

Abstract

Many types of shape descriptors have been proposed for

2D shape analysis, but most of them consist of component
features that are not adapted to specific problems. This has
two drawbacks. First, computation is wasted on the
irrelevant components; second, the accuracy is impaired.
This paper proposes an effective method that generates
compact descriptors adapted to specific problems in hand,
where each component of the new descriptor is a linear
combination of the components in some classic descriptors.
A progressive strategy is used to construct and select the
most suitable linear combinations in successive rounds,
where a variant of Adaboost is employed to ensure the
optimum of the selected combinations in each round.
Experiments show that our method effectively generates
adaptive and compact descriptors for typical applications
such as shape classification and retrieval.

1. Introduction
2D shape analysis is a classical and very important topic

in computer vision and pattern recognition. Many
applications rely on successful retrieval or classification of
shapes. Examples are object recognition [13], human pose
estimation [16], behavior recognition [2], and so on. A lot
of shape descriptors have been proposed to that end [11]
[20], such as Fourier descriptor [19] [8], wavelet descriptor
[3], moment invariants [7] [9], shape context [1]. The idea
is that the descriptor encodes the shape’s property and can
be used as the shape’s vector representation in operations
such as retrieval and classification.

However, most classical shape descriptors are not
adaptive. Take Fourier descriptor for example. It is the
collection of all Fourier coefficients regardless of the
specific problems. It’s well known that many coefficients
are either irrelevant (a waste of dimension) or misleading
(impairing the overall accuracy) or both. For typical

applications, only a subset of the coefficients is useful.
Some authors choose the coefficients by some general
heuristics [10]. However, the question regarding which
coefficients are useful depends on the specific problem. As
a simple but convincing example, in a task of classifying by
general shapes (e.g. discriminating rectangles from circles),
Fourier coefficients in the low frequencies may play the
role, while in another case of telling whether a shape is
corrupted by noises, the coefficients in high frequencies
speak.

In this paper we propose a method that generates new
shape descriptor from classical ones, where the generated
descriptor is well adapted to the problem in hand with
reduced descriptor length. Each component of the
generated descriptor is a linear combination of the
components in the classical descriptor. Generating the new
descriptor is therefore equivalent to constructing and
searching for a small collection of such linear combinations
that are best adapted for the problem. Figure 1 shows the
algorithm overview. The search is conducted progressively
in successive rounds. In each round, we first generate a
pool of new candidate components by binary combinations
of current components, and then the optimal combinations
are selected and passed to the next round, where further
combination takes place. The feature selection in each
round is supervised by a variant of Adaboost algorithm to
ensure that the selected components have best
discriminative power when used jointly.

Compared to classical descriptors, the generated
adaptive and compact descriptor has two advantages:

1. Higher accuracy. The irrelevant components in
classical descriptors may dominate the overall judgment.
By concentrating only on the components suitable for the
problem, the accuracy can be improved.

2. Higher efficiency. Since irrelevant components are
discarded, the descriptor length is reduced. This is
particularly important in many applications where a large
shape database must be processed online.

Note that there exists some work of combining shape
descriptors that is related to ours. Terrades et al. [17]

Adaptive and Compact Shape Descriptor by Progressive Feature Combination

and Selection with Boosting

Cheng Chen Yueting Zhuang Jun Xiao Fei Wu

Institution of Artificial Intelligence, Zhejiang University,
 Hangzhou, 310027, China

cchen@zju.edu.cn

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

combine several classifiers that operate on different
descriptors (e.g. Fourier and wavelet descriptor) using a
variation of Adaboost. Yin et al. [18] assign separate
weights to each training sample on different descriptors and
determine the contribution of each descriptor to the final
classifier by its performance along the boosting iterations.
This paper is different from theirs in two aspects:

1. Their work is essentially feature combination, while
our method is a blending of feature combination and
feature selection. In [17] and [18], each component of the
involved descriptors is used for combination. For example,
when combining Fourier descriptor and wavelet descriptor,
all Fourier and wavelet coefficients are used and appear in
the final classifier. Therefore, compact descriptor cannot be
achieved. Our method, however, generates both adaptive
and compact features.

