
 

 

 
Abstract 

 
Many types of shape descriptors have been proposed for 

2D shape analysis, but most of them consist of component 
features that are not adapted to specific problems. This has 
two drawbacks. First, computation is wasted on the 
irrelevant components; second, the accuracy is impaired. 
This paper proposes an effective method that generates 
compact descriptors adapted to specific problems in hand, 
where each component of the new descriptor is a linear 
combination of the components in some classic descriptors. 
A progressive strategy is used to construct and select the 
most suitable linear combinations in successive rounds, 
where a variant of Adaboost is employed to ensure the 
optimum of the selected combinations in each round. 
Experiments show that our method effectively generates 
adaptive and compact descriptors for typical applications 
such as shape classification and retrieval. 
 

1. Introduction 
2D shape analysis is a classical and very important topic 

in computer vision and pattern recognition. Many 
applications rely on successful retrieval or classification of 
shapes. Examples are object recognition [13], human pose 
estimation [16], behavior recognition [2], and so on. A lot 
of shape descriptors have been proposed to that end [11] 
[20], such as Fourier descriptor [19] [8], wavelet descriptor 
[3], moment invariants [7] [9], shape context [1]. The idea 
is that the descriptor encodes the shape’s property and can 
be used as the shape’s vector representation in operations 
such as retrieval and classification. 

However, most classical shape descriptors are not 
adaptive. Take Fourier descriptor for example. It is the 
collection of all Fourier coefficients regardless of the 
specific problems. It’s well known that many coefficients 
are either irrelevant (a waste of dimension) or misleading 
(impairing the overall accuracy) or both. For typical 

applications, only a subset of the coefficients is useful.  
Some authors choose the coefficients by some general 
heuristics [10]. However, the question regarding which 
coefficients are useful depends on the specific problem. As 
a simple but convincing example, in a task of classifying by 
general shapes (e.g. discriminating rectangles from circles),  
Fourier coefficients in the low frequencies may play the 
role, while in another case of telling whether a shape is 
corrupted by noises, the coefficients in high frequencies 
speak.  

In this paper we propose a method that generates new 
shape descriptor from classical ones, where the generated 
descriptor is well adapted to the problem in hand with 
reduced descriptor length. Each component of the 
generated descriptor is a linear combination of the 
components in the classical descriptor. Generating the new 
descriptor is therefore equivalent to constructing and 
searching for a small collection of such linear combinations 
that are best adapted for the problem. Figure 1 shows the 
algorithm overview. The search is conducted progressively 
in successive rounds.  In each round, we first generate a 
pool of new candidate components by binary combinations 
of current components, and then the optimal combinations 
are selected and passed to the next round, where further 
combination takes place. The feature selection in each 
round is supervised by a variant of Adaboost algorithm to 
ensure that the selected components have best 
discriminative power when used jointly.  

Compared to classical descriptors, the generated 
adaptive and compact descriptor has two advantages: 

1. Higher accuracy. The irrelevant components in 
classical descriptors may dominate the overall judgment. 
By concentrating only on the components suitable for the 
problem, the accuracy can be improved. 

2. Higher efficiency. Since irrelevant components are 
discarded, the descriptor length is reduced. This is 
particularly important in many applications where a large 
shape database must be processed online. 

Note that there exists some work of combining shape 
descriptors that is related to ours. Terrades et al. [17] 
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combine several classifiers that operate on different 
descriptors (e.g. Fourier and wavelet descriptor) using a 
variation of Adaboost. Yin et al. [18] assign separate 
weights to each training sample on different descriptors and 
determine the contribution of each descriptor to the final 
classifier by its performance along the boosting iterations. 
This paper is different from theirs in two aspects: 

1. Their work is essentially feature combination, while 
our method is a blending of feature combination and 
feature selection. In [17] and [18], each component of the 
involved descriptors is used for combination. For example, 
when combining Fourier descriptor and wavelet descriptor, 
all Fourier and wavelet coefficients are used and appear in 
the final classifier. Therefore, compact descriptor cannot be 
achieved. Our method, however, generates both adaptive 
and compact features.  

