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Abstract

This paper proposes a novel method called micro-
deformation analysis to analyze and describe local image
structures. This method is a general analytic tool and can
be applied to any high-dimensional scalar or vector func-
tions. We derive the tensor matrix from this method as the
descriptor to represent the information within local image
patches. Our experimental results suggest that we can de-
sign low-dimensional local tensor descriptors with perfor-
mance comparable to the popular SIFT descriptor, which is
the state-of-the-art feature descriptor used for object recog-
nition and categorization.

1. Introduction

Representing local features by compact and distinctive
descriptors is important for many computer vision tasks.
Traditional techniques, such as local jets [6] and Gabor fil-
ters [1], analyze and represent local geometric structures
by convolving images with certain filter banks or receptive
fields. Current techniques improve the descriptors’ perfor-
mance by summarizing these filtered responses over a lo-
cal image region. SIFT (Scale Invariant Feature Transform)
descriptor proposed by Lowe [7, 8] provides a mechanism
to construct distinctive descriptors by summarizing the gra-
dient orientations to a histogram with certain spatial con-
figuration. SIFT-like descriptors [14, 10] have proved to
be the state-of-the-art feature descriptors for object recog-
nition and categorization. But their high dimensions make
the computational cost high.

Unlike the aforementioned methods, we propose a dif-
ferent method to analyze and describe local image struc-
tures. When we apply a deformation to an image patch, the
change caused by this deformation depends on the geomet-
ric structure within this image patch. If we apply a group of
deformations on this patch, the changes caused by them de-
fine a function on the deformation space, and this function
characterize the geometric structure within the patch. So we
can use this function to identify the local image structure.

When we constraint these deformations to be micro-
deformations with infinitesimal parameters, the function be-
comes a tensor matrix, and this leads to the idea of using this
tensor matrix to represent the information contained in the
image patch.

In this paper, we formulate this micro-deformation anal-
ysis method, and derive the tensor matrix from it as the de-
scriptor to represent local image structures. We propose a
method to normalize these tensor matrixes to make them
isotropic in their distance space. We also investigate the
tensor descriptors’ properties by experiments and compare
them with SIFT descriptor.

This paper is organized as follows: in section 2, we de-
velop the micro-deformation analysis method and derive the
normalized tensor descriptors. In section 3, we investigate
the properties of local tensor descriptors by experiments,
and compare them with SIFT descriptor. In the last section,
we conclude this paper and discuss some future works.

1.1. Related works

Investigating local image properties by applying small
deformations to local patches and studying the changes
caused by these deformations can be traced back to the
works of Moravec [12] and Hannah [2]. This line of re-
search is the basis of interest point detection. The origi-
nal deformations applied to local patches are translations
in different directions. Based on this simple deformation
model, the structure tensor matrix (second moment matrix)
[3] was deduced for corner detection. Translational model
was extended to affine deformation model later and a tensor
matrix based on this model was derived for general corner
detection[5, 13]. All these works were restricted to derive
the properties of the second moment matrix’s eigenvalues
for corner detection.

2. Tensor matrix as local descriptor

2.1. Micro-deformation analysis

The main idea of our method can be described as fol-
lows: An image patch is sent into a machine which applies
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various small deformations to this patch and the changes
caused by these deformations are measured. The relation-
ship between the image changes and the deformations cap-
tures the structure information contained in this patch, so
we can use this relationship to identify the content of this
image patch.

We can parameterize the deformations by p =
(p1, · · · , pn)T to make small ||p|| value corresponds to
small deformation, and p = 0 corresponds to no deforma-
tion. The relationship between the patch change E and the
deformation p can be represented by a function:

E = f(p) (1)

The value of E may be interpreted as the energy needed
to accomplish this deformation. For small deformation pa-
rameterized by δp, this function can be approximated by its
Taylor series:

E = f(0) + ∇T
p f(0)δp +

1
2
δpT Hpf(0)δp + · · · (2)

where ∇p and Hp denote the gradient and Hessian ma-
trix with respect to p. Because f(0) = 0 and E ≥ 0, so
∇T

p f(0) = 0, and we get:

E =
1
2
δpT Hpf(0)δp + o(||δp||2) (3)

So we can use the Hessian matrix Hpf(0) as the descrip-
tor to describe the structure within an image patch.

