
Visual Synset: Towards a Higher-level Visual Representation

Yan-Tao Zheng
National University of Singapore

yantaozheng@comp.nsu.edu.sg

Ming Zhao
Google Inc. U.S.A

zhaoming@zhaoming.name

Shi-Yong Neo
National University of Singapore

neoshiy@comp.nus.edu.sg

Tat-Seng Chua
National University of Singapore

chuats@comp.nus.edu.sg

Qi Tian
Institute for Infocomm Research, Singapore

tian@i2r.a-star.edu.sg

Abstract

We present a higher-level visual representation, visual
synset, for object categorization. The visual synset im-
proves the traditional bag of words representation with bet-
ter discrimination and invariance power. First, the ap-
proach strengthens the inter-class discrimination power by
constructing an intermediate visual descriptor, delta visual
phrase, from frequently co-occurring visual word-set with
similar spatial context. Second, the approach achieves bet-
ter intra-class invariance power, by clustering delta visual
phrases into visual synset, based their probabilistic ’seman-
tics’, i.e. class probability distribution. Hence, the resulting
visual synset can partially bridge the visual differences of
images of same class. The tests on Caltech-101 and Pascal-
VOC 05 dataset demonstrated that the proposed image rep-
resentation can achieve good accuracies.

1. Introduction

In the task of visual object recognition, the bag-of-
words (BoW) methods have achieved many significant re-
sults [6, 21, 22, 26, 9, 8], due to its simplicity, effectiveness
and good practical performance. Analogous to document
representation in terms of words in text domain, the bag-of-
words approach models an image as a geometric-free un-
ordered bag of visual words, which are formed by vector
quantization of local region descriptors, such as Scale In-
variant Feature Transform (SIFT) [11]. By coding the statis-
tics of local image regions independently, the bag-of-words
approach achieves the robustness in handling variable ob-
ject appearances caused by changes in pose, image captur-
ing conditions, scale, translation, clutter and occlusion, etc.

Though various systems [6, 21, 22, 26, 9, 8] have
shown promising practical performances of bag-of-words
approach, the accuracies of visual object categorization are
still incomparable to its analogy in text domain, i.e. the doc-

ument categorization. The reason is obvious. The textual
word possesses semantic itself and the documents are well-
structured data regulated by grammar, linguistic and lexi-
con rules. In contrast, there appears to be no well-defined
rule in visual word composition of images. The objects of
same class might have arbitrarily different shapes and vi-
sual appearances, while objects of different classes might
share similar local appearances. Consequently, such huge
object appearance diversities lead to scarce correlation be-
tween proximity of images in feature space and their seman-
tic relevance, which renders statistical models ineffective in
visual object recognition. The lack of such correlation is a
form of ambiguity and uncertainty of visual word represen-
tation [23, 24], which are manifested by two phenomenons:
polysemy and synonymy. The polysemous visual word is a
one that might represent different semantic meanings in dif-
ferent image context, while the synonymous words are a set
of visually dissimilar words representing the same seman-
tic meaning. By sharing a set of polysemous visual words,
the semantically dissimilar images might be close in feature
space, while the synonymous visual words may cause the
images with same semantic to be far apart in feature space.

To achieve more effective object recognition, the poly-
semy and synonymy issues must be tackled.

• Polysemy issue: The polysemy encumbers the
distinctiveness of visual words and leads to under-
representations [23, 24]. Its consequence is effectively low
inter-class discrimination. The polysemy is rooted from two
reasons. First, visual word is the result of vector quantiza-
tion (clustering of region descriptors) and each visual word
corresponds to a group of local regions. Due to visual di-
versity, it is impossible to make regions of one visual word
with homogeneous appearances. Such quantization error
inevitably results in ambiguity of visual word representa-
tion. Second, the regions represented in a visual word might
come from the object parts with different semantic but simi-
lar local appearances. For example in Figure 1, visual word
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visual word A
Visual phrase AB