2. They limit shape descriptor in shape classification [13].
Their training set is comprised of shapes with labeled
classes, and the final output is classifier rather than
descriptor. Therefore, they are not suited for applications
such as shape retrieval or unsupervised clustering.

In our method, we don’t assume the shapes belong to
different classes. The training set of our method is a
collection of shape pairs. Each pair consists of two shapes
(classical descriptors) labeled as similar or dissimilar,
indicating whether the two shapes should be considered as
similar according to the problem in hand. The output is a
new descriptor that is adapted to the specific problem with
compact length, which can be used in applications
including classification, retrieval, clustering, and so on.

The paper is organized as follows. The proposed method
is described in Section 2. Section 3 presents two
experiments. Section 4 makes the conclusion.

2. The Proposed Method

2.1. Problem formalization
We write a shape descriptor as a function DF:

1 2() [(), (),..., ()]nDF DF DF=DF S S S S . (1)
Here, S is a digital shape (in some raw format, such as

discrete pixel coordinates). DF() is an n-dimensional
vector function that calculates descriptors from shapes.
DF1(), …, DFn() are components. For example, when DF is
Fourier descriptor, the components DF1, …, DFn return the
Fourier coefficients when applying DFT to the shape. Note
that DF does not need to be one to one. That is, it’s possible
that different shapes have identical descriptor.

 In this paper we are interested in generating a new
descriptor function DF′(), that is adaptive and compact,
from a classical descriptor function DF(). DF′ is an m
dimensional composite function:

() (()) [(()),..., (())]1 m' ' DF ' DF '= =DF S DF DF S DF S DF S , (2)
where each component function DF1′(),…, DFm′() is

defined on DF(). Thus, our task is to design the proper
component functions DF1′,…, DFm′.

2.2. Overview
The basic property of a shape descriptor is that it should

encode shape similarity – similar shapes should have close
descriptors and vice versa. This can be expressed as:

1 2 1 2() () is small if and only if () 1S S N S ,S− =DF DF , (3)

where N(,) labels a pair of shapes S1 and S2 as 1 if they are
similar in ground truth and –1 otherwise, and ||.|| is a
distance metric in descriptor space (typically L2 distance).

Since the goal is to generate new descriptor that is
adaptive to the specific problem, there need to be a way to
feed the algorithm with the information about the problem
in hand. Inspired by (3), we provide the algorithm with
some positive and negative examples. Suppose we have T
training shape pairs <S

11, S
12>, …, <S

T1, S
T2>. Then, for a

classical descriptor function DF (from which new
descriptor will be generated), a set of training samples can
be defined. The t

th sample is a triple <d
t1, d

t2, y
t>, where

d
t1=DF(S

t1), d
t2=DF(S

t2), and y
t = N(S

t1, S
t2) 1 . All

information about the current problem is conveyed by these
training samples2.

As in (3), the distance between the descriptors of similar

1 In this paper, we use superscript to differentiate serialized instances in
a series, and subscript to identify the component of a vector. For example,
d t1 means descriptor #1 in the t th pair, and DFi means the ith component of
descriptor function DF. As a more complex example, di

t1 stands for the ith
component of descriptor #1 in the tth pair.

2 The labeling of training shapes (the yt values) can be acquired
manually (e.g. by human judgment), or automatically by some metric that
encodes the ground-truth similarity. See the experiments for example.

Figure 1: Algorithm overflow

shapes should be small and vice versa. In light of this, we
can think of a threshold binary classifier that predicts
whether two shapes are similar by their descriptors: if the
distance between the descriptors is below some threshold δ,
then the two shapes are predicted as similar, and vice versa.
Obviously, the accuracy of this prediction is directly related
to the discriminative power of the descriptor. Therefore, the
“goodness” of DF on the training set can be numerically
evaluated by the training error of this threshold binary
classification:

1
1 21 (sign() 1)

2
T

t
t t te y

T
δ

=
= ⋅ − − +∑ d d , (4)

where δ is a chosen threshold that minimizes e.
 If, instead, we use single descriptor component rather
than the whole descriptor in equation (4), we will get the
training error for each single component:

1

1 21 (sign() 1)
2

T t
i t

t t
i ie y d d

T
δ

=
= ⋅ − − +∑ , (5)

where di
t1 and di

t2 denote the ith component of descriptor d
t1

and d
t2, respectively. Equations (4) and (5) are basic

guidance in the feature combination and selection later.
As stated above, different components are differently

suited for the specific problem. We make two statements:
1. Many components are poorly suited for the problem in

hand, i.e. have high training errors in equation (5). These
components should be discarded because they increase the
descriptor dimension while potentially misleading the
overall judgment made by the descriptor as a whole.