2. They limit shape descriptor in shape classification [13]. 
Their training set is comprised of shapes with labeled 
classes, and the final output is classifier rather than 
descriptor. Therefore, they are not suited for applications 
such as shape retrieval or unsupervised clustering. 

In our method, we don’t assume the shapes belong to 
different classes. The training set of our method is a 
collection of shape pairs. Each pair consists of two shapes 
(classical descriptors) labeled as similar or dissimilar, 
indicating whether the two shapes should be considered as 
similar according to the problem in hand. The output is a 
new descriptor that is adapted to the specific problem with 
compact length, which can be used in applications 
including classification, retrieval, clustering, and so on. 

The paper is organized as follows. The proposed method 
is described in Section 2. Section 3 presents two 
experiments. Section 4 makes the conclusion. 

2. The Proposed Method 

2.1. Problem formalization 
We write a shape descriptor as a function DF: 

1 2( ) [ ( ), ( ),..., ( )]nDF DF DF=DF S S S S .       (1) 
Here, S is a digital shape (in some raw format, such as 

discrete pixel coordinates). DF() is an n-dimensional 
vector function that calculates descriptors from shapes. 
DF1(), …, DFn() are components. For example, when DF is 
Fourier descriptor, the components DF1, …, DFn return the 
Fourier coefficients when applying DFT to the shape. Note 
that DF does not need to be one to one. That is, it’s possible 
that different shapes have identical descriptor.  

 In this paper we are interested in generating a new 
descriptor function DF′(), that is adaptive and compact, 
from a classical descriptor function DF(). DF′ is an m 
dimensional composite function: 

( ) ( ( )) [ ( ( )),..., ( ( ))]1 m' ' DF ' DF '= =DF S DF DF S DF S DF S , (2) 
where each component function DF1′(),…, DFm′() is 

defined on DF(). Thus, our task is to design the proper 
component functions DF1′,…, DFm′. 

2.2. Overview 
The basic property of a shape descriptor is that it should 

encode shape similarity – similar shapes should have close 
descriptors and vice versa. This can be expressed as: 

1 2 1 2( ) ( )  is small if and only if ( ) 1S S N S ,S− =DF DF ,   (3) 

where N(,) labels a pair of shapes S1 and S2 as 1 if they are 
similar in ground truth and –1 otherwise, and ||.|| is a 
distance metric in descriptor space (typically L2 distance).  

Since the goal is to generate new descriptor that is 
adaptive to the specific problem, there need to be a way to 
feed the algorithm with the information about the problem 
in hand. Inspired by (3), we provide the algorithm with 
some positive and negative examples. Suppose we have T 
training shape pairs <S 

11, S 
12>, …, <S 

T1, S 
T2>. Then, for a 

classical descriptor function DF (from which new 
descriptor will be generated), a set of training samples can 
be defined. The t 

th sample is a triple <d  
t1, d 

t2, y 
t>, where  

d 
t1=DF(S 

t1), d 
t2=DF(S 

t2), and y 
t = N(S 

t1, S 
t2) 1 . All 

information about the current problem is conveyed by these 
training samples2. 

As in (3), the distance between the descriptors of similar 
 

1 In this paper, we use superscript to differentiate serialized instances in 
a series, and subscript to identify the component of a vector. For example, 
d  t1 means descriptor #1 in the t th pair, and DFi means the ith component of 
descriptor function DF. As a more complex example, di

t1 stands for the ith 
component of descriptor #1 in the tth pair. 

2  The labeling of training shapes (the yt values) can be acquired 
manually (e.g. by human judgment), or automatically by some metric that 
encodes the ground-truth similarity. See the experiments for example. 

