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Abstract

Many applications require a computer representation of
2D shape, usually described by a set of 2D points. The chal-
lenge of this representation is that it must not only capture
the characteristics of the shape but also be invariant to rele-
vant transformations. Invariance to geometric transforma-
tions, such as translation, rotation and scale, has received
attention in the past, usually under the assumption that the
points are previously labeled, i.e., that the shape is charac-
terized by an ordered set of landmarks. However, in many
practical scenarios the landmarks are obtained from an au-
tomatic process, e.g., edge/corner detection, thus without
natural ordering. In this paper, we represent 2D shapes in
a way that is invariant to the permutation of the landmarks.
Within our framework, a shape is mapped to an analytic
function on the complex plane, leading to what we call its
analytic signature (ANSIG). We show that different shapes
lead to different ANSIGs but that shapes that differ by a per-
mutation of the landmarks lead to the same ANSIG, i.e., that
our representation is a maximal invariant with respect to the
permutation group. To store an ANSIG, it suffices to sample
it along a closed contour in the complex plane. We further
show how easy it is to factor out geometric transformations
when comparing shapes using the ANSIG representation.
We illustrate the ANSIG capabilities in shape-based image
classification.

1. Introduction

Many objects are primarily recognized by their shape,
rather than their color or texture. However, automatic
shape-based classification has proved to be a very hard task,
remaining an open problem, underlying which is the funda-
mental question of how to represent shape. This paper deals
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with the representation of two-dimensional (2D) shape. In
our context, a shape is described by the coordinates of a set
of points, or landmarks. We seek efficient ways to represent
such sets, in particular we seek representations that are suit-
able to shape-based recognition. When the 2D shape is de-
scribed by a set of labeled landmarks, there is an established
theory that copes with geometric transformations and shape
variations, the statistical theory of shape [15]. Although
this theory has lead to significant results when the images
to compare are characterized by feature points whose corre-
spondences from image to image can be obtained, in many
practical scenarios, such correspondences are not available.
We thus focus on unlabeled data.

The majority of the methods that cope with unlabeled
points focus on representing a “blob”, i.e., a shape that con-
sists of a connected set of points. A number of techniques,
usually called region-based, describe these shapes by using
moment descriptors, e.g., geometrical [12], Legendre [24],
Zernike [24, 16], or Tchebichef [20]. Other approaches,
called contour-based, represent the boundary of the shape
using, e.g., curvature scale space [19], wavelets [7], contour
displacements [1], splines [9], or Fourier descriptors [25, 3].
Some of these representations exhibit desired invariance to
geometric transformations but they are restricted to shapes
well described by closed contours.

In image analysis, shape cues come primarily from im-
age edges. Since, in general, it is hard to extract complete
contours when dealing with real images, researchers devel-
oped local shape descriptors that, at each point of the shape,
capture the relative distribution of the remaining points,
e.g., shape contexts [4] and distance multisets [10]. Al-
though these local representations can deal with contour
discontinuities, they do not deal with general shapes and
geometric transformations. In this paper, we seek represen-
tations for shapes characterized by arbitrary sets of points.

A number of approaches to deal with shapes described
by general sets of unlabeled points are motivated by the
need to register the corresponding images, i.e., to compute
the rigid transformation that best “aligns” them. The ma-
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jority of these registration methods are inspired by the fact
that the rigid transformation is easily computed when the
labels, i.e., the point correspondences, are known (the Pro-
crustes Matching problem). To cope with unlabeled points,
they develop iterative algorithms that compute, in alternate
steps, the rigid registration parameters and the point corre-
spondences. One of the most widely known examples is the
Iterative Closest Point (ICP) algorithm [5]. More recently,
other researchers have proposed statistical methods that use
“soft” correspondences [8, 18, 17], leading to Expectation-
Maximization (EM)-like two-step iterative algorithms. Al-
though these methods have succeeded, even in challenging
scenarios, e.g., shape part decomposition [18] or nonrigid
registration [8], they have the limitations of iterative algo-
rithms, including the uncertain convergence and the sensi-
tivity to initialization.