2. To further reduce the descriptor dimension, it’s
possible to combine several components to act as one single
component in the new descriptor, as long as the combined
component has lower (or at least not higher) training errors
than each constituting component.

Our method is inspired by the above two statements.
Generally speaking, we construct new descriptor from
classical descriptor by two actions:

1. Discard components not suited for the problem.
2. Combine several components into one, if preferable.

2.3. Progressive feature combination
Before discussing the feature combination algorithm, the

combination model, i.e. how the components are combined,
has to be determined. We use a linear combination model,
where each component of the new descriptor is a linear
combination of the components in the original descriptor.
This can be expressed as follows:

1

n
i j ij jDF' w DF

=
= ⋅∑ (6)

where wij are the weights under constraints that each wij is a
non-negative integer and that for any i value, at least one wij
is nonzero. For example, DF3, DF1+DF3, and
2DF2+3DF4+5DF7 are three possible combinations.

The choice of linear combination model has two reasons:
1. It conforms to the problem’s nature. It is possible that

if several components are reasonably suited for the problem
on their own, their linear combination is better than any
single one. Moreover, linear combination has clear
meaning for some descriptors. For example, it is reasonable
that the accumulated energy over a range of Fourier
frequencies matters in discriminating shapes.

2. Linear combination is ready for progressive
construction. Even if we constrain the combination to be
linear and constrain the weights, there are still a huge
number of (probably indefinite) possible combinations,
making exhaustive searching prohibitive. Therefore, we
take a progressive way. Linear combination is ready to be
constructed in this recursive way, as complex combinations
can be constructed by linearly combining simpler ones.

Figure 2 shows our algorithm of progressive feature
combination. The algorithm starts with the set of all single
components in the classical descriptor (line 1), and finally
outputs a set of best combinations as components of the
new descriptor (line 12). In each round, we conduct
exhaustive binary combinations on the reserved
components (lines 6 and 7). These combinations, along
with the original reserved components, form the candidate
components from which M best ones are selected and
reserved for the next round (line 9). The algorithm
terminates if either of the two criteria is satisfied: (1) the
output of a round is the same as its input, indicating that a
set of stable combinations have been found; (2) a maximum

Figure 2: Progressive feature combination.

of K rounds have reached. Note that the single components
are passed down to each round since they are potential
building blocks for combination, and excellent single
components can be selected finally to become components
in the new descriptor on their own.
 Note that we do not permit negative combination
weights in equation (6), because in practice it is
unreasonable to have a descriptor component which has the
reversed property – being quite different when two shapes
are similar. Therefore, the combination in line 7 of Figure 2
is constrained to addition. We have done some informal
experiments which permit negative weights, but no
negative weights ever appeared in the intermediate or final
results. Therefore, it’s safe to allow only zero and positive
weights.

M is a parameter controlling the number of combinations
reserved in each round. If M is large, then more
components are reserved in each round, indicating smaller
chances that potential combinations are discarded. But
larger M also means more computation. During the
experiments we find that it is desirable to set M roughly to
2m (where m is the dimension of the output descriptor).
Larger values do not perceptibly improve the performance
of the final descriptor. In all our experiments in this paper,
we set M=2m.
There remains one important issue in the algorithm: how to
select the best combinations in each round (line 9 in Figure
2). This is discussed in the next subsection.

2.4. Feature selection using modified Adaboost
The remaining issue in the algorithm is the selection of

combinations in each round (lines 9 and 11 in Figure 2).
Equations (4) and (5) give the training errors of the

whole descriptor d and of single components, respectively.
When it comes to the combination of components, the
training error can be calculated in a similar way. For a
combination defined in equation (6), its training error is
given by:

1 1 1
1 21 (sign() 1)

2
T n nt
t j j

t t
ij j ij jy w d w d

T
e δ

= = =
= ⋅ − − +∑ ∑ ∑

, (7)
where wij is the weights in equation (6), and di

t1 stands for
the ith component of descriptor d t1.