Figure 1: Algorithm overflow 



 

 

shapes should be small and vice versa. In light of this, we 
can think of a threshold binary classifier that predicts 
whether two shapes are similar by their descriptors: if the 
distance between the descriptors is below some threshold δ, 
then the two shapes are predicted as similar, and vice versa. 
Obviously, the accuracy of this prediction is directly related 
to the discriminative power of the descriptor. Therefore, the 
“goodness” of DF on the training set can be numerically 
evaluated by the training error of this threshold binary 
classification: 

1
1 21 ( sign( ) 1)

2
T

t
t t te y

T
δ

=
= ⋅ − − +∑ d d ,     (4) 

where δ is a chosen threshold that minimizes e.  
  If, instead, we use single descriptor component rather 
than the whole descriptor in equation (4), we will get the 
training error for each single component: 

 
1

1 21 ( sign( ) 1)
2

T t
i t

t t
i ie y d d

T
δ

=
= ⋅ − − +∑ ,     (5) 

where di
t1 and di

t2 denote the ith component of descriptor d 
t1 

and d 
t2, respectively. Equations (4) and (5) are basic 

guidance in the feature combination and selection later. 
As stated above, different components are differently 

suited for the specific problem. We make two statements: 
1. Many components are poorly suited for the problem in 

hand, i.e. have high training errors in equation (5). These 
components should be discarded because they increase the 
descriptor dimension while potentially misleading the 
overall judgment made by the descriptor as a whole. 

2. To further reduce the descriptor dimension, it’s 
possible to combine several components to act as one single 
component in the new descriptor, as long as the combined 
component has lower (or at least not higher) training errors 
than each constituting component. 

Our method is inspired by the above two statements. 
Generally speaking, we construct new descriptor from 
classical descriptor by two actions: 

1. Discard components not suited for the problem. 
2. Combine several components into one, if preferable. 

2.3. Progressive feature combination 
Before discussing the feature combination algorithm, the 

combination model, i.e. how the components are combined, 
has to be determined. We use a linear combination model, 
where each component of the new descriptor is a linear 
combination of the components in the original descriptor. 
This can be expressed as follows: 

1

n
i j ij jDF' w DF

=
= ⋅∑             (6) 

where wij are the weights under constraints that each wij is a 
non-negative integer and that for any i value, at least one wij 
is nonzero. For example, DF3, DF1+DF3, and 
2DF2+3DF4+5DF7 are three possible combinations.  

The choice of linear combination model has two reasons: 
1. It conforms to the problem’s nature. It is possible that 

if several components are reasonably suited for the problem 
on their own, their linear combination is better than any 
single one. Moreover, linear combination has clear 
meaning for some descriptors. For example, it is reasonable 
that the accumulated energy over a range of Fourier 
frequencies matters in discriminating shapes. 

2. Linear combination is ready for progressive 
construction. Even if we constrain the combination to be 
linear and constrain the weights, there are still a huge 
number of (probably indefinite) possible combinations, 
making exhaustive searching prohibitive. Therefore, we 
take a progressive way. Linear combination is ready to be 
constructed in this recursive way, as complex combinations 
can be constructed by linearly combining simpler ones. 

Figure 2 shows our algorithm of progressive feature 
combination. The algorithm starts with the set of all single 
components in the classical descriptor (line 1), and finally 
outputs a set of best combinations as components of the 
new descriptor (line 12). In each round, we conduct 
exhaustive binary combinations on the reserved 
components (lines 6 and 7). These combinations, along 
with the original reserved components, form the candidate 
components from which M best ones are selected and 
reserved for the next round (line 9). The algorithm 
terminates if either of the two criteria is satisfied: (1) the 
output of a round is the same as its input, indicating that a 
set of stable combinations have been found; (2) a maximum 

Figure 2: Progressive feature combination.



