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Abstract

We propose a robust object recognition method based
on approximate 3D models that can effectively match ob-
jects under large viewpoint changes and partial occlusion.
The specific problem we solve is: given two views of an
object, determine if the views are for the same or differ-
ent object. Our domain of interest is vehicles, but the ap-
proach can be generalized to other man-made rigid objects.
A key contribution of our approach is the use of approxi-
mate models with locally and globally constrained render-
ing to determine matching objects. We utilize a compact set
of 3D models to provide geometry constraints and transfer
appearance features for object matching across disparate
viewpoints. The closest model from the set, together with its
poses with respect to the data, is used to render an object
both at pixel (local) level and region/part (global) level. Es-
pecially, symmetry and semantic part ownership are used to
extrapolate appearance information. A piecewise Markov
Random Field (MRF) model is employed to combine obser-
vations obtained from local pixel and global region level.
Belief Propagation (BP) with reduced memory requirement
is employed to solve the MRF model effectively. No train-
ing is required, and a realistic object image in a disparate
viewpoint can be obtained from as few as just one image.
Experimental results on vehicle data from multiple sensor
platforms demonstrate the efficacy of our method.

1. Introduction
Unconstrained object recognition has become an in-

creasingly important task in security, surveillance and
robotics applications. For example, in persistent surveil-
lance over an extended area, object association has to be
carried out across videos acquired from multiple types of
platforms. Due to the unconstrained conditions in view-
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Figure 1. A compact set of 3D models are used to assist matching
objects between disparate viewpoints.

ing angle/position, illumination, occlusion, and background
clutter, robust recognition is extremely challenging.

A large body of work on object recognition has focused
on appearance based methods, where either global or lo-
cal methods have been exploited. Global methods build
an object representation by integrating information over
an entire image. Global methods [15] take into consider-
ation the entire object attribute, but they are sensitive to
viewpoint change, background clutter and occlusion. Lo-
cal methods [6] represent images as a collection of fea-
tures extracted based on local information. Recent research
based on local invariant features [14, 11, 4] has demon-
strated good performance on object recognition under lim-
ited viewpoint changes and occlusion. Despite the progress,
these approaches still have limited success in many chal-
lenging viewing conditions. For example, in the pres-
ence of large large scale/viewpoint changes and/or occlu-
sion, only a sparse set of distinguished features can be re-
liably extracted, and only a small portion of the object is
covered with matched features. It is obvious that to in-
crease the discriminative power of any recognition scheme,
dense coverage is desirable since it incorporates the iden-
tifying evidence from all parts of an object. For this rea-
son, several recent approaches attempt to increase the cov-
erage of local features by expanding the initial set of cor-
responding features and integrating information from mul-

978-1-4244-2243-2/08/$25.00 ©2008 IEEE



tiple frames [5, 16, 10]. In addition, some geometry con-
straints such as affine and homography transformations are
employed to provide a more comprehensive representation
of 3D objects.

We reason that when object domain is known, to perform
well in unconstrained object recognition tasks, the explicit
utilization of 3D models can largely alleviate the problem
of feature matching and achieve robust object recognition
under large viewpoint changes, occlusion, and background
clutter. For example, in the vehicle recognition domain,
many 3D vehicle models exist. Detailed 3D models pro-
vide rich constraints to match objects reliably. However, to
require that an exact model is available for each instance is
unrealistic. Furthermore, there can be large variations of ob-
ject instances in a broad category. How to utilize a compact
set of representative 3D models that can provide sufficient
constraints for robust object recognition is the main thrust
of this paper.

