on the updated probability distribution
Wt over all admissible correspondences c ∈ C at iteration
t. b) compute the posterior probability of the resulting aug-
mented particle.

4.1.1 Distribution for Correspondence Selection

W t is the updated version ofW (at iteration t) incorporating
constraints given by a matrix, C(g1:t). C(g1:t) depends on
the particle g1:t at each iteration t. In this sense, we have,

W t =W ¯ C(g1:t) (5)

Note that C(g1:t) changes from one particle g to the next
and from one iteration t to the next. This enables us to adjust
or learn constraints during the PF process. Section 5 will
give examples of such constraints.

4.1.2 Posterior Distribution Estimation

We define wt
ij ofW t as the log-likelihood for the selection

of the correspondence cij at time t to update the grouping
g1:t → g1:t+1 = g1:t∪cij . Hence cij is our new observation
at time (iteration) t with log-likelihood log(P (cij |g1:t)) =
wt
ij . The posterior distribution of g1:t+1 at time (iteration) t
is given, up to a constant of proportionality, by:

P (gt+1|cij) ∝ P (cij |gt)P (gt) = exp(wt
ij)P (gt) (6)

The prediction step sequentially estimates a near optimal
grouping as a near solution to eq.4.

4.2. Evaluation Step
We use the standard evaluation technique of residual re-

sampling [10].

4.3. Extension of Classical PF: Recede Step
Since we assign correspondences ’statically’, i.e. once a

correspondence is established it does not change, the basic
predict-evaluate sequence of PF algorithms has the disad-
vantage that it sometimes fails to converge to optimal or

near optimal particles. This is a consequence of the fact
that correspondences chosen at the beginning do not nec-
essarily, in spite of having large weight, lead to particles
which share this property. For this reason we augment the
algorithm by incorporating a recede step which ’destroys’
correspondences in particles. This is, in reality, a ’jump’
move (i.e., one in which new particle neighborhoods are
selected). In general jump moves serve to change the ini-
tial correspondences in order to create more viable particles
(i.e., those with larger total weight). The dependence of
later on earlier correspondences makes these moves imper-
ative. The recede step extends the classical PF sequence of
prediction and evaluation to prediction, evaluation, recede.
Jump moves can be implemented in different ways. In our
setting it is important to insure that the particles have similar
numbers of correspondences; since they have a major influ-
ence on particle survival. We have therefore designed the
recede step in such a way that every r’th iteration, a certain
number d < r of correspondences are destroyed for each
and every one of the particles. This guarantees that, in early
iterations, all particles have the same number of correspon-
dences. In later iterations, the number of correspondences
per particle depends on the property of completeness; we
allow this to vary so that particles with larger numbers of
correspondences dominate. In the current implementation,
r is set to 10, 5 particles are destroyed. Figure 3 shows an

Figure 3. Result of recede step: Left: before recede. Middle: directly
after recede, 8 randomly selected correspondences removed from particle.
Right: 8 iterations later. The particle is re-built in a more consistent way,
containing the same number as the grouping left. The final result can be
seen in fig. 2

example of a particle undergoing a recede step. The im-
proved performance due to the recede step is demonstrated
in fig.6, section 6.1.

4.4.ExtendedPFAlgorithm for estimating theMLP
We will now define the general PF process to estimate

the Maximum Likelihood Particle. gi1:t ∈ G− denotes
the ith particle in iteration t, G1:t the set of all particles
in iteration t. The algorithm follows the classic steps of
prediction and evaluation and is extended by the additional
recede step.
—————————————————–
1)INIT: t=1, gi1:t = ∅ ∀i = 1..m= number of particles. W t = W . Init
r for the recede-step (see section 4.3).

2)Prepare the constraint matrices C(gi1:t) for i = 1..m and compute

W t
i =W ¯ C(gi1:t)

3)Select a correspondence ci ∈ C based on the distributionW t
i .