 

 

of K rounds have reached. Note that the single components 
are passed down to each round since they are potential 
building blocks for combination, and excellent single 
components can be selected finally to become components 
in the new descriptor on their own. 
 Note that we do not permit negative combination 
weights in equation (6), because in practice it is 
unreasonable to have a descriptor component which has the 
reversed property – being quite different when two shapes 
are similar. Therefore, the combination in line 7 of Figure 2 
is constrained to addition. We have done some informal 
experiments which permit negative weights, but no 
negative weights ever appeared in the intermediate or final 
results. Therefore, it’s safe to allow only zero and positive 
weights. 

M is a parameter controlling the number of combinations 
reserved in each round. If M is large, then more 
components are reserved in each round, indicating smaller 
chances that potential combinations are discarded. But 
larger M also means more computation. During the 
experiments we find that it is desirable to set M roughly to 
2m (where m is the dimension of the output descriptor). 
Larger values do not perceptibly improve the performance 
of the final descriptor. In all our experiments in this paper, 
we set M=2m.  
There remains one important issue in the algorithm: how to 
select the best combinations in each round (line 9 in Figure 
2). This is discussed in the next subsection. 

2.4. Feature selection using modified Adaboost 
The remaining issue in the algorithm is the selection of 

combinations in each round (lines 9 and 11 in Figure 2).  
Equations (4) and (5) give the training errors of the 

whole descriptor d and of single components, respectively. 
When it comes to the combination of components, the 
training error can be calculated in a similar way. For a 
combination defined in equation (6), its training error is 
given by: 

1 1 1
1 21 ( sign( ) 1)

2
T n nt
t j j

t t
ij j ij jy w d w d

T
e δ

= = =
= ⋅ − − +∑ ∑ ∑

, (7) 
where wij is the weights in equation (6), and di

t1 stands for 
the ith component of descriptor d t1. 

The selected combinations in each round should be the 
ones that best suit the problem when used jointly. A simple 
way is by calculating the training errors of all the candidate 
combinations using equation (7) and selecting M ones with 
the lowest errors. However, this approach is not desirable. 
Although several combinations might each has low training 
error of their own, they might be improper to be used 
jointly. This will happen when their classification 
configurations on the training data are similar. For example, 
suppose there are two combinations c1 and c2, both with a 
training error of 20%. If c1 and c2 classify the training data 

in similar ways (i.e. the 80% of the training samples 
correctly classified by c1 are also correctly classified by c2, 
while the remaining 20% samples are correctly classified 
by neither), then it does no good to select both c1 and c2 to 
be the reserved components. Using both c1 and c2 jointly is 
a waste of dimension because the collaborative error is 
unlikely to be reduced. Moreover, because the 
combinations are used as components of the generated 
descriptor, there is a danger that two or more components 
with the same property (such as c1 and c2) may outweigh 
other components in the final descriptor, impairing the 
discriminative power. 

Adaboost [4] [15] is an excellent choice in this case, 
where a final ensemble classifier is learned as a weighted 
linear combination of a set of weak classifiers. Adaboost 
operates in rounds. In each round, a best weak classifier is 
selected. The idea is that, after each selection, the algorithm 
forces subsequence classifier selections to pay more 
attention on the samples incorrectly classified. In this way 
Adaboost selects weak classifiers that performs well 
jointly.  

In each round of the progressive searching in Figure 2, 
we employ Adaboost to conduct feature selection from 
candidate combinations. The feature selection algorithm is 
given in Figure 3. Here, candidate combinations are treated 

Figure 3: Feature selection by modified Adaboost



 

 

as weak classifiers whose training errors are given by (7), 
and the algorithm operates M rounds (line 2), each round 
selecting one weak classifier. A list of weights is 
maintained for every training sample. When the algorithm 
starts, all these weights are initialized equally (line 1), 
indicating that no bias on the training samples is present. In 
each round, the training error for each weak classifier is 
calculated using the weights as distribution (line 4). After 
the weak classifier with lowest penalized training error is 
selected (line 7), the weight list is updated, where samples 
correctly classified by the selected weak classifier have 
their weights reduced and weights of incorrect samples are 
increased (line 10). 