The relevance of being able to lead with unlabeled data in
learning tasks, i.e., the relevance of permutation-invariant
representations, has been recently pointed out [13, 14, 23].
In these works, the invariance to permutation is explicitly
constructed, i.e., the permutation is factored out, after being
computed as the solution of a convex optimization prob-
lem. However, this formulation does not deal with geomet-
ric transformations such as rotation. In this paper, rather
than attempting to compute the permutation between two
sets of points describing the shapes to compare, we pro-
pose a new permutation-invariant representation for sets of
2D points. We represent a 2D shape by what we call its an-
alytic signature (ANSIG), an analytic function defined over
the complex plane. We show that shapes that differ by a
re-ordering of the set of landmarks have the same ANSIG.
Thus, the ANSIG representation is permutation-invariant.
Furthermore, we show that this representation enables dis-
criminating different shapes, i.e., different shapes are repre-
sented by different analytic functions.

Under our approach, shape-based classification boils
down to comparing the ANSIG of a candidate shape with
the ones in a database. As any analytic function, the AN-
SIG of a shape is completely described by the values it takes
on a closed contour on the complex plane. Thus, we store
an ANSIG by sampling it on the unit-circle. To compare
ANSIGs, it suffices to measure the difference between the
vectors collecting the corresponding samples.

The ANSIG representation is not invariant with respect
to geometric transformations such as translation, rotation,
and scale. However, an adequate pre-processing step fac-
tors out translation and scale. Although rotation can not be
factored out, we show that the rotation that best aligns two
shapes is easily obtained from their ANSIGs. In fact, the
rotation that minimizes the above mentioned error measure
is obtained in a computationally simple way by using FFTs.

In many situations, the points describing a shape are
obtained automatically, e.g., by detecting edges in an im-

age. It is then common that two sets of points to compare,
besides being noisy, have distinct cardinality (particularly
when dealing with images of different sizes/resolutions).
Our experiments with synthetic and real data show that the
ANSIG representation is robust to these perturbations.

2. Permutation invariance: the analytic signa-
ture of a shape

We consider that a 2D shape is a set of n unlabeled points
in the complex plane C, thus described by a complex vector

z =

⎡
⎢⎢⎢⎣

z1

z2

...
zn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x1 + jy1

x2 + jy2

...
xn + jyn

⎤
⎥⎥⎥⎦ ∈ Cn. (1)

However, as the ordering of the landmarks is irrelevant, the
choice in (1) is not unique: the same shape is equivalently
represented by any vector in the set

{Πz : Π ∈ Π(n)}, (2)

where Π(n) denotes the set of n×n permutation matrices.
Using the language of group theory, a shape is seen as a

point in the quotient space Cn/Π(n). Here, Π(n) is a group
and matrix multiplication is the group operation:

Π(n) × Cn � (Π,z) �→ Πz ∈ Cn. (3)

This group action induces a partition of Cn into disjoint
orbits, where each orbit collects all the possible ways of
representing the same shape vector, i.e., it is the set in (2).
Each shape corresponds to an orbit and the quotient space
Cn/Π(n) is the set of orbits, i.e., the space of shapes. The
canonical map, also referred by the quotient map,

π : Cn → Cn/Π(n) , z �→ π(z), (4)

maps each point to its orbit. In our case, π maps each vector
z ∈ Cn to the shape it represents, π(z) ∈ Cn/Π(n).

From the definition above, two vectors z, w ∈ Cn that
are not related by a permutation, will be mapped by π to
distinct points in the quotient space, i.e., π(z) �= π(w).
This is usually referred to as a maximal invariance property,
meaning that π(z) = π(w) if and only if z and w represent
the same shape. Although this is a property we look for (the
map π detects whether or not z and w represent the same
shape), this mechanism is hardly implementable, due to the
rather abstract nature of the quotient space and map.