visual word B

Figure 1. Examples of visual phrase

A is not able to distinguish motorbike from bicycle, as they
share visually similar tires. However, the combination of vi-
sual word A and B, i.e. the visual phrase AB, can effectively
distinguish motorbike from bicycle. The polysemy issue
can, therefore, be resolved by mining inter-relation among
visual words in certain neighborhood region. Yuan el at.
[23, 24] and Quack el at. [16] proposed to utilize frequently
co-occurring visual word-set to address the polysemy is-
sue. Specifically, Yuan el at. denote such visual word-set
as visual phrase. The major weakness of visual phrase ap-
proach is that it merely considers the co-occurrence infor-
mation among visual words but neglect spatial information
among them. To tackle such issue, we propose a new visual
descriptor - delta visual phrase, which incorporates both co-
occurrence and spatial scatter information of visual words.
• Synonymy issue: The synonymy is attributed to the

visual diversity of object of same semantic class. Such
appearance diversity makes multiple visual words share
same or similar semantic meaning. It is, in fact, an over-
representation of semantics by visual words [23, 24]. The
consequence is large intra-class variations. In this circum-
stance, both visual words and phrases become too primitive
to effectively model the image semantics, as their efficacy
depends highly on the visual similarity and regularity of im-
ages of same semantic. To tackle this issue, a higher level
visual content unit is needed. In text domain, when doc-
uments of same topic or categories are represented by dif-
ferent sets of words, the word synset (synonymy set) that
link words of similar semantic are robust to model them
[3]. Inspired by this, we propose a novel visual content
unit, visual synset, on top of visual words and phrases. We
define visual synset as a relevance-consistent group of vi-
sual words or phrases with similar semantic. However, it
is hard to measure the semantic of a visual word or phrase,
as they are only a quantized vector of sampled regions of
images. Rather than in a conceptual manner, we define the
’semantic’ probabilistically as semantic inferences P (ci|w)
of visual word or phrase w towards image class ci.

Intuitively, if several visual words or phrases from differ-
ent images share similar class probability distribution, like
the brand logos in car images shown in Figure 2, then the
visual synset that clusters them together shall possess simi-
lar class probability distribution and distinctiveness towards
image classes. The visual synset can then partially bridge
the visual differences between these images and deliver a
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Figure 2. Examples of visual synset that clusters three visual words
with similar image class probability distributions.

more coherent, robust and compact representation of im-
ages.

2. Overview and Preliminaries

As shown in Figure 3, the overall flow of the proposed
approach consists of 3 phases. Phase 1 constructs visual
words or visual codebook. Here we follow the notation of
[23]. It first extracts regions from an image and computes
visual features of regions ai. It then performs clustering
on ai to generate visual code Ω = {W1, ..., WM}, where
Wi is a visual word. The image I is then represented by a
bag of visual words {W(a1), ..., W(ai), ...}, where W(ai) is
the corresponding visual word of region ai. Phase 1 can be
regarded as a standard bag of words approach.

Phase 2 tackles the polysemy issue in visual words,
by exploiting co-occurrence and spatial scatter infor-
mation among visual words. For each local region
ai ∈ I from phase 1, its local spatial neighborhood
G is defined as group of its K nearest neighbor regions
{W(ai), W(ai1 ), W(ai2 )...W(aiK

)}. By processing all im-

age, a visual word group database G = {Gi}Ni=1 will be
generated. In the domain of data mining, the database G
can be regarded as a transaction database [7]. Therefore, the
discovery of frequently co-occurring visual word-sets, i.e.
visual phrases, can be reduced to a task of frequent itemset
mining (FIM) in the database G [7] [23]. We explore the
FP-growth algorithm to perform the FIM task, as its prefix-
tree structure enable it to store and search frequent itemsets
in an extremely efficiently way. A visual word-set P ⊂ Ω is
counted as a frequently co-occurring set or a visual phrase,
if its frequency freq(P) > θ. Specifically, the neighbor-
hood G is called the support region of P , as P is mined
from the database of G. By mining frequently co-occurring
word-sets with different support regions, we propose a new
collocation pattern - delta visual phrases, which incorporate
both co-occurrence and spatial scatter information. Details
of phase 2 will be introduced in Section 3. For simplicity,
we denote both visual words and delta visual phrases as vi-
sual lexicons.
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Figure 3. The overall framework of visual synsets generation