In this paper, we propose a robust object recognition
method based on approximate 3D models that can effec-
tively match objects under large viewpoint changes, partial
occlusion and background clutter. Our domain of interest is
vehicles, but the approach can be generalized to other rigid
man-made type of objects. As shown in Fig. 1, to match an
object seen from two disparate viewpoints (reference and
target views), a set of 3D models that are representative
for their categories are first chosen. A 3D model (from
the set) that is closest to the image object is selected and
its 3D poses with respect to both reference and target im-
ages are estimated. The approximate 3D model geometry,
together with its poses, are utilized to transfer the object ap-
pearance features from the reference view to the target view
through photo realistic rendering. Our utilization of the 3D
model enables us to compute a global appearance model
for each semantic part such as windows and doors of a ve-
hicle. The semantic part ownership is used to extrapolate
appearance information that is not visible in the reference
image. A piecewise Markov Random Field (MRF) model is
employed to combine observations obtained from each in-
dividual pixel and from the corresponding semantic part. A
Belief Propagation (BP) method that reduces the size of re-
quired memory is used to solve the MRF model effectively.
No training is required in our method, and a realistic object
image in a disparate viewpoint can be obtained from as few
as just one reference image. Experimental results on manu-
facturers’ vehicle data and real data from multiple platforms
demonstrate the efficacy of our method.

We review related work in Section 2. We introduce the
approach in Section 3, and present experimental results in
Section 4. We conclude in Section 5.

2. Literature Review
Tremendous progress has been made in recent years in

recognizing objects with large variations in viewing con-
ditions by utilizing both object appearance and geometry
information [14, 11, 4]. Most methods represent object
classes as collections of salient features with some invariant
representations of their appearance. Geometry constraints
are enforced in a loose or rigid manner to resolve appear-
ance ambiguity and improve recognition performance. In
general these methods only produce a sparse set of features
that cover a small portion of the entire object, and therefore
may miss some important and discriminative regions for re-
liable object recognition.

Most recently a flurry of research has attempted to en-
large the coverage of local feature sets while enforcing ge-
ometry constraints in a flexible fashion. Ferrari et al. [5]
deal with the presence of background clutter and large view-
point change by expanding the matching feature set after
initial matched features are produced. The set of matched
regions are partitioned into groups and integrated by mea-
suring the consistency of configurations of groups arising
from different model views. Savarese&Fei-Fei [16] recog-
nize the class label and pose for each object instance by
learning a model for each class. The model consists of a
collection of canonical “diagnostic” parts that are viewed
in the most frontal position and linked with some geometry
consistency constraints. The linkage structure of canonical
parts is built with multiple viewpoints. Kushal et al. [10]
represent object parts as partial surface models (or PSMs)
which are dense, locally rigid assemblies of texture patches.

In the model based vehicle recognition domain [13], [6]
build 3D generic vehicle models with templates by project-
ing 2D features to 3D and clustering 3D features over the se-
quence of frames. [9] employs a 3D generic vehicle model
parameterized by 12 length parameters to instantiate differ-
ent vehicles. Line segments from the image are matched to
the 2D model edge segments obtained by projecting a 3D
polyhedral model of the vehicle into the image plane. An
illumination model is used to handle lighting change and
shadows. This method works well when enough image res-
olution is available. Another model-based approach is pro-
posed in [8]. A simple sedan model and a probabilistic line
feature grouping scheme are used for fast vehicle detection.
The approach is more suitable for nadir (top) view detec-
tion. [18] also uses 3D CAD vehicle models and other sen-
sor modalities for target identification. The number of vehi-
cles of consideration is limited in their application. In [7],
a quasi-rigid 3D model is used to establish dense matching
from line correspondences. The scheme can reliably match
objects up to 30 ∼ 400. The similar 3D model analysis-
by-synthesis loop approaches were proposed for face recog-
nition systems also [1, 2].

Markov Random Field (MRF) models provide a robust



and unified framework for early vision problems such as
stereo and image restoration. Inference algorithms based
on belief propagation have been found to yield accurate re-
sults [19, 20]. Despite recent advances these methods are
often too slow for practical use. Several techniques [3] have
been proposed to substantially improve the running time of
loopy belief propagation.

Our approach in spirit is close to [12], where a high reso-
lution face is synthesized from a low-resolution input using
a two-step approach that integrates both a global parametric
model and a local non-parametric model. However our do-
main of application is the matching and recognition of rigid
objects with regular texture.