Micro-deformation analysis is a general analytic tool
which can be applied to high-dimensional scalar or vector
functions. But in this paper, we restrict our discussions on
two dimensional gray-value images.

2.2. Tensor matrix from micro-deformations

A deformation applied to an image patch W can be rep-
resented by a displacement field δx = (α(x; p), β(x; p))T

which reflects the displacement of each pixel x = (x, y)T in
this patch. Where p = (p1, · · · , pn)T denotes the param-
eters used to control the deformation. If small ||p|| value
corresponds to small deformation, then α(x; 0) = 0 and
β(x; 0) = 0. For a small deformation with parameters δp
we get:

δx =
(

α(x; δp)
β(x; δp)

)

=
(

α(x; 0) + ∇T
p α(x; 0)δp + o(||δp||)

β(x; 0) + ∇T
p β(x; 0)δp + o(||δp||))

)

≈
( ∇T

p α(x; 0)
∇T

p β(x; 0)

)
δp

= Mδ(x)δp (4)

where ∇p denotes the gradient with respect to the pa-
rameter p and Mδ(x) = (∇pα(x; 0),∇pβ(x; 0))T . We call
Mδ(x) as the deformation matrix. There are two ways to
define this deformation of interest: We can define two func-
tions α(x; p) and β(x; p), and then derive Mδ(x) from these
functions as formula (4) did. Or we can define Mδ(x) di-
rectly.

According to formula (4), we can decompose δx as fol-
lows:

δx =
n∑

k=1

δpk

(
αk(x; 0)
βk(x; 0)

)
(5)

where αk(·) and βk(·) (1 ≤ k ≤ n) denote
the partial derivatives of α(x; p) and β(x; p) with re-
spect to the k-th parameter component pk. We can re-
gard (αk(x; 0), βk(x; 0))T as the deformation bases de-
fined on the image patch. So we can define n deforma-
tion bases B1(x), · · · , Bn(x), and generate a linear micro-
deformation space as follows:

δΩD = {
n∑

k=1

δpkBk(x)|δpk ∈ R} (6)

These deformation bases constitute a deformation ma-
trix:

Mδ(x) = (B1(x), · · · , Bn(x)) (7)

We can use the sum-of-squared-difference (SSD) to mea-
sure the change E produced by the deformation δx:

E =
∑
W

w(x)(I(x + δx) − I(x))2 (8)

where w(x) is a kernel function used to weight the image
patch. We set w(x) be the Gaussian kernel with the devia-
tion proportional to the size of the image patch.

Because the displacement δx is very small for each pixel,
we can approximate the change of each pixel as follows:

I(x + δx) − I(x) ≈ ∇T
x Iδx (9)

where ∇x denotes the spatial gradient. Hence we obtain
the following approximation:

E ≈
∑
W

w(x)δxT (∇xI∇T
x I)δx (10)

Substitute formula (4) into (10), we get:

E = δpT
∑
W

(w(x)MT
δ (x)(∇xI∇T

x I)Mδ(x))δp

= δpT Mdδp (11)



where Md =
∑

W w(x)MT
δ (x)(∇xI∇T

x I)Mδ(x). Md

is the tensor matrix that reflects the relationship between
the change E of the patch W and the small deformation pa-
rameterized by δp. Md is a semi-definite symmetric matrix
and captures the structure information of this patch, so we
can use it to describe local image structures.

2.3. Tensor matrix normalization

The components of the deformation parameter p =
(p1, · · · , pn)T reflect different factors controlling the
amount of displacement of each pixel in the image patch.
These factors are generally not equivalent, e.g. translational
displacement is not equivalent to rotational angle, so a unit
change of different components may cause different amount
of total displacement of the image patch. This makes the
components of the tensor matrix Md are not equivalent
for distance calculation. In order to make the tensor ma-
trix isotropic in its distance space, we need to normalize
it to make a unit change of each parameter component pi

(1 ≤ i ≤ n) produces the same unit displacement of the
image patch.