Definition of analytic signature (ANSIG). We now de-
velop a version of the objects introduced above, which is



suitable for use in practice. We propose to replace the quo-
tient map π : Cn → Cn/Π(n) by a map

a : Cn → A, A := {f : C → C : f is analytic}. (5)

As the quotient map π, our surrogate map a, which maps
shape vectors in Cn to analytic functions on the complex
plane, will exhibit maximal invariance with respect to the
permutation group Π(n). This means that a maps z and w
to the same analytic function if and only if z = Πw, for
some permutation matrix Π, i.e., if and only if z and w
describe the same shape. We refer to the analytic function
a(z, ·) : C → C as the analytic signature (ANSIG) of the
shape described by z.

In particular, we propose the ANSIG map a : Cn → A,
z �→ a(z, ·), given by

a(z, ξ) :=
1
n

n∑
m=1

ezmξ, (6)

where ξ is a dummy complex variable. We will see that
the ANSIG just defined, exhibits properties that make it ad-
equate for shape representation, in particular, the maximal
invariance with respect to the permutation group.

Maximal invariance of the ANSIG. It is clear that in-
variance of a with respect to the permutation group holds.
In fact, from the definition of the ANSIG map a in (6), it
follows that a(z, ·) = a(w, ·) whenever z,w ∈ Cn are
related by a permutation, i.e., whenever z = Π(n)w.

To establish the maximal invariance, consider two vec-
tors z = [ z1 z2 · · · zn ]T and w = [w1 w2 · · · wn ]T that
have equal ANSIGs, a(z, ·) = a(w, ·). We will show that z
and w represent the same shape, i.e., that they differ only by
a permutation of their entries. Since the analytic functions
a(z, ·) and a(w, ·) are equal, their first n-th order deriva-
tives at the origin also coincide:

dk

dξk
a(z, ξ)

∣∣∣∣
ξ=0

=
dk

dξk
a(w, ξ)

∣∣∣∣
ξ=0

, k = 1, 2, . . . , n.

Using the definition of the ANSIG a in (6), this system of
equations is written in terms of the entries of z and w as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
z1 + z2 + · · · + zn = w1 + w2 + · · · + wn

z2
1 + z2

2 + · · · + z2
n = w2

1 + w2
2 + · · · + w2

n
...

zn
1 + zn

2 + · · · + zn
n = wn

1 + wn
2 + · · · + wn

n .

This set of equalities implies that the polynomials p(t) =
(t − z1)(t − z2) · · · (t − zn) and q(t) = (t − w1)(t −
w2) · · · (t − wn) are identical [11]. In particular, p(t)
and q(t) share the same system of roots (including their
multiplicities), thus the (multi-)sets {z1, z2, . . . , zn} and
{w1, w2, . . . , wn} are equal. This way we conclude that the
vectors z and w are equal, up to a permutation, thus proving
the maximal invariance of our ANSIG map a in (6).

Storing the ANSIG. The ANSIG map a : Cn → A
in (6) maps shape vectors to an analytic functions on the
complex plane. As the space of analytic functions A is
infinite-dimensional, our ANSIG may seems inadequate to
a computer implementation. However, a major consequence
of Cauchy’s integral formula is that any analytic function f
is unambiguously determined by the values it takes on a
simple closed contour, see, e.g., [2]. Choosing this con-
tour to be the unit-circle S1 (the circle of radius 1 cen-
tered at the origin), the analytic function f is uniquely de-
termined by {f(ejϕ) : ϕ ∈ [0, 2π]}. In practice, this
is approximated by sampling, i.e., by considering the val-
ues of f on a finite set of K points in the unit-circle, say{
1,WK ,W 2

K , . . . , WK−1
K

}
, where

WK := ej 2π
K . (7)