The selected combinations in each round should be the
ones that best suit the problem when used jointly. A simple
way is by calculating the training errors of all the candidate
combinations using equation (7) and selecting M ones with
the lowest errors. However, this approach is not desirable.
Although several combinations might each has low training
error of their own, they might be improper to be used
jointly. This will happen when their classification
configurations on the training data are similar. For example,
suppose there are two combinations c1 and c2, both with a
training error of 20%. If c1 and c2 classify the training data

in similar ways (i.e. the 80% of the training samples
correctly classified by c1 are also correctly classified by c2,
while the remaining 20% samples are correctly classified
by neither), then it does no good to select both c1 and c2 to
be the reserved components. Using both c1 and c2 jointly is
a waste of dimension because the collaborative error is
unlikely to be reduced. Moreover, because the
combinations are used as components of the generated
descriptor, there is a danger that two or more components
with the same property (such as c1 and c2) may outweigh
other components in the final descriptor, impairing the
discriminative power.

Adaboost [4] [15] is an excellent choice in this case,
where a final ensemble classifier is learned as a weighted
linear combination of a set of weak classifiers. Adaboost
operates in rounds. In each round, a best weak classifier is
selected. The idea is that, after each selection, the algorithm
forces subsequence classifier selections to pay more
attention on the samples incorrectly classified. In this way
Adaboost selects weak classifiers that performs well
jointly.

In each round of the progressive searching in Figure 2,
we employ Adaboost to conduct feature selection from
candidate combinations. The feature selection algorithm is
given in Figure 3. Here, candidate combinations are treated

Figure 3: Feature selection by modified Adaboost

as weak classifiers whose training errors are given by (7),
and the algorithm operates M rounds (line 2), each round
selecting one weak classifier. A list of weights is
maintained for every training sample. When the algorithm
starts, all these weights are initialized equally (line 1),
indicating that no bias on the training samples is present. In
each round, the training error for each weak classifier is
calculated using the weights as distribution (line 4). After
the weak classifier with lowest penalized training error is
selected (line 7), the weight list is updated, where samples
correctly classified by the selected weak classifier have
their weights reduced and weights of incorrect samples are
increased (line 10).

For each selected weak classifier, Adaboost computes its
contribution α in the ensemble classifier (line 8). Because
our focus is not classification, we discard these weights
when assembling the final descriptor.

In order to prevent overfit, we make a modification to the
original Adaboost by penalizing complex combinations
(line 5). The complexity of a combination is defined to be
the sum of its weights. The penalized training error is:

1
exp(1)n

j ijwe' e λ
=

= ⋅ −∑ (8)
where wij is the combination weights as in equation (6), e

is the error given by (7), and λ is the penalty factor and its
value is set to 0.01 by inspection.

3. Experiments
We conduct experiments on shape classification and

retrieval.

3.1. Classification experiment – MINST database
Experiment setup

MNIST handwritten digit database is used for shape
classification evaluation. 12,000 training samples and
2,000 testing samples are selected and used in our
experiment. Noises are also added to the samples.

We use a composite classical descriptor consisting of
Fourier descriptor (FD) and wavelet descriptor (WD).
Typically, four low level shape signatures defined on shape
border can be used to calculate FD and WD ([8] [21]):

1. Complex coordinates: the coordinates along border.
2. Centroid distances: the distances to shape centoid

along border.
3. Turning angles: the tangent angles along border.
4. Curvatures: the curvatures along border.
For each shape, we uniformly sample 32 points along its

border3, and the above four shape signatures are generated
using these 32 points. FD is comprised of Fourier
coefficients calculated by applying DFT to one of the

3 The sampling of 32 points along the border is due to the low
resolution of MNIST images (28*28). We have done experiments using 32
and 64 points, and no perceptible accuracy difference is discovered.

signature and WD is composed of wavelet coefficients
computed by DPWT (Discrete Periodic wavelet Transform
[5]). All levels of wavelet coefficients are reserved. We
compute FD and WD for each of the four shape signatures
and concatenate all the FDs and WDs to be a final classical
descriptor which is 203 dimensional.