3. Approach
3.1. Overview of Approach

The objective of our approach is to match objects be-
tween unconstrained reference and target views. Since the
viewpoint change can be quite significant, we need to utilize
all the available object appearance and geometry informa-
tion, and perform matching at every visible location or even
beyond. We take a 3D model assisted rendering and match-
ing scheme, and introduce a fusion step in between to im-
prove the rendering quality before matching. The complete
system includes: (1) Select the closest 3D models for the
reference and target views respectively starting from some
initial poses. The poses between the 3D models and images
are also refined in this step. (2) From the aligned 3D model
and the reference image, acquire pixel level (local) and re-
gion level (global) appearance for the 3D model, and trans-
fer both local and global appearance into the target view-
point. Corresponding rendering quality maps are also com-
puted and transferred. (3) Combine the local and global
appearance using a piecewise MRF model based fusion
scheme with Belief Propagation method. Model seman-
tic part ownership mask is naturally used to derive piece-
wise MRF model representation. (4) Compute a composite
match measurement between the fused rendered image and
the target image. Finally we decide if the two images be-
long to the same object or not when needed. We elaborate
each step in the following sections.

3.2. Model Selection and Pose Estimation

To enable the matching of rigid objects such as vehicles
with large viewpoint variations, we use 3D models. Un-
like previous approaches that require precise fitting of a 3D
model to each 2D image [9, 13], we associate each im-
age with an approximate 3D model that is selected from
a few representative model categories, and subsequently es-
timate the relative pose between the chosen model and the
image. Our rendering approach, when equipped with a fu-
sion scheme, is able to generate realistic rendering from any

Figure 2. 3D model examples and their representation. Each vertex
of a 3D model is represented by both its position and semantic
ownership information. We render each part in a unique pseudo
color (first row), and the edges between parts are extracted (second
row) for shape matching.

viewpoint from as few as just one real image.
Our 3D model database consists of 11 models that are

drawn from 5 vehicle categories including sedan, SUV,
mini-van, pickup truck, and delivery van/bus. In most com-
mercial 3D modelers, each vertex of a 3D model is not only
represented with 3D position, but also with the semantic
ownership such as “front bumper”, “hood”, “rear window”,
etc. Some of the representative rendered vehicle prototypes
and their edge maps are shown in Fig. 2. Note that each
semantic part of a vehicle is rendered with a unique pseudo
color, so that the ownership for each pixel is easily read off
in the image. The edges between different parts can also be
easily extracted from the pseudo-colored rendered images
or directly from the 3D models.

The initial pose of the 3D model with respect to the im-
age is obtained either from meta-data (for cameras from
moving aerial platforms) or calibration (for cameras from
stationery ground platforms). Note that model selection and
pose estimation are iterative processes: Better pose param-
eters can be obtained with better model representation, and
vice versa. For each object image, our joint model selection
and pose refinement process consists of the following steps:

1. Select top 3 matched models from the 11-model
database by 2D matching. With initial poses, the
matching is performed between the projected pseudo-
colored model edge and image edge maps. Chamfer
distance [17] is used for similarity measurement be-
tween edge maps. This step eliminates the majority
of dissimilar models, therefore alleviates the computa-
tional burden in later steps.

2. For each of the 3 model candidates, update the scale,
translation, and coarse rotation parameters for each
model using discrete sampling in the pose space. Scale
and translation only need to be adjusted in 2D. And
we sample 3D rotation angles along three axes using
3× 3 = 27 samples. The Iterative Closest Point (ICP)
algorithm is used to adjust the pose parameters with
edge maps.

3. Fine tune the 3D rotation parameters using gradient de-



Figure 3. Model selection and pose estimation examples. Closest
models (2nd col.) are selected for the corresponding images (1st
col.), and their poses are refined by matching edge maps (3rd col.,
projected model edges are in green, and image edges are in red).

scent method. The reprojection error between the pro-
jected 3D edge points and their corresponding closest
points in the 2D edge map is used in the optimization.

4. Finally, select the best model with the best pose.

Fig. 3 shows two examples of the model selection from
two different images, with their projected edges (using esti-
mated poses) overlaid on image edges.

3.3. Rendering with Approximate Models

After associating the closest 3D model and its corre-
sponding pose with respect to a reference image, we can
acquire the texture from the reference image and render it
for any viewpoint (target view). However, the rendering is
accurate and faithful to the true object only if the chosen 3D
model is exact and all the areas in the object are visible in
the reference view. Obviously this is not practical in real
word applications. We present an approach that can relax
this requirement by combining both pixel level and region
level appearance cues to achieve as realistic a rendering as
possible while attempting to transfer to as many target views
as possible. The two types of renderings are dubbed as lo-
cal and global rendering, respectively. In the following, we
discuss how local rendering with an approximate model can
achieve rendering with small residue, as well as how global
rendering can complement local rendering and transfer ap-
pearance features to a large range of target viewing angles.