In summary, we approximate the ANSIG map a : Cn → A
in (6) by its discrete counterpart aK : Cn → CK , z �→
aK(z), given by

aK(z) :=

⎡
⎢⎢⎢⎢⎣

a(z, 1)
a(z,WK)
a(z,W 2

K)
· · ·

a
(
z,WK−1

K

)

⎤
⎥⎥⎥⎥⎦ ∈ CK . (8)

3. Quotienting out shape-preserving geometric
transformations

We now address how the ANSIG representation handles
shape-preserving geometric transformations, such as trans-
lation, rotation and scale. As introduced in the previous sec-
tion, a shape is an orbit generated by a group G of pertinent
transformations. We started by considering the permutation
group G = Π(n) and provided a maximal invariant with
respect to this group action, the ANSIG a in (6). In fact,
the ANSIG map a is such that a(z, ·) = a(w, ·) if and only
if z and w differ by a permutation. Building on this result,
we now enlarge the group G to also accommodate shape-
preserving geometric transformations.

Two vectors z,w ∈ Cn represent the same shape if
they are equal, up to, not only a permutation of their en-
tries, but also a translation, rotation, and scale factor, affect-
ing the set of n points they describe in the plane. To take
this into account, we consider the group of transformations
G = Π(n)× R+ × C × S1, defining the action of G on Cn

as the map G × Cn → Cn,(
Π, λ, v, ejθ

) · z := Πλejθz + v1n , (9)

where 1n := [ 1 1 · · · 1 ]T is the n-dimensional vector with
all entries equal to 1. It is clear from (9) that the action of
one element of the group G on a shape vector z corresponds



to a permutation (Π), translation (v), rotation (θ), and scal-
ing (λ), applied to the shape described by z.

Obviously, deciding if two given vectors z, w represent
the same shape, i.e., if they are in the same orbit, corre-
sponds to checking if the value of the optimization problem

min
∥∥z − (Π, λ, v, ejθ) · w∥∥

(Π, λ, v, ejθ) ∈ G
(10)

is zero. However, to the best of our knowledge, solving (10)
requires an exhaustive search over the group Π(n), which
has cardinality n!. Clearly, this is not feasible, even for
moderate values of the number of landmarks, say n = 100
(100! � 10158). In contrast, our approach is to use the
ANSIG representation to devise a scheme that circumvents
the combinatorial search. This way, in our experiments, we
were able to process shapes described by very large sets of
points, e.g., with n up to 40000.

Translation and scale. We start by quotienting out all
the transformations, except the rotation, through a map φ.
Then, we show that φ is equivariant with respect to the ro-
tations, what will enable a computationally simple scheme
to detect equality of orbits. To factor out translation and
scale, we make the simple pre-processing step of centering
and normalizing the shape. This corresponds to considering
the map φ : Cn → A, defined by

φ(z, ·) := a

(√
n

z − z

‖z − z‖ , ·
)

, (11)

where a is the ANSIG (6), z := 1
n1T

nz1n is a vector with
all entries equal to the mean value of z, and ‖·‖ denotes
the 2-norm, ‖v‖ := vHv, where vH is the Hermitian (i.e.,
conjugate) transpose of v. The reader may wonder why
the factor

√
n in (11). In fact, this factor has nothing to

do with factoring out translation or scale — it is constant
for shapes described by the a fixed number of landmarks,
n. The motivation for the factor

√
n in (11) is precisely

to enable dealing well with shapes described by different
numbers of landmarks, providing robustness to over/under
sampling the shapes.

Using the maximal invariance of the ANSIG a with re-
spect to permutation, it is easy to show that the map φ
in (11) is a maximal invariant with respect to permutation,
translation, and scale, i.e., that φ(z, ·) = φ(w, ·) if and only
if z = (Π, λ, v, 1) ·w, for some (Π, λ, v, 1) ∈ G. Thus, the
map φ in (11) quotients out all transformations in G, except
the rotation.