For each selected weak classifier, Adaboost computes its 
contribution α in the ensemble classifier (line 8). Because 
our focus is not classification, we discard these weights 
when assembling the final descriptor. 

In order to prevent overfit, we make a modification to the 
original Adaboost by penalizing complex combinations 
(line 5). The complexity of a combination is defined to be 
the sum of its weights. The penalized training error is: 

1
exp( 1)n

j ijwe' e λ
=

= ⋅ −∑           (8) 
where wij is the combination weights as in equation (6), e 

is the error given by (7), and λ is the penalty factor and its 
value is set to 0.01 by inspection. 

3. Experiments 
We conduct experiments on shape classification and 

retrieval. 

3.1. Classification experiment – MINST database 
Experiment setup 

MNIST handwritten digit database is used for shape 
classification evaluation. 12,000 training samples and 
2,000 testing samples are selected and used in our 
experiment. Noises are also added to the samples.  

We use a composite classical descriptor consisting of 
Fourier descriptor (FD) and wavelet descriptor (WD). 
Typically, four low level shape signatures defined on shape 
border can be used to calculate FD and WD ([8] [21]): 

1. Complex coordinates: the coordinates along border. 
2. Centroid distances: the distances to shape centoid 

along border. 
3. Turning angles: the tangent angles along border. 
4. Curvatures: the curvatures along border. 
For each shape, we uniformly sample 32 points along its 

border3, and the above four shape signatures are generated 
using these 32 points. FD is comprised of Fourier 
coefficients calculated by applying DFT to one of the 
 

3  The sampling of 32 points along the border is due to the low 
resolution of MNIST images (28*28). We have done experiments using 32 
and 64 points, and no perceptible accuracy difference is discovered. 

signature and WD is composed of wavelet coefficients 
computed by DPWT (Discrete Periodic wavelet Transform 
[5]). All levels of wavelet coefficients are reserved. We 
compute FD and WD for each of the four shape signatures 
and concatenate all the FDs and WDs to be a final classical 
descriptor which is 203 dimensional. 

Some positive (similar) and negative (dissimilar) shape 
pairs are needed as training data. In the classification 
scenario, since the training shapes are classified, the 
training data can be easily constructed by considering 
shapes from the same class as similar and those from 
different classes as dissimilar. We randomly get 100,000 
positive pairs and 100,000 negative pairs in this way. 

Because the components in the composite classical 
descriptor are heterogeneous (Fourier and wavelet 
coefficients), only homogeneous combinations are allowed. 
That is, Fourier coefficients can only be combined with 
Fourier coefficients. So do wavelet coefficients. 
Evaluation results 

We compare the descriptor generated by our algorithm to 
two other methods: PCA and SS.  PCA means reducing 
descriptor length using PCA, and SS stands for a 
simplification of our method by removing boosting 
selection in each round. That is, the reserved components in 
line 9 of Figure 2 are simply determined by selecting the 
components with the lowest training error.  

knn is used to classify the testing shapes. Figure 4 shows 
average testing errors for different methods at descriptor 
lengths 1, 3, 5, 7, 9, 11 and 13. The testing error when using 
the original classical descriptor is also shown for reference. 
Because it only makes sense to use this classical descriptor 
as a whole, its error is displayed by a horizontal line. The 
detailed numbers are shown in Table 1.  It can be seen that 
our method gets lower errors with smaller descriptor 
lengths. When the descriptor length is very small (≤5), the 
error of SS is very near to our method. But as the length 
increases, the difference becomes substantially larger. This 
indicates that the components added later by SS are not as 

Figure 4: Average testing errors on MNIST database.