Phase 3 addresses the synonymy issue. Given image cat-
egories C = {ci}mi=1, the ’semantic’ of a visual lexicon
w is its contribution to the classification of its belonging
image, which can be approximately measured by P (ci|w).
Phase 3 clusters visual lexicons with consistent semantic
into visual synsets, via Information Bottleneck-based dis-
tributional clustering. Details of phase 3 will be discussed
in Section 4. Finally, the visual object recognition are per-
formed based on image representations in terms of visual
synsets.

3. Discovering Delta Visual Phrase

The major shortcoming of visual phrase proposed in
[23, 24] is that it neglects the spatial inter-relation among
visual words. To tackle this issue, the proposed delta visual
phrase is mined not only from co-occurrence information,
but also the local proximity of visual words. Such spatial
proximity information defines the specificity of the visual
phrase, which can be determined by the size of support re-
gion that visual phrase is mined from. Specifically, a delta
visual phrase is defined in 2 dimensions: its member visual
word-setP and its scatterR, namely, how spread the visual
phrase crosses over image.

Prior to presenting the proposed delta visual phrase, we
first introduce the concept of minimal support region. The
support region of visual phrase P is the visual word group
G of size K , where K is the number of visual words in the
neighborhood G. Let G1, G2,..., Gk−1, Gk,... be a series of
support regions with same centroid and growing size. The
minimal support region is then defined as below.

Definition 3.1. The region Gk is called minimal support
region of visual phrase P , if any smaller region Gk−i, ∀i >
0 is not large enough to discover the visual phrase P .

With respect to each support region Gk, the delta visual
phrase is defined as below.

Definition 3.2. The delta visual phrase (dVP) of region Gk

is the visual phrase that has Gk as minimum support region.
In other words, the delta visual phrase of region Gk is the
newly discovered visual phrases when the support region
just grows from Gk−1 to Gk. The size of Gk is therefore the
scatterR of delta visual phrase andR = |Gk| .

Intuitively, the delta visual phrase is mined from the
changes of support regions. This is also why the word
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Figure 4. Examples of delta visual phrases. (a) Visual word-set
’CDF’ is a dVP with R = |G3|. (b) Visual word-set ’AB’ can not
be counted as a dVP with R = |G3|

”delta” is in its name. The visual word-set P is deemed
to be delta visual phrase [P , R], if it satisfies one of the
following condition:

freqG
k

(P)− freqG
k−1

(P) > θk, (1)

where R = |Gk|, freqG
k

(P) is the frequency of a visual
word-set P for support region Gk and θk is the threshold.
For example in Fig. 4 (a), the visual word-set ’CDF’ will
be considered as dVP with scatter R = |G3|, if the number
of newly discovered instances of ’CDF’ resulted from the
increase of support region (from G2 to G3) is greater than
the threshold. The Eq. (1) also ensures that the visual
words of a dVP are scattered over its support region. For
example in Fig. 4 (b), the instance of visual word-set ’AB’
will not be counted for dVP with R = |G3|, as it lies
in region G2 as well and will be offsetted by Eq. (1). If
we define the size of first support region G1 to be 1, the
resulted delta visual phrases are actually visual words with
scatter R = 1. In this way, we can combine visual words
and delta visual phrases into a unified representation.