Rotation. We now show that, although the map φ is not
invariant to rotations, it is equivariant. Let us begin by look-
ing at how the rotation of a shape affects its ANSIG. From

the definition of the ANSIG a in (6), it follows that

a(ejθz, ξ) =
1
n

n∑
k=1

eejθzkξ

=
1
n

n∑
k=1

ezk(ejθξ)

= a(z, ejθξ) . (12)

Thus, the ANSIG of the rotated shape is a rotated version
(in the complex plane) of the ANSIG of the original shape.

This property enables the derivation of the desired equiv-
ariance of φ, through the following chain of equalities:

φ
(
(Π, λ, v, ejθ) · z, ξ

)
= φ

(
Πλejθz + v1n, ξ

)
(13)

= a

(√
n
Πejθ(z − z)
‖z − z‖ , ξ

)
(14)

= a

(√
n

ejθ(z − z)
‖z − z‖ , ξ

)
(15)

= a

(√
n

z − z

‖z − z‖ , ejθξ

)
(16)

= φ(z, ejθξ) , (17)

where: (13) comes from the definition of the group action
(9); (14) uses the definition of the map φ (11); (15) results
from the permutation invariance of the ANSIG; (16) comes
from property (12); and (17) uses again the definition of φ.

Since the analytic function φ(z, ·) is univocally deter-
mined by the values it takes on a closed contour, i.e., by
its the restriction to the unit-circle, φS1 : Cn × S1 → C,
φS1(z, ·) := φ(z, ·), it will be useful to state the equivari-
ance (17) in terms of this restriction:

φS1

((
Π, λ, v, ejθ

) · z, ξ
)

= φS1

(
z, ejθξ

)
. (18)

This leads to the following short summary of our results:
vectors z and w describe the same shape, i.e., they differ by
permutation, translation, rotation, and scale, if and only if

φS1(z, ·) = φS1

(
w, ejθ ·) , for some θ ∈ [0, 2π]. (19)

4. Implementation

As referred in Section 2, a practical way to store the AN-
SIG a : Cn → A is through its unit-circle sampled version,
aK : Cn → CK , introduced in (8). Thus, in practice, the
map φS1 is approximated by φK : Cn → CK , defined as

φK(z) := aK

(√
n

z − z

‖z − z‖
)

, (20)

where K, the number of samples in the unit-circle, is chosen
by the user. In all our experiments, we used K = 512.



When the rotation angle matches one of those of the sam-
ples in the unit-circle, i.e., when ejθ = W k

K , for some k, the
equivariance of φS1 in (18) gracefully transfers to φK :

φK

((
Π, λ, v, eiθ

) · z)
= φK(z) mod k , (21)

where mod k denotes a k-step cyclic shift. Thus, our test
for deciding if two shape vectors z and w correspond to
the same shape, expressed in (19), boils down to checking
if φK(w) is a cyclic-shifted version of φK(z). Naturally,
with K sufficiently large, ejθ � W k

K , for some k, and (21)
holds for practical purposes. The shape similarity test can
then be carried out by checking if the following error is be-
low a small threshold:

min
k=0,1,...,K−1

‖φK(z) − φK(w)mod k‖2
. (22)

To evaluate (22), we must find the cyclic-shift k∗ that
best “aligns” φK(z) and φK(w). Solving this by exhaus-
tive search leads to an algorithm of complexity O(K2). We
reduce the complexity by using FFTs. Denote the Discrete
Fourier Transform (DFT) of v ∈ CK by v̂ ∈ CK ,

v̂ := DH
Kv , (23)

where DK is the K ×K DFT matrix, see, e.g., [21]. Using
the facts that the DFT is an unitary operator (DH

KDK =
IK) and that the DFT of a k-cyclic-shifted vector equals
the DFT of the original vector, multiplied by