4)PREDICTION: compute posterior distribution (weight of particle)
P (gi1:t+1|ci) using eq. 6.

5)normalize weights: P (gi1:t+1)←
P (gi1:t+1)Pm
j=1 P(g

j
1:t+1)

6)EVALUATION: compute new set of particles Gt+1 ← RRS(Gt)

using residual re-sampling (RRS) preserving most probably those particles
with dominant weight.

7)RECEDE: if mod (t, r) = 0 delete n < r correspondences in each
particle in G1:t (see section 4.3).

8) LOOP: if not all particles are complete: t← t+ 1, return to step 2 else
return particle ĝ1:t = argmaxg1:t∈Gt(P (g1:t)) with maximum weight
to represent a near optimal solution.
—————————————————–

5. Adding Constraints to Solve Specific Corre-
spondence Tasks
We now show how to define constraint matrices to model

different tasks.

5.1. One to One Correspondences
To guarantee one to one correspondences (in contrast to

one to many), the probability of selecting a correspondence
containing a point that is already part of an existing cor-
respondence in particle g1:t must be set to 0. A matrix
C(g1:t) = [cij] defined by:

cij = 0 ⇐⇒ (vi ∪ uj) ∩
⎛⎝|g1:t|[

i=1

gi1:t

⎞⎠ 6= ∅, else cij = 1

guarantees the one to one constraint. Example (particle g1:t
is represented by its connectivity matrix):

g1:t =

µ
0 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 0

¶
C(g1:t) =

µ
1 0 1 0 1
0 0 0 0 0
0 0 0 0 0
1 0 1 0 1

¶
5.2. Strong Contiguity Preservation

g is be said to be contiguity conserving if, for a clock-
wise ordering of (vi1 , .., vik) in S1, (uj1 , .., ujk) is ordered
either clockwise or anti-clockwise in S2 (allowing both
clockwise and anti-clockwise orderings in S2 makes it pos-
sible to find correspondences in the reflected version of
S2). g is strongly contiguity conserving, if it is contiguity
conserving and contains one to one correspondences only.
The implementation of such a constraint using matrices is
straightforward; we give an example below:

g1:t =

µ
1 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

¶
C(g1:t) =

µ
0 0 0 0 0
0 1 1 0 0
0 0 0 0 0
0 0 0 0 1

¶

An example illustrating strong contiguity conserving group-
ing is in fig.2.

5.3. Adding Domain Knowledge for Partial Shape
Matching

The constraint of strong contiguity conservation is suffi-
cient to find good groupings e.g. for closed shape bound-
aries. However, it fails in finding part correspondences, see
example fig.4, left. Additional domain knowledge has to
be implemented. In this example, the constraint matrix is
stated as a hypothesis based on the grouping g1:t and weight
matrix W . As the number of iterations increases, the hy-
pothesis becomes stronger. This can be interpreted as learn-
ing the constraint during the PF process.

0

0

0

0

0

0

0

0

0 100 200 300 400 500

Figure 4. Part correspondences using different constraints. From left to
right: 1) strong contiguity only. 2) Procrustes alignment (see section 6
based on (1). 3) windowed strong contiguity as introduced in section 5.3.
The window was learned during the PF process. 4) Procrustes alignment
of (3)

In the following we assume shape S1 entirely contains
part S2. This is not a strong assumption, since if S1 only
contains parts of S2, we can exchange both shapes and use
an appropriate subset of S2 as the part. This assumption
is above and beyond the constraints used to compare en-
tire (not parts of) shapes. For purposes of simplification,
we assume S1, S2 have the same scale and are sub-sampled
equally (ignoring the these constraints is done only at the
cost of a less intuitive constraint matrix). These assump-
tions jointly imply that the corresponding vertices in S1
have to be ’close together’, and not spread out all over S1.
In other words, we focus exclusively on a certain connected
region (or window) of S1.
Figure 4 shows the effect of this constraint. If it is not