Some positive (similar) and negative (dissimilar) shape
pairs are needed as training data. In the classification
scenario, since the training shapes are classified, the
training data can be easily constructed by considering
shapes from the same class as similar and those from
different classes as dissimilar. We randomly get 100,000
positive pairs and 100,000 negative pairs in this way.

Because the components in the composite classical
descriptor are heterogeneous (Fourier and wavelet
coefficients), only homogeneous combinations are allowed.
That is, Fourier coefficients can only be combined with
Fourier coefficients. So do wavelet coefficients.
Evaluation results

We compare the descriptor generated by our algorithm to
two other methods: PCA and SS. PCA means reducing
descriptor length using PCA, and SS stands for a
simplification of our method by removing boosting
selection in each round. That is, the reserved components in
line 9 of Figure 2 are simply determined by selecting the
components with the lowest training error.

knn is used to classify the testing shapes. Figure 4 shows
average testing errors for different methods at descriptor
lengths 1, 3, 5, 7, 9, 11 and 13. The testing error when using
the original classical descriptor is also shown for reference.
Because it only makes sense to use this classical descriptor
as a whole, its error is displayed by a horizontal line. The
detailed numbers are shown in Table 1. It can be seen that
our method gets lower errors with smaller descriptor
lengths. When the descriptor length is very small (≤5), the
error of SS is very near to our method. But as the length
increases, the difference becomes substantially larger. This
indicates that the components added later by SS are not as

Figure 4: Average testing errors on MNIST database.

discriminative as ours. Also note that all three methods get
a lower error than the original classical descriptor at some
descriptor lengths. This indicates that the irrelevant
components in the original descriptor do impair the
discriminative power of the whole descriptor.

testing error (%) when descriptor length m =
1 3 5 7 9 11 13

Ours 66.3 38.7 23.1 17.6 15.3 14.2 13.9
PCA 75.2 44.3 26.9 19.4 17.0 15.2 14.9
SS 66.3 38.7 25.8 22.7 20.6 19.0 17.9

orig 18.8
Table 1: Testing errors. (“orig” stands for the original descriptor)

3.2. Retrieval experiment – CMU Mocap database
Experiment setup

This experiment involves shape retrieval in the context
of example based human pose estimation from silhouettes.
Suppose we have a database of 2D silhouettes labeled by
their ground-truth 3D poses. In the running stage, when a
new silhouette (typically extracted from video) arrives, its
3D pose can be inferred by searching for the best match(es)
in the database using some shape descriptor calculated on
the silhouette [6][14]. Because human poses usually lie in a
large pose space, there are typically a large number of
samples in the database, and a descriptor that is compact yet
accurate plays an important role.

We use CMU motion capture library to construct the
database by treating the captured 3D poses as ground truth
and synthesizing corresponding silhouettes. We use 2400
training poses and 600 testing poses from walking, jumping,
boxing and soccer shooting motions. The training poses are
performed by seven subjects, and the testing poses are from
four other subjects that the algorithm does not see during
training. For each pose, its global translation is discarded,
and 36 silhouettes are synthesized by cycling the yaw angle
by 10° intervals. Thus, our dataset contains 86,400 training
silhouettes and 21,600 testing silhouettes. The silhouettes
are of size 256*256. 4

The construction of classical descriptor is the same as the
previous experiment, except that 128 instead of 32 points
are sampled along the shape border due to higher image
resolution. The classical descriptor is thus 827 dimensional.
The generating of training data is different, because this is
not a classification problem and the training silhouettes are
not classified. In this case, the 3D pose vector can be used
as a guide deciding whether two silhouettes are similar in
ground-truth. If the distance between the corresponding 3D
poses is below a threshold, then the two silhouettes are
considered similar. The threshold is set by inspection. We
randomly select 100,000 positive pairs and 100,000

4 The dataset of this experiment is available as supplementary material.

negative pairs in this way as training samples.
Evaluation Criteria

The testing error of a shape descriptor in this pose
retrieval experiment is evaluated by the distances between
the ground-truth poses and the retrieved poses. Suppose the
ground-truth pose for a testing silhouette is p, and let qi (i =
1,…,k) denote the poses of the top k hits in the database (we
set k=10 in this experiment). The following two metrics are
used for evaluation:

1

1 (mean hit distance) k
ii

MHD p q
k =

= −∑
, (9)

1,...,
 (best hit distance) min ii k

BHD p q
=

= −
. (10)

||.|| is the L2 distance between two pose vectors.
The inclusion of BHD as well as MHD for evaluation is

due to the complex and one-to-many mapping from
silhouette to pose. It is quite possible that significantly
different poses have very similar silhouettes. This is
especially true when symmetric ambiguity occurs, and the
poses with such ambiguity will be drastically different from
the ground truth, increasing the MHD values considerably.