√
Kdk, where

dk is the k-th column of DK[21], the minimizer of (22) is
written in the frequency domain as

k∗ = arg min
k

∥∥∥φ̂K(z) − φ̂K(w) 

√

K dk

∥∥∥2

, (24)

where 
 is the Schur-Hadammard (i.e., elementwise) prod-
uct. Expressing the square norm in (24) and removing the
terms that do not depend on k, we get (Re is the real part):

k∗ = arg max
k

Re

{
dH

k

(
φ̂K(z) 
 φ̂K(w)

)}
. (25)

Expression (25) encodes a computationally simple pro-
cedure to “align” φK(z) and φK(w): i) compute their
DFTs; ii) compute the DFT of the elementwise product
of these DFTs; iii) locate the entry with largest real part.
Since the complexity of computing a DFT using the Fast
Fourier Transform (FFT) algorithm is O(K log K), the
overall complexity of our procedure is O(K + 3K log K).

Naturally, the appropriate measure of ANSIG similarity
need not be the one in (22). In fact, our shape-based image
classification experiments have shown that a better choice
is the (cosine of) the angle between the ANSIG vectors,

similarity (z,w) :=

∣∣∣φH
K(z)φK(w)mod k∗

∣∣∣
‖φK(z)‖ ‖φK(w)‖ . (26)

5. Experiments

We start by describing experiments that illustrate the be-
havior of the ANSIG representation, emphasizing its invari-
ance and its capability to deal with shapes described by sets
of points of distinct cardinality. Then, we report the use of
the ANSIG representation in shape-based image classifica-
tion, emphasizing its robustness to noise.

Invariance of the ANSIG. We use the shapes represented
in Fig. 1, where the shape on the right plot is obtained by
translating, rotating, and resizing the one on the left. The
vectors containing the coordinates of the points of these
shapes also differ by a random permutation of their entries
(obviously, the plots in Fig. 1 do not capture this difference).
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Figure 1. Two shapes that differ by shape-preserving geometric
transformations. The ordering of the points describing the shapes
is also distinct; thus, although the left and right images represent
the same shape, this is not trivially inferred from the stored data.

In Fig. 2, we represent the magnitude (left plot) and the
phase (right plot) of the discretized ANSIGs (φK in (20)) of
the two shapes in Fig. 1. Note that both the magnitude and
the phase plots of the two shapes only differ by a (circular)
translation. This is in agreement with our derivations, see
expressions (18) and (21): the rotation of a shape induces
the same rotation on its ANSIG and this rotation is seen as a
(circular) shift of the vector collecting the ANSIG samples
on the unit-circle. Since aligning ANSIGs is very simple,
as described in Section 4, see (25), our representation fully
captures the similarity of the shapes in Fig. 1, factoring out
geometric transformations and point labeling.
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Figure 2. Magnitude and phase of the ANSIGs of the two shapes in
Fig. 1. Note that, although these shapes differ by position, rotation,
scale, and ordering of the points, their ANSIGs only differ by a
(circular) translation that is easily computed.

The experiment just described used shapes described by
sets of points of the same cardinality. We now show that
ANSIG also deals well with shapes described by sets of



(very) distinct cardinality. This characteristic is important
in practice, to enable comparing shapes obtained from im-
ages, by an automatic process (due do the pixelization, the
same shape often leads to point sets of different cardinality,
when seen at different scales). We use the shapes repre-
sented in Fig. 3: both shapes represent the same object but
the shape on the right is described by just 30% of the points
of the one on the left. In Fig. 4, we represent the ANSIGs
of both shapes. Clearly, the ANSIGs of the differently sam-
pled shapes almost coincide, as desired. This robustness to
distinct sampling density was anticipated in Section 3: it
motivated the factor

√
n in the normalization (11).
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Figure 3. Two shapes that differ in sampling density.
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Figure 4. Magnitude and phase of the ANSIGs of the two shapes
in Fig. 3. Although the number of points describing these shapes
differ significantly, their ANSIGs are similar.