If we set the k-th component (1 ≤ k ≤ n) be unit change
ε, and other components be 0, Then δpk = ε and δpi = 0
(i �= k). ε is a small value. Then based on formula (5), we
get:

δxk = ε

(
αk(x; 0)
βk(x; 0)

)
(12)

The total displacement of the image patch W is:

δk =
∑
W

w(x)||δxk||

= ε
∑
W

w(x)
√

α2
k(x; 0) + β2

k(x; 0)

= εNk (13)

where Nk =
∑

W w(x)
√

α2
k(x; 0) + β2

k(x; 0). So we
can normalize the k-th components of Mδ(x) by dividing
them by Nk for image patch W . Then a unit change of the
k-th parameter component pk produces a unit displacement
of the image patch W . The normalized deformation matrix
Mn

δ is:

Mn
δ =

(
α1(x;0)

N1
· · · αk(x;0)

Nk
· · · αn(x;0)

Nn
β1(x;0)

N1
· · · βk(x;0)

Nk
· · · βn(x;0)

Nn

)
(14)

And the normalized tensor matrix can be calculated as
follows:

Mn
d =

∑
W

w(x)(Mn
δ )T (x)(∇xI∇T

x I)Mn
δ (x) (15)

In order to make the tensor descriptor be invariant to
affine intensity transformation, we can normalize the above
tensor matrix Mn

d by
∑

W w(x)∇T
x I∇xI . So the final local

tensor descriptor dM for an image patch W is:

dM =
∑

W w(x)(Mn
δ )T (x)(∇xI∇T

x I)Mn
δ (x)∑

W w(x)(∇T
x I∇xI)

(16)

2.4. Polynomial deformation models and derived
tensor descriptors

The deformation model can be defined by the functions
α(x; p) and β(x; p) which determine the displacement field
of the image patch. We define the n-th order polynomial
deformation model as follows:

α(x; p) =
∑

i≥0,j≥0,i+j≤n

pα
ijx

iyj (17)

β(x; p) =
∑

i≥0,j≥0,i+j≤n

pβ
ijx

iyj (18)

where p = (· · · , pα
ij , · · · , pβ

ij , · · · )T . The parameters

pα
ij related to α(x; p) are different from the parameters pβ

ij

related to β(x; p), and this makes α(x; p) and β(x; p) in-
dependent. The above deformation model makes the dis-
placement of each pixel is a polynomial function of its co-
ordinates, and this defines a general class of deformations
used to probe the structure within an image patch. Then the
deformation matrix is:

Mδ(x) =
( · · · xiyj · · · 0 0 0

0 0 0 · · · xiyj · · ·
)

(19)

According to formula (14), we can normalize this defor-
mation matrix for patch W as follows:

Mn
δ (x) =

(
· · · xiyj

Nij
· · · 0 0 0

0 0 0 · · · xiyj

Nij
· · ·

)
(20)

where Nij =
∑

W w(x)|xiyj |. If we denote a =
(· · · , xiyj

Nij
, · · · )T , then

Mn
δ (x) =

(
aT 0
0 aT

)
(21)

Substitute formula (21) to formula (15), the normalized
tensor matrix for n-th order polynomial deformation model
can be calculated as follows:

Mn
d =

∑
W

w(x)
(

a 0
0 a

)
(∇xI∇T

x I)
(

aT 0
0 aT

)

=
∑
W

w(x)
(

AI2
x AIxIy

AIxIy AI2
y

)
(22)



where A = aaT is a symmetrical matrix.

Figure 1. Gaussian weighted displacement fields for some normal-
ized deformation bases. (a) δx = (x, 0)T . (b) δx = (y, 0)T .
(c) δx = (x2, 0)T . (d) δx = (xy, 0)T . (e) δx = (−y, x)T . (f)
δx = (−y sin(wr), x sin(wr))T .