� Statistical Significance Measure
Yuan el at. [23] proposed to measure the statistical sig-

nificance of visual phrase based on its frequency and its
component visual word frequencies. This measurement,
however, neglects the coherency of component visual words
in visual phrase. We measure the significance on the basis
that the delta visual phrase should be a visual word-set that
is frequently and coherently occurring together, with respect
to certain semantic meaning. Specifically, the significance
score L([P ,R]) of a dVP [P ,R] is defined as:

L([P ,R])) = freq([P ,R]) · P (P ,R|DI)
1 + P (P−|DI)

(2)

where P (P ,R|DI) is the probability that the visual
word-set P forms a valid dVP with scatter R by satisfying
the condition of Eq. (1) and it can be approximated by
docfreq([P,R]

T , where docfreq([P ,R]) is the document
frequency equal to number of images containing dVP
[P ,R]. P− is the visual word-set P that does not form any
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Figure 5. An example of visual synset generated from Caltech-101
dataset, which groups two visual lexicons representing two salient
parts of motorbikes.

valid dVP; and P (P−|DI) is the probability that visual
word-set P forms some random and sporadic patterns,

which can be approximated by docfreq(P−)
T . freq([P ,R])

is the frequency of dVP [P ,R]. Intuitively, we want to
penalize the delta visual phrases whose member visual
words also frequently co-occur in a random and sporadic
manner. In this way, we enforce the correlation among
member visual words, and therefore, ensures the coherency
of delta visual phrases.

� Unique Counting of Maximal Visual Word-set
The subsets of a frequent visual word-setP are frequent

as well, and therefore, will be falsely counted as dVP. To
address this problem, we exploit closed FIM algorithms to
discover maximal frequent itemsets, in the way that any of
its subsets will not be considered as frequent itemset, in the
spirit of [23]. In the phase of FIM, a word-set might be
over-counted, if it lies in the overlapping area of different
neighborhood regions. To overcome this problem, we bor-
row the approach in [23] to re-count real instances of word-
set through the original image database.

4. Generating Visual Synset

Though the co-occurrence and spatial scatter informa-
tion make visual lexicons more distinctive, the synonymy
issue remains. To tackle this issue, we propose to exploit
the prior available semantic knowledge, i.e. semantic class
labels of training images and their distributions, to gener-
ate a higher level visual content unit, called visual synset,
using a supervised learning process.

4.1. Visual Synset: a Semantic-Consistent Cluster
of Visual Lexicons

In text literature, the synonymous words are usually
clustered into one synset (synonymy set) to improve docu-
ment categorization performance, based on word-document
class distribution [3]. Such approach inspires us in solving
the synonymy issue in visual lexicons. However, it is infea-
sible to define the semantic meaning of visual lexicon, as it
is only a set of quantized vectors of sampled regions of im-

ages. Hence, rather than defining the semantic of a visual
lexicon in a conceptual manner, we define it probabilisti-
cally, in the spirit of [3].

Definition 4.1. Given image categories C = {ci}mi=1, the
semantic of a visual lexicon V (visual word or phrase) is
its contribution to the classification of its belonging image,
which can be approximately measured by P (ci|V).

As shown in Fig. 2, the probability distribution P (ci|V)
implies the semantic inference of visual lexicon V , namely
how much V votes for each of the classes. We then define
the visual synsets as below.

Definition 4.2. The visual synset is a probabilistic concept
or a semantic-consistent cluster of visual lexicons, in which
the member visual lexicons might have different visual ap-
pearances but similar semantic inferences towards the im-
age classes

The rational of visual synset is that due to the visual
heterogeneity and distinctiveness of objects, a considerable
number of visual lexicons are intrinsic and highly indicative
to certain classes. This implies that some visual lexicons
tend to share similar probability distribution P (ci|V), which
might peak around its belonging classes. By grouping these
highly distinctive and informative visual lexicons into vi-
sual synsets, the visual differences of images from the same
class can be partially bridged. Consequently, the image dis-
tribution in feature space will become more coherent, regu-
lar and stable. For example in Fig. 5, two visually different
salient components (visual lexicons) of motorbikes can be
grouped into one visual synset, based on their image class
probability distribution. Consequently, the visually differ-
ent motorbike images will now have some commonality in
the feature space.