 

 

discriminative as ours. Also note that all three methods get 
a lower error than the original classical descriptor at some 
descriptor lengths. This indicates that the irrelevant 
components in the original descriptor do impair the 
discriminative power of the whole descriptor. 

 
testing error (%) when descriptor length m =  
1 3 5 7 9 11 13 

Ours 66.3 38.7 23.1 17.6 15.3 14.2 13.9
PCA 75.2 44.3 26.9 19.4 17.0 15.2 14.9
SS 66.3 38.7 25.8 22.7 20.6 19.0 17.9

orig 18.8 
Table 1: Testing errors. (“orig” stands for the original descriptor) 

3.2. Retrieval experiment – CMU Mocap database 
Experiment setup 

This experiment involves shape retrieval in the context 
of example based human pose estimation from silhouettes. 
Suppose we have a database of 2D silhouettes labeled by 
their ground-truth 3D poses. In the running stage, when a 
new silhouette (typically extracted from video) arrives, its 
3D pose can be inferred by searching for the best match(es) 
in the database using some shape descriptor calculated on 
the silhouette [6][14]. Because human poses usually lie in a 
large pose space, there are typically a large number of 
samples in the database, and a descriptor that is compact yet 
accurate plays an important role. 

We use CMU motion capture library to construct the 
database by treating the captured 3D poses as ground truth 
and synthesizing corresponding silhouettes. We use 2400 
training poses and 600 testing poses from walking, jumping, 
boxing and soccer shooting motions. The training poses are 
performed by seven subjects, and the testing poses are from 
four other subjects that the algorithm does not see during 
training. For each pose, its global translation is discarded, 
and 36 silhouettes are synthesized by cycling the yaw angle 
by 10° intervals. Thus, our dataset contains 86,400 training 
silhouettes and 21,600 testing silhouettes. The silhouettes 
are of size 256*256. 4 

The construction of classical descriptor is the same as the 
previous experiment, except that 128 instead of 32 points 
are sampled along the shape border due to higher image 
resolution. The classical descriptor is thus 827 dimensional. 
The generating of training data is different, because this is 
not a classification problem and the training silhouettes are 
not classified. In this case, the 3D pose vector can be used 
as a guide deciding whether two silhouettes are similar in 
ground-truth. If the distance between the corresponding 3D 
poses is below a threshold, then the two silhouettes are 
considered similar. The threshold is set by inspection. We 
randomly select 100,000 positive pairs and 100,000 
 

4 The dataset of this experiment is available as supplementary material. 

negative pairs in this way as training samples. 
Evaluation Criteria 

The testing error of a shape descriptor in this pose 
retrieval experiment is evaluated by the distances between 
the ground-truth poses and the retrieved poses. Suppose the 
ground-truth pose for a testing silhouette is p, and let qi (i = 
1,…,k) denote the poses of the top k hits in the database (we 
set k=10 in this experiment). The following two metrics are 
used for evaluation: 

1

1 (mean hit distance) k
ii

MHD p q
k =

= −∑
,   (9) 

1,...,
 (best hit distance) min ii k

BHD p q
=

= −
.    (10) 

||.|| is the L2 distance between two pose vectors. 
The inclusion of BHD as well as MHD for evaluation is 

due to the complex and one-to-many mapping from 
silhouette to pose. It is quite possible that significantly 
different poses have very similar silhouettes. This is 
especially true when symmetric ambiguity occurs, and the 
poses with such ambiguity will be drastically different from 
the ground truth, increasing the MHD values considerably.  

Figure 5 shows such an example. In Figure 5(a), the item 
shown in blue background is the query into the database 
(testing item), and the other five items are the top five hits 
in the database in sense of silhouette. For each hit, its 
silhouette distance and pose L2 distance to the query are 
displayed. Figure 5(b) makes the ambiguity clear by 
rotating all the 3D poses clockwise by 90°. It is clear that 
four out of the five hits suffer from symmetric ambiguity 
(opposite yaw angle). The pose distances for these 
ambiguous candidates are significantly larger, increasing 
MHD significantly. Most pose retrieval systems detect this 
kind of poses as outliers5. Therefore, we use both BHD and 
MHD for evaluation. 