2.4.1 Zero-th order deformation: translational defor-
mation

For the zero-th order polynomial deformation model,
α(x; p) = p1 and β(x; p) = p2, where p = (p1, p2)T . This
is the translational deformation with displacement (p1, p2)T

independent of the coordination x. The deformation matrix
Mδ(x) is the 2 × 2 identity matrix. The tensor matrix is the
second moment matrix:

Md =
∑
W

w(x)∇xI∇T
x I

=
∑
W

w(x)
(

I2
x IxIy

IxIy I2
y

)
(23)

2.4.2 First order deformation: affine deformation

For the first order polynomial deformation model,
α(x; p) = p1x + p2y + p3 and β(x; p) = p4x + p5y +
p6, this is the affine deformation parameterized by p =
(p1, p2, · · · , p6)T as follows:

δx =
(

p1 p2

p4 p5

)
x +

(
p3

p6

)
(24)

So the deformation matrix is

Mδ =
(

x y 1 0 0 0
0 0 0 x y 1

)
(25)

According to formula (21), we have

a =
(

x

N1
,

y

N2
,

1
N3

)
(26)

where N1 =
∑

W w(x)|x|, N2 =
∑

W w(x)|y| and
N3 =

∑
W w(x).

Then we can calculate A = aT a and the normalized ten-
sor matrix Mn

d according to formula (22). Mn
d is a 6 × 6

symmetric matrix. Because A is a 3 × 3 symmetric matrix,
Mn

d only has 18 different elements.

2.4.3 Second order deformation

For the second order polynomial deformation model,
α(x; p) = p1x

2 + p2xy + p3y
2 + p4x + p5y + p6 and

β(x; p) = p7x
2 + p8xy + p9y

2 + p10x+ p11y + p12, where
p = (p1, · · · , p12)T . The deformation matrix is

Mδ =
(

x2 · · · 1 0 · · · 0
0 · · · 0 x2 · · · 1

)
(27)

and

a =
(

x2

N1
,
xy

N2
,

y2

N3
,

x

N4
,

y

N5
,

1
N6

)T

(28)

where N1 =
∑

W w(x)|x|2, N2 =
∑

W w(x)|xy|,
N3 =

∑
W w(x)|y|2, N4 =

∑
W w(x)|x|, N5 =∑

W w(x)|y| and N6 =
∑

W w(x).
We can compute A = aaT and the normalized tensor

matrix Mn
d according to formula (22). Mn

d is a 12 × 12
symmetric matrix. Because A is a symmetric 6 × 6 matrix,
Mn

d has 63 different elements.
Figure 1 (a-d) show the Gaussian weighted normal-

ized displacement fields for some polynomial deformation
bases.

2.5. Other example deformation models

This section gives some deformation fields not included
in the aforementioned polynomial deformation models to
demonstrate the flexibility of micro-deformation analysis.



2.5.1 Translational + rotational deformation

If we deform an image region by small rotation angle
δθ around its center and small translational displacement
(δp1, δp2)T , then the displacement δx for pixel x is:

δx =
(

1 − cos(δθ) − sin(δθ)
sin(δθ) 1 − cos(δθ)

)
x +

(
δp1

δp2

)

≈
(

0 −δθ
δθ 0

)
x +

(
δp1

δp2

)
(29)

The deformation parameter is δp = (δθ, δp1, δp2)T , and

the deformation matrix is Mδ(x) =
( −y 1 0

x 0 1

)
.

The normalized deformation matrix is:

Mn
δ (x) =

( −y
N1

1
N2

0
x

N1
0 1

N3

)
(30)

where N1 =
∑

W w(x)
√

x2 + y2 and N2 = N3 =∑
W w(x).
Figure 1(e) shows the displacement field for the defor-

mation base (−y, x)T . This deformation model is not in-
cluded in the polynomial deformation models because the
parameter δθ is related to both α(x; δp) and β(x, δp).

2.5.2 Non-polynomial deformation model

According to formula (7), we can construct a deformation
matrix by define a set of deformation bases for the image
patch, and any function can be selected as a deformation
base. Here we present the periodic rotational deformation
functions as an example:

Bi(x) =
( −y sin(iwr)

x sin(iwr)

)
(31)

where r =
√

x2 + y2, i ∈ N , w = 2π
R and R is the

size of the normalized image patch. Figure 1 (f) shows the
displacement field for B1(x) = (−y sin(wr), x sin(wr))T .