4.2. Information Bottleneck Principle

By formulating visual synset construction as a task of vi-
sual lexicon clustering based on their class probability dis-
tributions, the issue now is reduced to how to measure the
’right’ distance between these distributions, namely the sim-
ilarity metric in clustering. Pereira et al. [15] proposed to
use the relative entropy or Kullback-Leibler (KL) distance
to measure the distributional similarity. The KL distance
is, however, not symmetric. To address this issue, Baker
and McCallum [2] proposed to utilize the average of KL
divergence of each distribution as the clustering similarity
metric. Such metric, however, focuses merely on the dis-
tributional similarity but neglect the fact that clustering is
also a process of data compression (compressings a group
of data into one clustering). to address the issue above, we
propose to utilize the Information Bottleneck (IB) principle
to guide the clustering process. Given the joint distribution
P (V, C) of the visual lexicons V and image classes C, the



goal of IB principle is to construct the optimal compact rep-
resentation of V, namely the visual synset clusters S, such
that S preserves as much information as possible about C.
In particular, the IB principle is reduced to the following
Lagrangian optimization problem to maximize

L[P (S|c)] = I(S; C)− βI(V;S) (3)

with respect to P (S|c) and subject to the Markov condition
S ← V ← C. The term I(S; C) measures the information
that S contains about C and βI(V;S) measures the infor-
mation loss in clustering V into S. Intuitively, Eq. 3 aims
to cluster or compress the visual lexicons into visual synsets
through a compact bottleneck, under the constraint that this
compression keeps the information about image classes as
much as possible and the information loss in the clustering
as small as possible.

The IB optimization in Eq. 3 yields the solution of: (1)
the prior probability P (S) for each visual synset cluster
S ∈ S; (2) the membership probability P (S|V) of visual
lexicon V to its visual synset cluster S; and (3) the visual
synset distribution P (c|S) over image classes, which are
specifically defined in the equations below:




P (S) =
∑
V

P (S|V)P (V)

P (c|S) =
1

P (S)

∑
V

P (S|V)P (V)P (c|V)

P (S|V) =
P (S)

Z(β,V)
exp(−βDKL[P (c|V)||P (c|S)])

(4)
where Z(β,V) is the normalization factor, β is a lagrange
parameter that determines the cluster resolution and
DKL[P (c|V)||P (c|S)] is the Kulback-Libeler divergence
[19] between P (c|V) and P (c|S).

There exist several implementations of IB principle.
Here, we adopt the sequential Information Bottleneck (sIB)
clustering algorithm [18] to generate the optimal visual
synset clusters in our approach, as it is reported to outper-
form other IB clustering techniques [18]. The target princi-
pled function that sIB algorithm exploits to guide the clus-
tering process is F(S) = L[P (S|c)] as in Eq. 3. The
sIB algorithm takes visual synset cluster cardinality |S|,
and joint probability P (V , c) as input, and starts with some
initial random clustering S = {S1,S2, ...,SK} on V. It
then simulates the process of K-means clustering to itera-
tively reach a local maximum of F(S). Specifically, the
cost dF (V ,Snew) of moving visual word V to a new cluster
Snew can be defined as (cf. [18] for more details):

dF (V ,Snew) = (P (V) + P (Snew)) · JS(P (c|V), p(c|Snew))
(5)

where JS(x, y) = is the Jensen-Shannon divergence [19].

5. Experiments and Discussion

5.1. Testing Dataset and Experimental Setup

We evaluate the proposed image representation on ob-
ject categorization task using two datasets: 1) Caltech-101
dataset [10]; and 2) Pascal-VOC 2005 [5]. The classifier
used is Support Vector Machines (SVM) [20] with general-
ized RBF kernel.