Shape-based classification. We now use the ANSIG rep-
resentation in automatic classification. The shape database
is a collection of prototype shapes (one ANSIG per proto-
type). The classification is simply made by comparing the
ANSIG of a test shape with the ANSIGs in the database and
selecting the most similar one, according to (26).

To test the robustness to noise, we used a particularly
challenging database of four geometric shapes — a circum-
ference, an hexagon, a square, and a triangle — that are
difficult to distinguish when in presence of noise. In Fig. 5,
we show some of the test shapes of our experiments. They
are noisy (besides translated, rotated, scaled, and randomly
point re-ordered) versions of the four geometric shapes.
Note in particular how the circle and the hexagon become
very similar when the noise level is high.

We tested the classifier with 2000 tests for each of the
four geometric shapes, at each noise level. The results are
summarized in Table 1. We obtained 100% correct clas-
sifications in all tests with SNR above 28dB. Shapes with
this level of noise are displayed in the plots of the middle
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Figure 5. Noisy test shapes for classification. From top to bottom,
circle, hexagon, square, and triangle. Noise level increases from
the left to the right. The various shapes exhibit distinct transla-
tions, rotations, and scales (besides point ordering). Note how the
shapes become difficult to distinguish, when the noise increases.

column of Fig. 5; they are far from being visually “clean”.
From Table 1, we see that we only get a few classifications
errors for higher levels of noise and when dealing with cir-
cles or hexagons, which, as noted before, for such levels of
noise, are in fact difficult to distinguish, even for humans,
see the rightmost plots of the first two lines of Fig. 5.

SNR[dB] ≥ 27.96 26.02 24.44 23.1 21.94

100 99.95 99.9 99.45 97.3

100 100 99.9 99.85 99.25

100 100 100 100 100

100 100 100 100 100
Table 1. Percentages of correct classifications the shapes illus-
trated in Fig. 5 (2000 tests per shape and per noise level).

MPEG-7 shape database. To test the ANSIG represen-
tation with a larger database, we used 216 shapes of the
MPEG-7 database [22]. Since this database is divided into
18 categories, with 12 (similar) shapes in each category, see
the tiny images in Table 2, besides evaluating the classifier
performance over the entire database (just as in the experi-
ment with the four geometric shapes), we also evaluated its
performance in terms of classification into shape categories.
We performed 200 tests for each of the 216 shapes and for
each of the two noise levels that are illustrated in Fig. 6.

In what respects to classification in shape categories, all
the shapes were correctly classified within the correspond-
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Figure 6. A shape from the MPEG-7 database (left image) and
noisy versions for classification (middle and right images).

ing category in 100% of the tests, for both noise levels.
When we treat each of the 216 shapes as a different pro-

totype, we obtain the classification performance detailed in
Table 2. We clearly notice two distinct situations: while
for shapes belonging to the majority of the categories, the
generality of the experiments lead to close to 100% correct
classifications, even for the higher level of noise, for shapes
belonging to some other categories, the classification errors
are much more frequent. What distinguish these last cate-
gories is that the shapes they contain are very similar to each
other. In some cases, they are even visually indistinguish-
able, after factoring out the geometric transformations, see
the examples in Fig. 7. Naturally, we can not expect the
ANSIG (or any other) representation to be able to distin-
guish between (noisy versions of) these shapes. All shape
classification errors in Table 2 are due to this intra-category
similarity, thus, we recall, they disappear when classifying
into shape categories.

Figure 7. Pairs of shapes in the MPEG-7 database that are visu-
ally indistinguishable. When examples like these are considered
as a prototypes of the same shape category, we get 100% correct
classifications for both noise levels illustrated in Fig. 6.

Automatic trademark retrieval. We now describe an ex-
periment using real images of trademarks. We got, from the
internet, logos that are well described by their shape. They
are shown in Fig. 8, but not at their real scale: they range
from 80×80 to 500×500 pixels. We processed each of these
images with the Canny edge detector [6] and stored the AN-
SIGs of the corresponding edge maps in our database.