2.6. Distance metrics for descriptor matching

Matrix norms can be used to compute the distance be-
tween two tensor descriptors. Four kinds of norms have
been defined for matrixes, they are the maximum absolute
column sum norm ||M ||1, the spectral norm ||M ||2, the
maximum absolute row sum norm ||M ||∞ and the Frobe-
nius (Euclidean) norm ||M ||F :

||M ||1 = max
j

n∑
i=1

|aij | (32)

||M ||2 = (max
i

λi)1/2 (33)

||M ||∞ = max
i

n∑
j=1

|aij | (34)

||M ||F = (
n∑

i=1

n∑
j=1

|aij |2)1/2 (35)

where M is a n × n matrix with aij (1 ≤ i, j ≤ n) as
its elements, λi (1 ≤ i ≤ n) is the eigenvalues of M∗M ,
and M∗ is M ’s conjugate transpose. Because tensor matrix
is symmetric, so ||M ||1 = ||M ||∞.

We also consider to convert each tensor descriptor to a
vector consists of only its different elements, and use this
vector’s Euclidean norm as the distance metric. We denote
this norm as ||M ||V .

Figure 2. Example images used in our experiments.

3. Experiments

We investigate the following topics by experiments: (1)
What is the suitable distance metric for tensor descriptor
matching. (2) Does matrix normalization proposed in sec-
tion 2.3 effective. (3) The influence of different deformation
bases on tensor descriptors’ performance. (4) Comparing
tensor descriptors with SIFT descriptor.

3.1. Method

We experiment local tensor descriptors on a dataset of 64
images including indoor and outdoor scenes. some example
images are shown in figure 2. Each image is normalized to
be size 512 × 512. We extract the 1000 most salient key-
points from each image by the Harris scale invariant key-
point detector. We do not adapt the keypoints’ locations and
scales in the scale space. This introduces more noise to the
keypoints’ locations and scales. For each keypoint, we ex-
tract the circular image region around it with radius propor-
tional to the keypoint’s scale. We compute the dominant ori-
entations for each image patch by the method proposed by
Lowe [7, 8] and normalize each image patch to size 21×21
with respect to the dominant orientations. Then we compute
local descriptors for each normalized image patch.



Figure 3. Image transformations and the feature correspondences
recovered by matching the second-order polynomial tensor de-
scriptors (LTD2). (The 100 most salient keypoints are extracted
from each image. Solid lines indicate the recovered true corre-
spondences. Dashed lines indicate the recovered false correspon-
dences. Dotted lines indicate the missed true correspondences.)
(a) Affine transformation with Gaussian noise corruption (denoted
as T1). (b) Homography transformation with Gaussian noise cor-
ruption (denoted as T2).

3.1.1 Harris scale invariant keypoint detector

Harris scale invariant keypoint detector is based on the
scale-adapted tensor matrix (second moment matrix) de-
rived from the zero-th order polynomial micro-deformation
analysis:

µ(x, σd, σi) = σ2
dg(σi) ∗

(
I2
x(x, σd) IxIy(x, σd)

IxIy(x, σd) I2
y (x, σd)

)
(36)

where g(σi) is a Gaussian kernel with the integration
scale σi, Ix(x, σd) and Iy(x, σd) are the image gradients
computed at the differentiation scale σd. To build a scale
space representation of an image, we set σd = kσi. where
k is a parameter used to determine the ratio between σd and
σi. The Harris cornerness then can be computed as:

CH = det(µ) − α × tr2(µ) (37)

where det(·) and tr(·) calculate the determinant and
trace of a matrix respectively. α is a parameter generally
set to be 0.04 ≤ α ≤ 0.06. The local maxima of CH re-
sponses over scale space are candidate keypoints for feature
detection.

Although CH responses rarely attain maxima over scale
space when we set σd = 0.7σi as Mikolajczyk and Schmid
suggested [9], our experiments show that the increase of k
can greatly increase the number of CH ’s local maxima in

the image scale space. When k = 1.25, the number of key-
points extracted by Harris scale invariant detector is com-
parable to DoG (Difference of Gaussian) keypoint detector
[8]. Experimental results also show Harris scale invariant
detector gets better repeatability than DoG detector [7] and
Harris-Laplace detector [9]. For SIFT descriptor [8], the
keypoints extracted by Harris scale invariant detector is also
better than DoG detector and Harris-Laplace detector.