Generation of Visual Lexicon Codebook:
The local region extraction is accomplished by Differ-

ence of Gaussian (DoG) [11] and Hessian Laplace [12] al-
gorithms. DoG corresponds to high contrast structures, and
Hessian Laplace samples blob-like regions, which tend to
complement each other. For each region, the SIFT and Spin
[26] features are computed as region descriptor. We then
perform k-means clustering to obtain 1010 primitive visual
words in total. To discover delta visual phrase, we perform
FIM on the database G of approximately 3 million visual
word groups with support region size of 1, 4, 8 and 12 re-
spectively. Based on the significance score in Equation 1,
we construct the visual lexicon codebook by selecting the
top K delta visual phrases (dVP) with highest scores. In
the experiments, K is set to 1100, 1200, 1300, 1400, 1500,
1700, 1800 and 2000 respectively.

5.2. The Caltech-101 Dataset

The Caltech-101 dataset [10] contains 102 image cate-
gories and a total of 9233 images. For benchmark purpose,
we follow the setup of [25] and [9] by selecting 30 images
from each category as training set. The evaluation criteria
is the mean classification accuracy, which is the average of
evenly weighed recognition rate of each category.

As most visual objects in Caltech-101 are dominant ob-
jects positioned at the centre of the images, we divide an im-
age into 2×2 grides and extract visual lexicons and synsets
on each grid. The result image representation H is the con-
catenated vector of each grid and whole image. As the ob-
ject images do not have large scale changes, we also incor-
porate global visual information into the distance function
of RBF kernel, so as to complement the part-based local
features. The distance function of RBF kernel is, therefore,
defined as:

D(IL, IR) = ||HL −HR||L2 + λ||TL − TR||L2, (6)

where HL is the normalized visual lexicon/synset feature
vector of image L (HR for image R respectively) and TL

is the normalized wavelet texture (WT) histogram (TL for
image R respectively). For WT, an image is divided over
3 × 3 grids and the variance in 9 Haar wavelet sub-bands
for each grid are computed to form a 81D feature vector.
We empirically set λ = 1/6, based on the classification of
12 classes.
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Figure 7. The examples of delta visual phrases generated from
Caltech-101 dataset. The first dVP consists of disjoint visual
words A and B with a scatter of 8 and the second has joint visual
words C and D with a scatter of 4

Performance of Visual Lexicons: We first perform
classification, based on 1010 visual words. This yields a
mean classification accuracy of 57.24%. This classifica-
tion is used as the baseline of our experiments. Next, we
perform object categorization, based on 1100, 1200, 1300,
1400, 1500, 1700, 1800 and 2000 visual lexicons respec-
tively. As shown in Fig. 6, the performance increases as
more visual lexicons are incorporated up to 1400. In par-
ticular, the codebook with 1400 visual lexicons gives the
highest accuracy of 60.32%. This demonstrates that by in-
corporating co-occurrence and spatial scatter information,
the visual lexicons do carry more distinctiveness than vi-
sual words. Fig. 7 shows some examples of delta visual
phrases with different scatter. As shown, when objects share
some appearance similarity in a large scope, the delta vi-
sual phrase can combine the ambiguous visual words scat-
tered in such area into one more distinctive unit, which can
contribute to distinguishing objects of different classes with
larger inter-class distance and better classification.

However, we also observe that when the number of
lexicons is above 1700, the performance drops drastically
and even becomes inferior to original visual word repre-
sentation. We attribute such performance degradation to
the fact that the newly incorporated visual lexicons with
lesser significance score might not be statistically substan-
tial. Though these visual lexicons might still be distinctive
patterns, their statistical sparseness renders image distrib-
utions in feature space more incoherent, sporadic or even
noisy.