Figure 8. Trademark images obtained from the internet.

σ 0.5 3
100 99.5
100 100
100 100
100 100
100 100
89.0 97.0
100 100
87.0 80.0
100 100
100 98.0
100 100
100 100
32.9 24.2
24.8 1.0
58.0 40.8
65.0 65.5
56.0 68.5
20.6 19.4
24.8 24.8
44.8 37.5
29.6 27.0
47.4 36.3
57.0 41.9
61.5 53.0
33.3 24.8
55.5 87.5
47.6 20.6
100 100
100 100
89.0 93.5
100 100
65.5 55.0
100 100
100 100
100 100
40.5 39.0
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
79.0 71.0
100 100
78.5 60.5
77.0 75.5
100 100
100 98.0
100 100
100 100
100 59.0
100 94.0
100 100
100 100

σ 0.5 3
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
94.0 72.0
100 100
96.5 98.0
100 100
100 100
100 100
100 100
55.5 60.0
49.8 41.9
37.1 3.9
55.5 81.5
50.0 28.6
45.7 46.2
51.0 52.0
40.1 43.8
29.6 19.4
67.0 62.5
76.0 78.0
70.0 79.5
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100

σ 0.5 3
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 98.5
100 100
100 100
100 100
100 100
100 80.0
100 100
100 100
100 99.0
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 99.0
100 100
100 100
57.0 57.0
100 100
100 100
100 100
100 100
100 100
100 100
100 100
51.0 44.1
100 100

σ 0.5 3
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
58.0 62.5
98.5 88.5
100 100
62.0 54.0
100 100
100 100
46.0 64.5
100 100
100 100
100 100
100 100
100 100
96.5 73.5
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100
100 100

Table 2. Percentages of correct classifications for the MPEG-7
database. When classifying into shape categories, we got 100%.



We printed the trademarks in Fig. 8 and photographed
their paper version with a low quality digital camera, with
several paper-camera positions, orientations, and distances.
This way we got a set of challenging test images, where the
candidate logos appear at different sizes and positions, see
some examples in Fig. 9. Finally, we computed the edges
of these test images, without any particular care to tune de-
tection parameters, obtaining a set of test shapes.

Figure 9. Examples of trademark images to be classified.

Being edge maps of real photos, our test shapes exhibit
distortions (relative to their versions in the database) that are
not modeled explicitly by the ANSIG, like: missing points
(when edges are not detected, e.g., due to inaccurate focus-
ing); spurious points (when too much edges are detected,
e.g., due to paper texture noticed at large zoom); or per-
spective distortion (when the camera image plane was not
parallel to the paper). We classified these test shapes by
proceeding as in the experiments above. Except in cases
where the distortions just mentioned are dramatic (e.g., out-
of-focus images), the classification was correct.

6. Conclusion

We proposed a new method to represent 2D shapes, de-
scribed by a set of points, or landmarks, in the plane. Our
method is based on what we call the analytic signature (AN-
SIG) of the shape, whose most distinctive characteristic is
its invariance to the way the landmarks are labeled. This
makes ANSIG particularly suited to cope with shapes de-
scribed by large sets of edge points in images. We illus-
trated its performance in shape-based classification tasks.

We envisage paths for future research based on the AN-
SIG representation. For example, while in this paper we
store ANSIGs by sampling them on the unit-circle, a topic
that deserves further study is the adoption of different sam-
pling schemes, e.g., the use of two or more circles, for ro-
bustness. Also, the derivations in this paper are targeted
to the representation and comparison of complete shapes.
However, in many practical scenarios, it is also necessary to
recognize a set of points as being a part, i.e., a subset of a
given shape. A good challenge is then to adapt the ANSIG
representation to deal with incomplete shapes.
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