3.3.1 Rendering with Local Cues

A 2D point x1 observed from a reference viewpoint, repre-
sented by a 3 × 4 projection matrix P1 = K1 [I | 0] and
center C1, projects to a 3D line: X(λ∗) ' P+

1 x1 + λ∗ C1,
where P+

1 is the pseudo-inverse matrix of P1. This line
intersects with a 3D plane nT X̃ = d, with normal n and
distance to the origin d. X̃ & X are inhomogeneous and
homogeneous coordinates respectively. We can compute
the intersection of the line and the plane, and project the
intersecting point to the target viewpoint with a projection

Figure 4. Local rendering examples. (a) is original image. (b) &
(c) are rendered images with different 3D models from SUV cat-
egory after the best poses are computed. (e) & (f) are rendered
images with dissimilar models and wrong poses, the artifacts are
prominent. (d) is the normalized correlation map between the ren-
dered image (b) and original image (a).

matrix P2 = K2 [R | t] as:

x2 ' K2 (R +
t nT

d
) K−1

1 x1. (1)

If the model is not accurate (but close enough), and the line
intersects with a nearby plane: nT X̃ = d′, where d′ =
d+∆d, then the projection in the target viewpoint becomes:

x′2 ' K2 (R +
t nT

d
− t nT

d

∆d

d
) K−1

1 x1. (2)

Ignoring the scaling part, the projection residual is
(∆d

d ) {K2 ( t nT

d ) K−1
1 x1}, which corresponds to the par-

allax caused by the inaccurate plane representation. If the
approximated plane is close enough to the true plane, ∆d

d
is small, and the residual is also small, the appearance ac-
quired in the reference image will be rendered in an approx-
imately accurate position in the target view, and the overall
rendering will be realistic.

Fig. 4 shows some rendering examples with the pixel
level appearance using approximate models. The render-
ing quality is good when model and pose are close enough,
but degenerates with either a dissimilar model or poor pose.
Note that even when the selected model is not exact, for the
same object instances, renderings reveal similar artifacts or
distortion, therefore the approximate rendering is still suit-
able for object fingerprinting.

We should point out that we prefer a model that covers as
many regions of an image as possible. We modify the dis-
tance measure in Chamfer matching to encourage matching
within model region, but discourage matching outside of re-
gion.

3.3.2 Rendering with Global Cues

Using local pixel level rendering, we are able to generate
realistic object images in a new viewpoint with an approx-
imate model. However, if the viewpoint change is dras-
tic, the appearance information will be missing for the re-
gions that are not visible in the reference view. Even though



Figure 5. Extrapolate the appearance for the occluded part using
the visible part information. Left is the reference view, middle and
right columns are rendering with & without extrapolation.

multiple viewpoints can be used to provide better coverage,
many times either only one reference image is available, or
the viewpoint variation is limited within multiple reference
images. To effectively address this problem, we take advan-
tage of the symmetric nature of the vehicular object, as well
as the availability of semantic ownership representation in
the model. For example, the left and right windows usually
have the same appearance. Parts with the same semantic
labels (for example, door 1 and door 3) should also look
similar. In addition, for the area of a semantic part that is
not visible, it should obtain its color from the visible area of
the same part. Even though this assumption is not always
true, in situations where there no other information can be
derived from the reference view, this is the best we can do
to extrapolate the object appearance. We shall see in the
experiments section that matching with appropriate extrap-
olation is better than no extrapolation. The observation can
also be applied to the majority of man made objects. One
example is shown in Fig. 5. We need to generate a back-
side (bs) view of the red SUV from the front-side (fs) view.
The appearance in the back is missing in the fs view, but can
be “hallucinated” using symmetry and semantic ownership
information.