Performance of Visual Synset: We evaluate the effec-
tiveness of visual synset, by performing IB-based distribu-
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Figure 8. The average classification accuracy by visual synsets on
Caltech-101 dataset.
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Figure 9. Example images of classes that have visual lexicon out-
performing visual synsets.

tional clustering on the codebook of 1400 visual lexicons
(best run from previous section). Specifically, we set the
cardinality of visual synsets |S| to 50, 100, 200, 400, 600,
800, 1000 and 1200. Fig. 8 displays the average classi-
fication accuracies. From Fig. 8, we observe that with
proper cardinality, the visual synset representation can de-
liver superior results over both visual lexicons and visual
words with a more compact representation. For example,
the run with only 50 visual synsets can achieve an accu-
racy of 55.21%, while the runs with 600 visual synsets has
achieved superior accuracies over the run with 1400 visual
lexicons. This representation compactness does not only
enable high computational efficiency but also alleviate the
issue of curse of dimensionality.

The best run is the one with 600 visual synsets and
it achieves an accuracy of 62.64%. We attribute such
improvements to two factors: (1) by fusing semantic-
consistent visual lexicons together, the visual synset reduces
the intra-class variations and renders the image distribu-
tion in feature space more coherent and manageable; and
(2) the visual synset is a result of supervised dimensional-
ity reduction and the properly reduced dimensionality can
partially resolve the statistical sparseness problem of vi-
sual lexicons and also enable better classification. However,
after a detailed comparison, we find that 16 classes have
visual lexicons delivering better classification performance
than visual synsets. Fig. 9 shows some example images
from these classes. With close examination, we find that
the images of these classes are not visually distinctive from
images of other classes, either due to their cluttered back-
grounds or neutral textures and color of objects. This leads
to the lack of visual lexicons distinctive to these classes.
Consequently, these non-distinctive visual words might be



Table 1. Benchmark of classification performance on Caltech-101
dataset. (VW: visual word; VL: visual lexicon; VS: visual synset)

run VL VS [26] [13] [9] [25] [4]
Accu(%) 60.2 62.6 53.9 56 64.6 66.2 81.3

Table 2. Pascal-VOC 2005 EER results based on visual words
(VW), best run of visual lexicons (VL), best run of visual synsets
(VS) and publicly reported systems.

run VW VL VS [26] [14]
Mean EER 0.92 0.936 0.948 0.928 0.954

clustered together with visual lexicons indicative of other
classes and resulted in non-distinctive visual synsets that ef-
fectively link images of different classes together.

We also observe that the number of visual synsets plays
an important role in its performance. A too small num-
ber of visual synsets usually gives bad performance. This
is because a small number of visual synsets will force
the distinctiveness-inconsistent visual words together and
generate noninformative and nondistinctive visual synsets.
Overall, the experimental results show that the number of
visual synsets between 1/3 and 2/3 of visual lexicon code-
book size usually gives a reasonably good performance.
Fig. 5 shows an example of visual synset generated from
Caltech-101 dataset.

Benchmark on Caltech-101: In the run of 600 visual
synsets generated from 1400 visual lexicons, we achieve an
accuracy of 62.64%. Table 1 summarizes the accuracies of
other reported systems. As shown in Table 1, the proposed
visual synset approach outperforms most of existing sys-
tems and delivers a comparable result with the state-of-arts
one, with more compact image representation.

5.3. The Pascal-2005 Dataset

The Pascal-VOC 2005 contains four object classes: bi-
cycles, cars, people and motorbike. It has one training
dataset of 684 images and two testing sets with 689 images
(test set 1) and 956 images (test set 2). Here, we use test
set 1 for our evaluation, as many recent works utilize this
set. We follow the same experimental setup for Caltech-101
and the evaluation criteria here is equal error rate (EER).
The EER is a point on the Receiver Operating Character-
istic (ROC) curve, which measures the accuracy when the
number of false positives and negatives are equal.