applied (left), only the center vertices of part S2 are held
together by the contiguity constraint, hence they lead to
correct correspondences. The outer vertices of S2 have
the opportunity to correspond to wide regions of shape S1,
since contiguity is a local neighborhood constraint which
is weaker for the (intuitively) weaker neighborhood-bound
outer vertices. Focusing on a connected region in S1 leads
to the correct correspondences (right).
If the region of focus is known a priori (i.e. the posi-

tion of the part in the shape is roughly given but the exact
single correspondences are not explicitly known), the op-
timization process is simply a windowed version of entire
shape matching. Unfortunately the window is not known.
The strength of our approach is that it can estimate the

window during the PF process by analysis of the particle
given in each iteration. Below, we use the notation, ’diag-
onal matrices’ to refer to matrices with elements on either
the main or side-diagonals. To highlight a certain region
r = (vr , vr+1, .., vr+k) in S1, correspondences with vi ∈ r
have to be masked inW . Due to the equidistant sub sample
and equal scale assumptions, the mask is a diagonal ma-
trix. The position of the diagonal defines the allowed re-
gion. We use a soft mask, i.e. a gaussian blurred diagonal,
see fig.5. The kernel size, or standard deviation σt of the
blurring defines the distinctiveness of the region. To learn

5 10 15 20 25 30 35 40 45 50

2
4
6
8

10
12

5 10 15 20 25 30 35 40 45 50

2
4
6
8

10
12

5 10 15 20 25 30 35 40 45 50

2
4
6
8

10
12

5 10 15 20 25 30 35 40 45 50

2
4
6
8

10
12

Figure 5. Windowing for partial shape matching. In reading order: 1)
correspondence matrix W of shape and part shown in fig.4. 2) The final
window, learned during the PF process. 3) Windowed version of (1). 4)
The final connectivity matrix (superimposed over (3)). (4) corresponds to
the grouping shown in fig.4, right.

the window during the PF process, we analyze the connec-
tivity matrix of a particle g1:t at time t for the presence of
diagonals. That is to say, we determine the most likely di-
agonal of its connectivity matrix, taking into account both
the connectivity matrix of g1:t as well as the underlying cor-
respondence weights of the matrix W . We gauss-filter the
estimated diagonal to obtain a window Cσt(g1:t). The di-
agonal is a hypothesis for our focus of attention, namely,
the region r. The strength of the hypothesis is modeled by
the filter kernel size σt. A large σt defines a weak hypoth-
esis (or indistinct region). Decreasing σt during the itera-
tive process, increases the trust in the diagonal hypotheses
at later iterations, since it narrows the diagonal constraint
window Cσt(g1:t). The final constraint matrix C(g1:t) is
then given by:

C(g1:t) = Cσt(g1:t)¯CC(g1:t)

with C(g1:t)modeling the strong contiguity preservation as
defined in section 5.2. To ensure that the final particle ĝ1:t is
entirely placed in the windowCσt̂

(ĝ1:t), the particle process
is repeated: from the first PF process, we only use the final
constraint matrixCσt(ĝ1:t) of the winning particle. We then
run a second entire particle filtering pass using Cσt(ĝ1:t) in
each iteration (i.e. we finally run a windowed version of
the optimization process). The second pass needs only a
few particles since the window limits the search space dras-
tically (in our tests we decreased from 80 particles in the
window-learning pass to 8 particles in the windowed pass).
Note that especially the interplay betweenKC(g1:t) and the
recede-step already builds a near diagonal solution in the

first run, since the domain knowledge gained in iteration t
helps to rebuild destroyed connections appropriately inside
of the window. With this approach, parts could be matched
successfully. For results see section 6.

6. Experiments and Results

6.1. Performance of Particle Filtering

We evaluate the performance of the PF process in the
optimization process with respect to different numbers of
particles, with and without recede-step.