So in our experiments, we use Harris scale invariant de-
tector for feature detection, and set σd = 1.25σi. For each
detected keypoint, we extract its surrounding circular region
with radius Rp = βsk, where sk is the keypoint’s scale and
β is a parameter used to control the ratio between Rp and
sk. Large β value means large patches extracted from each
keypoint, so makes them contain more image information.
But large patch size also makes the extracted features eas-
ily be disturbed by 3D transformations, occlusions and ob-
jects’ global variations. In our experiments, we experiment
the descriptors for patches with β = 6. For each extracted
image patches, we normalize them to be size 21 × 21.

3.1.2 Recall-precision criterion

We use the areas of recall-precision curves as the criteria
[4, 11] to evaluate the descriptors’ performance. For an im-
age I1 and its transformation I2 = T · I1 under the transfor-
mation T , we can establish the correspondences between
the features detected in I1 and the features detected in I2

by ignoring some errors. We use surface error proposed by
Mikolajczyk and Schmid [9, 11] to measure the correspond-
ing errors between two features F1 and F2. The surface
error between them is

εs = 1 − |T · A1 ∩ A2|
|T · A1 ∪ A2| (38)

where A1 and A2 are image patches corresponding to F1

and F2 respectively. T · A1 ∪ A2 and T · A1 ∩ A2 are their
union and intersection under I2 coordinate frame. In our
experiments, two features correspond if their surface error
εs is less than 0.4.

Two descriptors are considered matched if their distance
is below a threshold. The match is correct if their corre-
sponding features correspond under the transformation T .
If the number of true matches is Nt, the number of false
matches is Nf , the total number of corresponding features
is Nc, and the number of recovered correspondences from
the true matches is Nr, then recall and precision are de-
fined as follows:

recall =
Nr

Nc
(39)

precision =
Nt

Nt + Nf
(40)



In our experiments, we add 0.5% Gaussian noise to the
images and then transform them by two kinds of transfor-
mations. The first one (denoted as T1) transforms images
by an affine transformation. The second one (denoted as T2)
transforms images by a homography transformation. Figure
3 shows the transformed images and the recovered feature
correspondences by matching the second-order tensor de-
scriptors (LTD2).

3.2. Results

3.2.1 Results for different distance metrics

We use Norm-F, Norm-1, Norm-2 and Norm-V to denote
the matrix norms || · ||F , || · ||1, || · ||2 and || · ||V respec-
tively. For tensor descriptors, we have || · ||1 = || · ||∞.
Polynomial tensor descriptors with order 1 (LTD1) and or-
der 2 (LTD2) are experimented on images under the trans-
formations T1 and T2, and the results are shown in table 1.
Frobenius norm || · ||F gets the best results. So || · ||F is the
most suitable distance metric for tensor descriptor match-
ing. Frobenius norm is also very efficient for calculation.
So in the following experiments, we use Frobenius norm to
calculate the distance between tensor descriptors.

LTD1 LTD2
Norms T1 T2 T1 T2

Norm-F 0.52(0.19) 0.31(0.14) 0.66(0.14) 0.45(0.13)
Norm-1 0.53(0.17) 0.31(0.13) 0.65(0.11) 0.43(0.10)
Norm-2 0.52(0.17) 0.30(0.12) 0.62(0.11) 0.40(0.09)
Norm-V 0.50(0.18) 0.28(0.13) 0.64(0.14) 0.42(0.12)

Table 1. Performance results for different distance metrics. (De-
scriptors’ performances are indicated by the average recall-
precision areas. Standard deviations are shown in the brackets.)

3.2.2 Normalized vs. non-normalized tensor descrip-
tors

We experiment the first order (LTD1) and the second or-
der (LTD2) polynomial tensor descriptors and their non-
normalized forms (LTD1-N and LTD2-N) on the images
under transformations T1 and T2 to show the effectiveness
of the matrix normalization proposed in section 2.3. Figure
4(a) shows the results. It is evident that the matrix normal-
ization improve the performance of tensor descriptors. We
can get the same conclusion from table 2. The performance
of LTD2 increase more greatly than LTD1 after normaliza-
tion.