To compute the appearance for the region correspond-
ing to each semantic part, we first perform color segmenta-
tion for the original image and the pseudo-colored rendered
model image, as shown in Fig. 6. For each pseudo-colored
segment, we find all the intersecting segments in the real
image (such as the segments in the red box for the front
window part shown in Fig. 6). We assign the major mode
computed from all the segments as the color for the seman-
tic region. Rendering using the region level appearance for
the same vehicle in Fig. 4 is shown in the right column of
Fig. 6. The quality of this type of rendering depends on the
level of detail of the model, many times it is quite coarse, as
is obvious in the grill part of the vehicle in this example.

3.3.3 Rendering Quality Measurement

It is obvious that artifacts exist in either local or global ren-
dering. We need to have some criterion that can tell which
rendered pixels are faithful to the original values. The crite-
rion is also utilized later on to combine the rendering with
both cues. We use the normalized correlation between the
original reference image and the rendered image. We also

Figure 6. Obtain global semantic part level appearance from image
segmentation. For each part segment(such as the red box for the
front window), compute the main mode of the color from all the
intersecting segments from real image segmentation (left) and as-
sign the appearance. Right column is a global rendering example.

create a gray level correlation image and texture map the
3D model with this image, and render the correlation map
in the target viewpoint. One example is shown in Fig. 4.

3.4. Fusion of Global and Local Rendering

3.4.1 Motivation

The 3D model based rendering and matching approach de-
scribed in Section 3.3 will render the exact appearance for
each pixel of the object in a new viewpoint only if: (1) For
any vehicle image, an exact 3D model is included in the
model database and that model is correctly selected; (2) The
poses for all views are accurately computed; (3) The corre-
sponding pixel is visible in the original view for every vis-
ible pixel in the new view; and finally (4) The 3D models
have sufficient resolution. Obviously not all of the above
conditions can be satisfied in an unconstrain environment.
For the computational efficiency, for each image, we can
only afford to select an approximate model from a list of 10
- 20 candidates out of all the available models, which might
be in the order of thousands or more. Subsequently, poses
computed based on an approximate model cannot be pre-
cise. Moreover, error can occur in the pose estimation even
with the exact model. The rendering error from an inaccu-
rate model or pose is not that prominent in the inside area of
an object, as pointed out in Section 3.3, but becomes severe
in the border of the object. The rendering error caused by
the foreground occlusion such as trees is more prominent in
the inside area, as shown in Fig. 7. In both situations, we
need a scheme to compensate for both types of artifacts. In
addition, we need a scheme to fill in the appearance as real-
istic as possible for the pixels that are occluded in the orig-
inal view but become visible in the new view. MRF model
provides a principle way to account for all the aforemen-
tioned factors, and approximation inference algorithm such
as Belief Propagation (BP) exist to solve the MRF model.

Despite of recent advances, solving MRF models are still
computationally demanding especially in the case when a
relatively large number of possible labels are required. We
propose to take advantage of the semantic part based model
representation, and adopt a piecewise algorithmic technique
that substantially improve the running time and memory us-
age of belief propagation for solving the realistic rendering



Figure 7. Examples of rendering artifacts caused by inter-object
and intra-object occlusion. Left: Inaccurate pose in reference view
can cause “hollowing” artifacts in target view. Right: Occlusions
by foreground objects can cause “smeary” artifacts in both refer-
ence and target views.

problem.
As shown in Fig. 8, we need to estimate the set of la-

bels (color/intensity values) that are modeled as random
variables x = {x1, x2, ..., xN} based on the observations
y = {y1, y2, ..., yN}, where x & y exist in a grid P =
{1, 2, ..., N}with a 4-connected neighborhood systemN =
{Np,q}. The observations y′ps come from two sources based
on the local and global rendering methods. The first type of
observation is the local image color/intensity itself Il, and
the second type is from the average semantic part color Ig .
The possible label set L in our case is a collection of piece-
wise label assignments L = {L1,L2, ...,LM}, where Lm

is the m-th semantic part of the model, and M is the to-
tal number of parts. For each Lm, the number of possible
assignments can be limited, i.e, Lm = Ig + {1, 2, ...,K},
and K = 16 in our case, which is much smaller than the
standard 256 label assignment problem. The optimal solu-
tion can be found by maximizing the following a posterior
probability (MAP):

x∗ = arg max
xp,p∈P

p(x1, x2, .., xN |y1, y2, ..., yN ). (3)