Given a shape

0 20 40 60 80 100 120 140 160
0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Particle Weight with recede step

Procrustes Distance (corr. with recede)

Particle Weight, no recede step

Figure 6. Performance of PF system
with different number (1-160) of par-
ticles (x-axis) with and without re-
cede step. Black: with recede. Blue:
no recede step. Red: Procrustes Dis-
tance.

S defined by a 2d
polygonal bound-
ary with 50 equidis-
tant vertices, we
compute the corre-
spondence matrix
W of S with itself
under strong conti-
guity conservation.
This setting pro-
vides a ground truth
optimum grouping

ĝ = {{v1, v1}, .., {v50, v50}}. We perform different
runs the optimization process using 1 to 160 particles,
the result of each run is the weight of the best particle.
To see the influence of the recede step, we repeat the
experiment skipping this step. To see the influence in the
alignment resulting from finding a near optimal solution
only, we compute the shape similarity based on the best
particle correspondence using Procrustes Analysis (PA)
[6]. PA aligns two shapes S1, S2 based on one to one
correspondences. It finds the best scaling, reflection, rota-
tion and translation of S2 to minimize the sum of squared
distances between corresponding points. This sum, the PA
distance, is used in our experiment as the shape similarity
measure. PA is extremely sensitive to outliers and can only
be used with a robust correspondence computation. The
usability of PA as similarity measure shows the stability
of the PF correspondences. Figure 6 illustrates the result.
The PF system with recede step computes weights near
the optimum (1.45) robustly already with > 60 particles.
Interesting is the fact that the Procrustes distance drops to 0
(perfect alignment) much faster, proving that the additional
precision gained is visually unimportant, hence the precise
optimum, as found by DP approaches, would not enhance
the alignment here. The graph also shows the importance
of the recede step: skipping it, the performance of the
system is significantly less than optimal.
The time complexity of the algorithm is determined by

the number of iterations and the complexity of the predic-

tion step for each particle2. The latter one depends on the
complexity to build the constraint matrix. In the case of
partial matching the constraint matrix can be determined in
O(n2). The number of iterations is n, since we aim for
completeness. Hence, in this case, the time complexity is
O(n3).

6.2. Part Correspondences

In this experiment we provide visual proof of the perfor-
mance of partial matching. The data are shapes from the
standard MPEG-7 similarity data set [9]. The data set pro-
vides 70 classes of 20 similar shapes each. We use the data
set in the form of boundary polygons; each such polygon
contains 50 vertices. We randomly select shape S1 from
the data and S2 as a random part (size: 15 vertices) from a
different shape in the same class. The PF process (50 par-
ticles, constraint: windowed strong contiguity as presented
in section 5.3) leads to correspondences which are used for
Procrustes alignment. The figure shows some typical exam-
ples of partial matchings.

20

40

60

80

100

120

140

160

180

200

220

100

200

300

400

500

600

700

0

0

0

0

0

0

0

0

0

0

0

50

100

150

200

250

300

350

400

20

40

60

80

100

120

140

160

180

0

0

0

0

0

0

0

50 100 150 200

20

40

60

80

100

50 100 150 200

20

40

60

20 40 60 80 100 120 140 160 180

20

40

60

80

100

50 100 150 200 250 300 350 400 450

50

100

150

200

250

Figure 7. Examples of partial matching using different shapes from the
MPEG-7 dataset.

6.3. Database Retrieval using Parts

We compare our PF correspondence to part matching
techniques based on time series algorithms described in [9].
As in [9], we took 10 parts of shapes of different classes
from the MPEG-7 data set, the parts being identical to the
ones described in [9]. We then matched each part to the
entire database (all 1400 shapes), based on the PF corre-
spondence (PFPA) and Procrustes Alignment. To achieve a
fair comparison, we used curvature as shape descriptor, as
in [9]. Fig. 8 shows the parts (left column) and the top 5
matches for each part. In nearly all cases (96%) the query
resulted in shapes of the same class as the query part.