Figure 5 shows such an example. In Figure 5(a), the item
shown in blue background is the query into the database
(testing item), and the other five items are the top five hits
in the database in sense of silhouette. For each hit, its
silhouette distance and pose L2 distance to the query are
displayed. Figure 5(b) makes the ambiguity clear by
rotating all the 3D poses clockwise by 90°. It is clear that
four out of the five hits suffer from symmetric ambiguity
(opposite yaw angle). The pose distances for these
ambiguous candidates are significantly larger, increasing
MHD significantly. Most pose retrieval systems detect this
kind of poses as outliers5. Therefore, we use both BHD and
MHD for evaluation.

We also conduct evaluation in two different yaw
constraints: UY (unconstrained yaw) and CY (constrained
yaw). In UY, yaw angles of retrieved poses are not
constrained, while in CY the yaw angle is constrained to
have a maximum of 40° distance from the ground-truth of
the previous frame. For example, if the yaw angle of the
previous frame is 50°, then in UY all samples in the
database are searched, and in CY we only search the
samples whose yaw angles are 30°, 40°, 50°, 60° or 70°.
Because human motion is continuous, many systems use
yaw angle of the previous frame as an initial guess for the
current frame. This helps to eliminate symmetric ambiguity
substantially. Therefore, we include CY into evaluation.
Evaluation Results

According to the evaluation criteria, there are four
groups of results: UY+MHD, UY+BHD, CY+MHD, and
CY+BHD. Similar to the previous experiment, we compare

5 While it is very difficult, if possible, to spot the outlier poses using a
single silhouette, it is much easier if the information in previous frames is
exploited because of motion continuity. Most systems take this approach.

our method to PCA and SS. The evaluation results are
depicted in Figure 6, where the errors at descriptor lengths
4, 8, 12, 16, 20 and 24 are shown. The errors using the
original descriptor are also displayed for reference.

In all cases, the compact descriptors of all three methods
can achieve errors lower than the original descriptor at
some lengths, implying that the irrelevant components in
the original descriptor impairs the accuracy. When the
descriptor length is small (e.g. 4~12), the errors drop
quickly with increased length. As the length becomes larger,
the errors tend to be more stable, and may eventually

increase with the descriptor length. The compact descriptor
generated by our method typically achieves a lower testing
error compared with PCA or SS, especially when the
descriptor length is small (≤20). As the descriptor length
increases, the performance difference among the methods
becomes subtler. As an extreme, at full descriptor length
(827 dimensional), the performance difference vanishes
and all methods involved produce virtually identical testing
errors. (This is not reflected in Figure 6 because of the lack
of space.)

It is also worth noticing that the errors in CY conditions

Figure 5: Symmetric ambiguity in pose retrieval. (a): Top five hits in database for a query (in blue background). (b): All 3D poses are
rotated clockwise by 90 degree for visualization of the ambiguity.

Figure 6: Evaluation results on pose retrieval.

(CY+MHD and CY+BHD) are notably lower than in the UY
counterparts (UY+MHD and UY+BHD). This indicates that
symmetric ambiguity is indeed a very tricky problem in 3D
pose estimation from silhouettes if no temporal information
is exploited.

4. Conclusion
In this paper we develop a method that generates new

descriptor from classical descriptors. The inspiration is that
many components in the classical descriptors are irrelevant
to the specific problem. By discarding “bad” components
and combining “good” ones, we can simultaneously reduce
the descriptor length and increase the discriminative power.
We generate favorable combinations from the components
of classical descriptors in a progressive way, where a
variation of Adaboost is employed in each round to ensure
that the selected combinations have optimal discriminating
power when used jointly. Experiments show that the
generated descriptor can achieve a better accuracy with a
reduced feature length.