That is equivalent to maximizing:

∝ Πp∈P p(yp|xp) Πp,q∈N p(xp, xq). (4)

The negative log-likelihood of Eq. 4 corresponds to mini-
mizing the following energy:

E(x) =
∑
p∈P

αp ED(xp) +
∑

p,q∈N
βp,q ES(xp, xq). (5)

ED(xp) consists of the following two terms:

ED(xp) = αl (xp − Il)2 + αg (xp − Ig)2, (6)

where αl = const1 ∗ corr, and αg = const2 ∗ (1 −
corr). And corr is the normalized correlation value at site
p, and const1 & const2 are constants. If the rendering

Figure 8. Piecewise MRF model for fusion of global and local ren-
dering. Note that the sites belonging to the same semantic part
(shown in same color) have the same “base” appearance, therefore
the label assignment is piecewise and becomes tractable.

quality using local pixels is good (usually due to accurate
model and pose estimation and minimum occlusion), the
correlation value is large, we trust the local rendering more.
Otherwise, we resort to the global rendering assignment.

The smoothness term is defined as:

ES(xp, xq) = βp,q (xp − xq)2 (7)

where βp,q = const3 ∗ fp,q(corr). const3 is a constant,
and fp,q(corr) takes the following form:

fp,q(corr) =


20 if(part(p) = part(q) & corr < σ)
2 if(part(p) = part(q) & corr ≥ σ)
10 if(part(p) 6= part(q) & corr < σ)
1 if(part(p) 6= part(q) & corr ≥ σ)

(8)
where part(p) & part(q) are the part ownerships for site
p & q, and σ is the correlation threshold. This smoothness
term encourages pixels from the same semantic part to have
small appearance variation, and also encourages more diffu-
sion when the rendering quality using local image intensity
is poor (small σ).

3.5. Match Measurement

After rendering an object to the target viewpoint, it is im-
perative to exploit as much information as possible to match
it with the real target image. A combination of the follow-
ing measurements that encode different aspects of an object
are used: (1) Color correlogram, (2) Chamfer distance, (3)
Normalized correlation. The combination utilize both ap-
pearance and geometry information at local and global lev-
els for robust object matching.

4. Experimental Results
4.1. Performance Evaluation Methodology

We evaluate our algorithm for vehicle images acquired
from manufacture vehicle catalog, as well as real data cap-
tured with sensors from both aerial platform and ground
platform. The database has a wide variety of vehicle models
with different colors, shapes and resolution.



Our experimental setup is designed to test the following
aspects of the algorithm: (1) Overall matching performance
under large pose change. (2) Comparison w/o model as-
sisted matching methods. (3) Comparison with local ren-
dering vs. local + global rendering. (4) Comparison with
simple combination of local and global rendering vs. MRF
based fusion. (5) Performance with approximate and accu-
rate pose estimation.

For each set of experiments, we conduct a large number
of trial tests. Each trial contains 1 query and N (= 2 ∼ 7)
learning sequences (images), where the targets in the learn-
ing sequences are all distinct, and one of the learning se-
quences contains the same object (but from a different se-
quence) as the query sequence. A trial outcome is consid-
ered correct if the highest score among the N scores cor-
responds to the learning sequence that contains the same
object as the query sequence. The performance score com-
puted as probability of correct association, PCA, is defined
as the number of correct outcomes divided by the number
of trials.

4.2. Comparison: With/Without Model Assistance

4.2.1 Stationary Ground Platform

We test our algorithm on a collection of 54 vehicles on a dis-
tributed non-overlapping ground camera system. There are
large illumination, scale, and aspect changes among cam-
eras. The resolution varies from 130× 70 to 300× 160 pix-
els. For N = 2, our model-assisted method has achieved
PCA = 90.00%.

Figure 9. Similarity matrices for model-free (left) and model-
assisted (right) methods. See text for detail.