PFPA OSB DTWCW LCSS
Top 1 100 100 90 90
Top 5 96 92 72 42
Top 10 91 84 67 34
Top 20 74 67 59 26

The table shows the intra class hit percentage for the top
1, 5, 10, 20 results, i.e. how many of the top-n results are
from the same class as the query part. PFPA is the described

2the constant factor depends on the number of particles and number of
correspondences destroyed in the recede step

algorithm, OSB the algorithm described in [9]. DTWCW
is a windowed version of Dynamic Time Warping, LCSS
stands for Longest Common Sub Sequence. The percent-
ages of OSB, DTWCW and LCSS are taken from [9], de-
tails about these algorithms are described there, too. Due to
our robust partial PF correspondence, even a simple similar-
ity measure like PA outperforms the competing approaches.

0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

−0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

0.1

0.12

0.14

0.16

0.18

0.2

0.22

−0.05 0 0.05 0.1 0.15 0.2

0.05

0.1

0.15

0.2

−0.05 0 0.05 0.1 0.15 0.2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

−0.1 −0.05 0 0.05 0.1 0.15 0.2

0.05

0.1

0.15

0.2

0.25

−0.05 0 0.05 0.1 0.15 0.2 0.25

0.05

0.1

0.15

0.2

0.25

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

0.05

0.1

0.15

0.2

0.25

−0.05 0 0.05 0.1 0.15

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.05 0.1 0.15 0.2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.05 0.1 0.15 0.2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.05 0.1 0.15 0.2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.05 0.1 0.15 0.2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.05 0.1 0.15 0.2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.12 0.14 0.16 0.18 0.2 0.22

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0 0.05 0.1 0.15 0.2 0.25

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

−0.05 0 0.05 0.1 0.15 0.2 0.25

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25

0.05

0.1

0.15

0.2

0.25

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25

0.05

0.1

0.15

0.2

0.25

0.02 0.04 0.06 0.08 0.1 0.12 0.14

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

0.05

0.1

0.15

0.2

0.25

0.3

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

0.05

0.1

0.15

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

0.05

0.1

0.15

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.05

0.1

0.15

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

0.05

0.1

0.15

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

0.05

0.1

0.15

0.1 0.12 0.14 0.16 0.18 0.2 0.22

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−0.05

0

0.05

0.1

0.15

0.2

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

−0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

0.12

0.14

0.16

0.18

0.2

0.22

0.24

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.05

0.1

0.15

0.2

0.25

0.3

−0.2 −0.1 0 0.1 0.2 0.3
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−0.2 −0.1 0 0.1 0.2 0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

−0.2 −0.1 0 0.1 0.2 0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

−0.2 −0.1 0 0.1 0.2 0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

−0.2 −0.1 0 0.1 0.2 0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

−0.2 −0.1 0 0.1 0.2 0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 8. Results of database query with parts. Left column is the query
part, which is compared against the entire MPEG-7 data set (1400 shapes).
Each row shows the respective top 5 hits.

7. Conclusion and Outlook
We presented a Particle Filter framework to solve the

correspondence problem. The performance was demon-
strated on partial shape matching of 2d polygonal bound-
aries, which was solved through a windowing approach.
The window was learned during the iterative particle filter
process. Though the examples of this paper were restricted
to 2d boundary shape representation, the PF framework can
handle any shapes represented by point sets of arbitrary di-
mensionality. Future work will therefore focus on, (i) 2d
point sets representing shapes with inner structures, and (ii)
3d shapes.
8. Acknowledgements
This work was partly supported by the NSF under Grant

No. IIS-0534929 and by the DOE under Grant No. DE-
FG52-06NA27508.