We emphasize again that our algorithm is not inherently
a classification method. We don’t assume the shapes
belong to different classes. The training data is composed
of binary classified shape pairs instead of classified shapes,
where the pairs are classified to feed the algorithm with the
information of the specific problem by examples. The
output of our method is a new, adaptive and compact
descriptor that can be used in many applications including
classification, retrieval, clustering and so on.

In this paper we conduct experiments using Fourier and
wavelet descriptor as classical descriptors. Our method is
not inherently constrained to any specific classical
descriptor types. In the future we’d like to test on more
kinds of classical descriptors. Depending on particular
descriptor properties, combination models other than the
linear one might be more preferable. Also, we plan to study
more closely on the issue of overfiting.

Acknowledgement
This work is supported by National Natural Science

Foundation of China (No.60525108, No.60533090),
Program for Changjiang Scholars and Innovative Research
Team in University (IRT0652), 973 Program (No.
2002CB312101), Science and Technology Project of
Zhejiang Province (2006C13097, 2005C13032).

References
[1] S. Belongie, J. Malik, and J. Puzicha. Shape matching and

object recognition using shape contexts. PAMI, 24(24):
509-522, 2002.

[2] A. F. Bobick and J. W. Davis. The recognition of human
movement using temporal templates. PAMI, 23(3):257. 267,
2001.

[3] G. C. -H. Chuang and C. -C. Jay Kuo. Wavelet descriptor of
planar curves: theory and applications. IEEE Transactions
on Image Processing, 5(1): 56-70, 1996.

[4] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119-139, 1997.

[5] N. H. Getz. A Fast Discrete Periodic Wavelet Transform.
Memorandum UCB/ERL M92-138, Electronic Research
Laboratory Berkeley, California, 22 December 1992.

[6] N. Howe. Silhouette lookup for monocular 3D pose tracking.
Image and Vision Computing, 25(3): 331-341, 2007.

[7] M. K. Hu. Visual pattern recognition by moment invariants.
IEEE Transactions on Information Theory, 8: 179–187,
1962.

[8] H. Kauppinen, T. Seppanen, and M Pietikainen. An
Experimental Comparison of Autoregressive and
Fourier-Based Descriptors in 2D Shape Classification. PAMI,
17(2): 201-207, 1995.

[9] A. Khotanzan and Y. H. Hong. Invariant image recognition
by zernike moments. PAMI, 12(5):489–497, 1990.

[10] R. D. Leon and L. E. Sucar. Human silhouette recognition
with Fourier descriptors. In ICPR, 2000.

[11] S. Loncaric. A survey of shape analysis techniques. Pattern
Recognition, 31(8): 983-1001, 1998.

[12] A. Opelt, A. Pinz, and A. Zisserman. A
boundary-fragment-model for object detection. In ECCV,
2006.

[13] M. A. Ranzato, F. J. Huang, Y-L. Boureau, and Y. LeCun:
Unsupervised Learning of Invariant Feature Hierarchies with
Applications to Object Recognition. In CVPR, 2007.

[14] L. Ren, G. Sharknarovich, J. Hodgins, H. Pfister, and P.
Viola. Learning Silhouette Features for Control of Human
Motion. ACM Transactions on Graphics, 24(4): 1303-1331,
2005.

[15] R. E. Schapire. The strength of weak learnability. Machine
Learning, 5 (2), 197–227, 1990.

[16] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose
estimation with parameter sensitive hashing. In ICCV, 2003.

[17] O. R. Terrades, S. Tabbone, and E. Valveny. Combination of
shape descriptors using an adaptation of boosting. In ICPR,
2006.

[18] X. Yin, C. Liu, and Z. Han. Feature combination using
boosting. Pattern Recognition Letters, 26(14): 2195-2205,
2005.

[19] C.T. Zahn and R.Z. Roskies. Fourier descriptors for plane
closed curves. IEEE Trans. Computers, 21(3): 269-281,
1972.

[20] D. Zhang and G. Lu. Review of shape representation and
description techniques. Pattern Recognition, 37(1):1-19,
2004.

[21] D. Zhang and G. Lu. A Comparative Study on Shape
Retrieval Using Fourier Descriptors with Different Shape
Signatures. In Proc. International Conference on Multimedia
and Distance Education, pp. 1-9, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