4.2.2 Moving Aerial Platform

To test matching performance with large pose change, we
use a seven vehicle data set from a moving aerial platform.
The pose variation of each vehicle is around 90 ∼ 1200.
The Ground Sampling Distance (GSD) is about 0.4 - 0.6
cm/pixel. Fig. 9 shows the similarity matrix for model-
free method (left) and our model-assisted method (right) for
three sedans, and two of them have similar color. Each row
of the matrix is a query, and each column of the matrix is
a learning sequence. The three distinct bands of rows and
columns in the right image correspond to the three different
vehicles, illustrated by the sample image chips. Brighter
matrix elements indicate higher likelihood scores. An ideal

similarity matrix would have a block diagonal structure with
consistently high scores on the main diagonal blocks and
consistently low scores elsewhere. In the left image, there
is no distinct diagonal block structure, while the right image
demonstrates distinct diagonal block structure.

Another instructive way to contrast the performance of
the two algorithms is to examine the distribution of simi-
larity scores conditioned on when the learning and query
sequences contain the same object versus different objects,
Psame versus Pdiff . Ideally, the distributions should be
well separated, in order to reliably discriminate between the
correct and incorrect matches. Fig. 10 shows that the sep-
aration between same and different object distributions is
weak for model-free method (left) and significantly better
for the model-assisted method (right).

The correct association performance for this dataset is
PCA= 83.52% for the model-free method, and is improved
to PCA= 97.33% for the model-assisted method.

Figure 10. Psame & Pdiff for model-free (left) and model-
assisted (right) methods. X-axis is matching score. Y-axis is PCA.

4.3. Comparison: Local Rendering vs. Local +
Global Rendering & MRF vs. Simple Combi-
nation Scheme

To investigate different aspects of our algorithm, we col-
lect a set of vehicle images from on-line manufacture car
catalogs. We choose 7 vehicles from SUV, Mini-Van, sedan,
and pickup truck categories. The mean resolution is around
400 × 250. To minimize the influence of color feature, we
include many cars with similar color, with a subset shown in
Fig. 11. Each vehicle is captured at 5 viewpoints: front (f),
front-side (fs), side (s), back-side (bs), back (b). For com-
parison, we also manually choose three models (a sedan,
a SUV, and a pickup), and use them to obtain initial ap-
proximate calibration data for each vehicle per view. Fig.
12 demonstrates the model selection, pose estimation, and
rendering results. Fig. 13 is designed to test the following
algorithms: (1) Use local rendering only to match vehicles,
no adjustment of model or pose. (2) Use both global and lo-
cal rendering, but with simple combination, no adjustment
of model or pose. (3) Use both global and local rendering,
with MRF based combination, no adjustment of model or
pose. (4) Use both global and local rendering, with MRF
based combination, and automatically select the best model
(from the 11 model database) and refine its pose. The x-axis



Figure 11. A subset of manufacture vehicle examples. Many vehi-
cles have similar color.

Figure 12. Model selection, pose estimation, and rendering results
for two pickup trucks. Col. 1 & 3: Original views; Col. 2 &
4: Model edges projected on image edges, a Mazda B-Series is
chosen in both cases; Col 5: Rendered images from Col. 1 to 3.

Figure 13. Manufacture vehicle matching performance. X-axis is
the number of learning sequences N . Y-axis is PCA.

is the number of learning objects N = 7 ∼ 2, and y-axis
is PCA. We can see that rendering only at local pixel level
(red) is not sufficient, both local and global level rendering
is necessary. The simple combination (green) takes color
value from global rendering whenever the local rendering
quality is bad or it is invisible in the reference view. Sim-
ple combination is faster, but it lacks the fusion step in the
MRF model (blue) to assure smoothness for each semantic
part and also to fill in missing regions. Given enough res-
olution, our algorithm (cyan) is able to automatically select
the best model, and compute its best pose, and the matching
performance surpasses the one that uses manually selected
model and calibrations. Altogether, our model assisted ap-
proach can achieve over 90% PCA for 1 to 7 matching, and
over 98% PCA for 1 to 2 matching with pose change up to
900 for the manufacture car data set.

5. Conclusion
We propose an approach that can match vehicles over

large viewpoint changes with the assistance of a compact
set of 3D models. With approximate models and poses, we

are able to render objects at pixel lever with small residue.
We use symmetry and semantic ownership to render ob-
jects at region level. An piecewise MRF model with Belief
Prorogation is used to combine rendering with both cues
and achieve robust vehicle matching under large viewpoint
changes.
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