References
[1] H. Alt, L. Scharf, and S. Scholz. Probabilistic matching of

sets of polygonal curves. In Proceedings of the 22nd Euro-
peanWorkshop on Computational Geometry (EWCG), pages
107–110, Delphi, Greece, March 2006. 2

[2] S. Belongie, J. Malik, and J. Puzicha. Shape matching and
object recognition using shape contexts. IEEE Trans. Pattern
Analysis and Machine Intelligence, 24:705–522, 2002. 1

[3] M. de Bruijne and M. Nielsen. Image segmentation by shape
particle filtering. In ICPR ’04: Proceedings of the Pattern
Recognition, 17th International Conference on (ICPR’04)
Volume 3, pages 722–725, Washington, DC, USA, 2004.
IEEE Computer Society. 1

[4] A. Doucet, N. De Freitas, and N. Gordon, editors. Sequential
Monte Carlo methods in practice. Springer. 1

[5] L. Gorelick, M. Galun, and A. Brandt. Shape represen-
tation and classification using the poisson equation. IEEE
Trans. Pattern Anal. Mach. Intell., 28(12):1991–2005, 2006.
Member-Eitan Sharon and Member-Ronen Basri. 1

[6] J. Gower and G. Dijksterhuis. Procrustes problems, vol-
ume 70. Springer New York, December 2005. 7

[7] R. M. Haralick and L. G. Shapiro. The consistent labeling
problem: Part i. IEEE Trans. Pattern Anal. Machine Intell.,
PAMI-1(2):173–184, 1979. 2

[8] J. Kittler and J. Illingworth. Relaxation labelling algorithms-
a review. Image Vision Comput., 3(4):206–216, 1986. 2

[9] L. J. Latecki, Q. Wang, S. Koknar-Tezel, and V. Mega-
looikonomou. Optimal subsequence bijection. IEEE Int.
Conf. on Data Mining (ICDM). 7, 8

[10] J. Liu, R. Chen, and T. Logvinenko. A theoretical framework
for sequential importance sampling and resampling, 2000. 2,
4

[11] J. S. Liu. Monte Carlo Strategies in Scientific Computing.
Springer, October 2002. 1

[12] E. Milios and E. Petrakis. Shape retrieval based on dynamic
programming, 2000. 2

[13] F. Mokhtarian, N. Khalili, and P. Yuen. Estimation of error
in curvature computation on multi-scale free-form surfaces.
Int. J. Comput. Vision, 48(2):131–149, 2002. 1

[14] P. D. Moral, A. Doucet, and A. Jasra. Sequential monte carlo
samplers. Journal Of The Royal Statistical Society Series B,
68(3):411–436, 2006. 2

[15] W. Qian and D. M. Titterington. Stochastic relaxations and
em algorithms for markov random fields. Journal of Statisti-
cal Computing and Simulation, 40, 1992. 2

[16] Y. Rathi, N. Vaswani, and A. Tannenbaum. A generic frame-
work for tracking using particle filter with dynamic shape
prior. 16(5):1370–1382, May 2007. 1

[17] A. Rosenfeld, R. A. Hummel, and S. W. Zucker. Scene la-
beling by relaxation operations. IEEE Trans. Syst., Man, Cy-
bern., SMC-6(6):420–433, 1976. 2

[18] F. Schmidt, D. Farin, and D. Cremers. Fast matching of pla-
nar shapes in sub-cubic runtime. In IEEE International Con-
ference on Computer Vision (ICCV), 2007. 2

[19] C. Scott and R. Nowak. Robust contour matching via the
order-preserving assignment problem. IEEE Transactions on
Image Processing, 15(7):1831–1838, 2006. 2, 4

[20] T. Sebastian, P. Klein, and B. Kimia. On aligning curves.
PAMI, 25(1):116–125, January 2003. 2

[21] S. Thrun. Particle filters in robotics. In Proceedings of the
17th Annual Conference on Uncertainty in AI (UAI), 2002. 1

[22] Yefeng Zheng and David Doermann. Robust Point Match-
ing for Nonrigid Shapes By Preserving Local Neighborhood
Structures. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 28(4):643–649, April 2006. 2