3.2.3 Polynomial tensor descriptors with different or-
ders

We experiment the polynomial tensor descriptors from or-
der 1 to order 5 on the images under transformations T1
and T2. These descriptors are denoted as LTD1 to LTD5

respectively. Table 2 shows the results. The third order
polynomial tensor descriptor (LTD3) gets the best perfor-
mance. The addition of the polynomial deformation bases
with order greater than 3 decreases the descriptors’ perfor-
mance. But the addition of non-polynomial deformation
base B1(x) = (−y sin(wr), x sin(wr))T defined in for-
mula (31) improve LTD1’s performance greatly (The im-
proved version of LTD1 is denoted as LTD1+ in table 2).
So selecting good deformation bases is important for tensor
descriptor design.

3.2.4 Comparison with SIFT descriptor

We implement SIFT descriptor by the method proposed by
Lowe [8]. Figure 4(b) shows the results of comparing SIFT
descriptor with the third order polynomial tensor descrip-
tor (LTD3) and the improved version of LTD1 (denoted as
LTD1+). Table 2 shows the performance results of SIFT
descriptor and different tensor descriptors. It is clear that
LTD2, LTD3 and LTD4 all outperform SIFT descriptor.
LTD1+ gets performance comparable to SIFT descriptor.

LTD1+ has only 25 independent dimensions. Our results
demonstrate that we can design low-dimensional tensor de-
scriptors with performance comparable to SIFT descriptor,
which has 128 dimensions.

4. Discussion and conclusions

Micro-deformation analysis proposed in this paper is a
new method different from traditional methods to analyze
and describe local image structures. It is also a general ana-
lytic tool can be applied to high-dimensional scalar or vec-
tor functions. Instead of analyzing image patches directly,
we apply micro-deformations to the input image patch, and
monitor the relationship between these deformations and
the changes caused by them. Tensor matrixes can be derived
from micro-deformation analysis to represent the geometric
structure within an image patch.

Our experimental results demonstrate that we can design
low-dimensional tensor descriptors with performance com-
parable to SIFT descriptor, which is the state-of-the-art fea-
ture descriptor for object recognition and categorization.

Good deformation bases are important to derive good
tensor descriptors. For polynomial deformation bases, the
third-order tensor descriptor gets the best performance.
Higher order deformation bases do not improve the ten-
sor descriptor’s performance. Some non-polynomial defor-
mation bases can improve tensor descriptors’ performance
greatly. How to select optimal micro-deformation bases to
improve tensor descriptors’ performance remains to be an-
swered.

In this paper, we use SSD (Sum-of-Squared-Difference)
as the function to measure the image changes caused by
the micro-deformations. But SSD function can be replaced



Figure 4. (a) Normalized (LTD1 and LTD2) vs. non-normalized (LTD1-N and LTD2-N) tensor descriptors. (b) SIFT descriptor vs.
improved version of LTD1 (LTD1+) and LTD3. (The performances are indicated by recall-precision areas.)

Descriptors LTD1 LTD1-N LTD1+ LTD2 LTD2-N LTD3 LTD4 LTD5 SIFT
(dimensions) (18) (18) (25) (63) (63) (165) (360) (693) (128)

T1 0.52(0.19) 0.48(0.15) 0.63(0.13) 0.66(0.14) 0.55(0.11) 0.67(0.11) 0.64(0.10) 0.59(0.09) 0.64(0.15)
T2 0.31(0.14) 0.27(0.10) 0.42(0.11) 0.45(0.13) 0.33(0.07) 0.47(0.10) 0.43(0.08) 0.39(0.07) 0.41(0.16)

Table 2. Performance results for different descriptors under transformations T1 and T2. The descriptors are polynomial tensor descriptors
from order 1 to order 5 (denoted as LTD1 to LTD5), non-normalized version of LTD1 and LTD2 (denoted as LTD1-N and LTD2-N),
improved version of LTD1 (denoted as LTD1+), and SIFT descriptor.

by other suitable functions. Investigating good functions to
measure the changes caused by the micro-deformations is
also an interesting topic for future research.

It is also possible to learn the deformation bases and the
change measurement functions from data for special tasks
(e.g. face recognition). But how to formulate this learning
problem remains to be investigated.

The basis of Harris keypoint detector is the zero-th or-
der polynomial micro-deformation model. This means that
micro-deformation analysis can provide a common mecha-
nism for feature detection and feature description.
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