Table 2 summarizes the results of classification based on
visual words only, visual lexicons and visual synsets. The
baseline classification with visual words give an EER of
0.92. Similar to Caltech-101, the EER increases as more
visual lexicons are incorporated and reaches its peak of
0.936, when the number of visual lexicons is 1300. The
optimum number of visual lexicons here is lesser than 1400
in Caltech-101. We attribute this to the fact that the images
of same category in Pascal-VOC 2005 are more visually di-

verse. Therefore, the resulting delta visual phrases are less
statistically stable. Based on the best run of visual lexi-
cons, we generate visual synsets and perform the classifica-
tions. Consistent to the observation in Caltech-101, the vi-
sual synset achieves both compactness and superior perfor-
mance. Specifically, the run with 600 visual synsets delivers
the best EER of 0.948. Table illustrates the ERR bench-
mark with other published approaches. The visual synset
delivers a comparable result with the state-of-arts system
[14], which however extracts quite a large amount (10k) of
regions per image for classification.

6. Related Work

To improve the bag-of-words approach, many re-
searchers have proposed various systems. Lazebnik el at.
[9] proposed a spatial pyramid model to incorporate spa-
tial information hierarchically. Agarwal and Triggs [1] pro-
posed a hyperfeature to code the local visual information
in a multi-resolution way. To address the polysemy issue
of visual words, Juan el at. [23] and Quack el at. [16]
proposed visual phrase, i.e. frequently co-occurring visual
and spatial configurations. Different from the approaches
above, our proposed delta visual phrase attempts to exploit
both co-occurrence and spatial scatter information of visual
words, by utilizing a series of varying support regions, so as
to deliver more distinctive primitive visual features.

The performance of primitive visual features, however,
depends highly on the visual similarity and regularity. To
mitigate such problem, Sivic el at. [17] proposed to model
images with some higher level latent topic features by ex-
ploiting probabilistic Latent Semantic Analysis (pLSA) and
Latent Dirichlet Allocation (LDA). Agarwal and Triggs also
demonstrated the effectiveness of LDA in image classifi-
cation in [1]. pLSA and LDA are similar to the proposed
visual synset in the way that they are all some kinds of in-
termediate features derived from primitive visual lexicons.
However, the proposed visual synset is different from pLSA
and LDA in the way that visual synset is not a result of a
generative model.

Unlike pLSA and LDA, the proposed visual synset is
not a latent or hidden semantic variable in the middle of vi-
sual lexicons and image semantics. pLSA assumes a set of
latent topic variable to tie up documents/images and words,
while LDA treats a latent topic as a multinomial distribu-
tion over words and the mixture of latent topics per docu-
ment/image [17]. The Markov condition in pLSA and LDA
is be V ← S ← C [19], where S denotes the latent topic
variable. On the contrary, the visual synset is the results
of supervised data-mining process of compressing visual
lexicons via distributional clustering based on IB princi-
ple. Thus, it is only conditional on visual lexicons, which
follow the joint distribution of visual lexicons and image
classes. Consequently, the Markov chain condition here is



S← V← C, where S denotes visual synset variable.

7. Conclusion and Future Work

In order to address the polysemy and synonymy issue
of visual words, we proposed a novel image feature, vi-
sual synsets, for visual object categorization. To address
the polysemy issue, we exploit the co-occurrence and spa-
tial scatter information of visual words to generate a more
distinctive visual configuration, i.e. delta visual phrase.
The improved distinctiveness leads to better inter-class dis-
tance. To tackle the synonymy issue, we proposed to group
delta visual phrase with similar ’semantic’ into a visual
synset. Rather than in conceptual manner, the ’semantic’ of
a delta visual phrase is probabilistically defined as its image
class probability distraction. The visual synset is therefore
a probabilistic relevance-consistent cluster of delta visual
phrases, which is learned by Information Bottleneck based
distributional clustering. The effect of visual synset is to
reduce the intra-class variations. The tests on Caltech-101
and Pascal-VOC 05 datasets demonstrated that the proposed
image representation can achieve good accuracies for object
categorization.

Several open issues remain. First, the generation of delta
visual phrase is a time-consuming task. A more efficient al-
gorithm is demanded. Second, how the number of classes
changes the semantic inference distribution of visual lexi-
cons and how this affects the visual synset generation and
final classification have not been investigated.
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