We also conduct evaluation in two different yaw 
constraints: UY (unconstrained yaw) and CY (constrained 
yaw). In UY, yaw angles of retrieved poses are not 
constrained, while in CY the yaw angle is constrained to 
have a maximum of 40° distance from the ground-truth of 
the previous frame. For example, if the yaw angle of the 
previous frame is 50°, then in UY all samples in the 
database are searched, and in CY we only search the 
samples whose yaw angles are 30°, 40°, 50°, 60° or 70°. 
Because human motion is continuous, many systems use 
yaw angle of the previous frame as an initial guess for the 
current frame. This helps to eliminate symmetric ambiguity 
substantially. Therefore, we include CY into evaluation. 
Evaluation Results 

According to the evaluation criteria, there are four 
groups of results: UY+MHD, UY+BHD, CY+MHD, and 
CY+BHD. Similar to the previous experiment, we compare 
 

5 While it is very difficult, if possible, to spot the outlier poses using a 
single silhouette, it is much easier if the information in previous frames is 
exploited because of motion continuity. Most systems take this approach. 



 

 

our method to PCA and SS. The evaluation results are 
depicted in Figure 6, where the errors at descriptor lengths 
4, 8, 12, 16, 20 and 24 are shown. The errors using the 
original descriptor are also displayed for reference.  

In all cases, the compact descriptors of all three methods 
can achieve errors lower than the original descriptor at 
some lengths, implying that the irrelevant components in 
the original descriptor impairs the accuracy. When the 
descriptor length is small (e.g. 4~12), the errors drop 
quickly with increased length. As the length becomes larger, 
the errors tend to be more stable, and may eventually 

increase with the descriptor length. The compact descriptor 
generated by our method typically achieves a lower testing 
error compared with PCA or SS, especially when the 
descriptor length is small (≤20). As the descriptor length 
increases, the performance difference among the methods 
becomes subtler. As an extreme, at full descriptor length 
(827 dimensional), the performance difference vanishes 
and all methods involved produce virtually identical testing 
errors. (This is not reflected in Figure 6 because of the lack 
of space.) 

It is also worth noticing that the errors in CY conditions 

Figure 5: Symmetric ambiguity in pose retrieval. (a): Top five hits in database for a query (in blue background). (b): All 3D poses are 
rotated clockwise by 90 degree for visualization of the ambiguity. 

Figure 6: Evaluation results on pose retrieval.



 

 

(CY+MHD and CY+BHD) are notably lower than in the UY 
counterparts (UY+MHD and UY+BHD). This indicates that 
symmetric ambiguity is indeed a very tricky problem in 3D 
pose estimation from silhouettes if no temporal information 
is exploited. 

4. Conclusion 
In this paper we develop a method that generates new 

descriptor from classical descriptors. The inspiration is that 
many components in the classical descriptors are irrelevant 
to the specific problem. By discarding “bad” components 
and combining “good” ones, we can simultaneously reduce 
the descriptor length and increase the discriminative power. 
We generate favorable combinations from the components 
of classical descriptors in a progressive way, where a 
variation of Adaboost is employed in each round to ensure 
that the selected combinations have optimal discriminating 
power when used jointly. Experiments show that the 
generated descriptor can achieve a better accuracy with a 
reduced feature length. 

We emphasize again that our algorithm is not inherently 
a classification method. We don’t assume the shapes 
belong to different classes. The training data is composed 
of binary classified shape pairs instead of classified shapes, 
where the pairs are classified to feed the algorithm with the 
information of the specific problem by examples. The 
output of our method is a new, adaptive and compact 
descriptor that can be used in many applications including 
classification, retrieval, clustering and so on.  

In this paper we conduct experiments using Fourier and 
wavelet descriptor as classical descriptors. Our method is 
not inherently constrained to any specific classical 
descriptor types. In the future we’d like to test on more 
kinds of classical descriptors. Depending on particular 
descriptor properties, combination models other than the 
linear one might be more preferable. Also, we plan to study 
more closely on the issue of overfiting. 
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