
Dynamic Visual Category Learning

Tom Yeh

MIT EECS & CSAIL

Cambridge, MA, USA

tomyeh@mit.edu

Trevor Darrell

UC Berkeley EECS & ICSI

Berkeley, CA, USA

trevor@eecs.berkeley.edu

Abstract

Dynamic visual category learning calls for efficient

adaptation as new training images become available or new

categories are defined, existing training images or cate-

gories become modified or obsolete, or when categories are

divided into subcategories or merged together. We develop

novel methods for efficient incremental learning of SVM-

based visual category classifiers to handle such dynamic

tasks. Our method exploits previous classifier estimates to

more efficiently learn the optimal parameters for the cur-

rent set of training images and categories. We show em-

pirically that for dynamic visual category tasks, our incre-

mental learning methods are significantly faster than batch

retraining.

1. Introduction

Visual category learning is a problem that has received

much attention in the computer vision community over the

past decades. Most current visual category learning meth-

ods operate in a static setting, assuming the numbers of cat-

egories and training images are fixed [3, 13, 7, 9, 22]. How-

ever, real-world problems are often dynamic and incremen-

tal: the set of training images may change over time or the

definition of the target classes may evolve over time. At any

given moment, the best classification can only be obtained

if the classifier can take full advantage of all the training

examples observed up to that moment.

For example, in a robot learning scenario, we may want

to teach a robot to classify objects in a home environment

where the objects encountered are described with natural

language interaction from the user and therefore the num-

ber of training examples and the number of categories will

change over time. In a photo categorization scenario, we

similarly expect a user to have interests and category def-

initions that evolve as the user adds new photographs. In

both cases, visual category classifier needs to adapt to the

updated knowledge contained in the current set of training

images and categories. We prefer systems that can incre-

mentally update themselves rather than retraining each time

a new example is added or a new category is defined.

We consider dynamic visual category learning and

present efficient incremental methods for updating SVM

classifiers when new training images become available, ex-

isting training images are modified or removed, new cate-

gories are defined, and/or existing categories become obso-

lete, are divided into subcategories, or are merged together.

Figure 1 shows an interactive photo-organizer tool to

demonstrate the features of dynamic visual category learn-

ing. This tool allows users to organize photos in a taxon-

omy with the help of visual category classifiers. These clas-

sifiers are created and updated incrementally as the users

define and arrange the categories in the taxonomy or drag

and drop training images into areas designated for each cat-

egory. Given new data, these classifiers classify unlabeled

images and suggest new candidate images for each cate-

gory. The users can easily identify more training images

from the candidate images to add to the classifiers. Our in-

cremental methods make it possible to implement such a

dynamic visual category learning tool which may be useful

for interactive taxonomy construction and other tasks.

We review related work in Section 2, provide back-

ground material in Section 3, describe our incremental

methods in Section 4, and show experimental results in Sec-

tion 5.

2. Related Work

Many authors have reported promising results on static

visual category learning tasks [22, 3, 13, 9, 19]. In static vi-

sual category learning, data collection is performed offline

as a separate first step, whereas in dynamic visual category

learning, data collection takes place online, closely inter-

twined with the other learning steps. Incremental learn-

ing has been explored in several visual category learning

tasks, such as the use of Adaboost to incrementally learn

object detectors based on edge features [16], and the use of

Markov Chain Monte Carlo sampling to incrementally learn

latent topic models for online photos [14]. However, recent

best-performing methods for visual category learning often

1

978-1-4244-2243-2/08/$25.00 ©2008 IEEE

Figure 1. An application of dynamic visual category learning: This is an interface of an online photo categorization application that

takes the full advantage of the various features of dynamic visual category learning. An online user can interactively (1) browse a photo

collection, (2) select a few examples for the category (e.g., gun), (3) view examples classified by the SVM trained from the selected

training examples and drag-and-drop a new training example to the gun category (Section 4.1), (4) delete a category (Section 4.5), (5) split

a category into sub-categories (Section 4.6), (6) remove an example (Section 4.2) or adjust the feature weight (i.e., appearance vs. shape)

of that example (Section 4.3), (7) or create a new category from an unclassified example (Section 4.4). Each user action can trigger an

update to the classifier, which can be handled efficiently using our incremental methods.

use an SVM as the underlying classifier.

Various incremental methods are proposed for adding

new training examples to existing SVMs [1, 4, 12, 8]. How-

ever, they do not handle cases when training examples are

modified nor have they been extended to multiclass prob-

lems. [18] extends [8] to incrementally train a multiclass

classifier and reports results on a synthetic dataset, but of-

fers no method for category-level update. [6] describes a

method for incrementally learning an ensemble of SVMs

for OCR, using strategically updated distributions of the

training set. Although this method incrementally adds new

examples to the ensemble, SVMs for new categories are still

trained in batch. In contrast, we propose methods that can

exploit existing parameters to incrementally learn new pa-

rameters not only for new examples but also for new cate-

gories.

A learning problem closely related to our work is multi-

class active learning [20, 11]. The task in active learning is

to analyze unlabeled examples in a dataset and identify the

example whose label is most likely to help improve the clas-

sifier. [20] describes an active framework for labeling video

sequences, whereas [11] proposes a framework for image

retrieval. Both works use a margin-based classifier to per-

form the learning task. For these frameworks to be efficient,

the underlying SVM needs to be incrementally updated in-

stead of retrained when a new label is available.

The need to update the visual vocabulary when new

training images become available has been identified by

[21]. But for kernel-based visual category learning, updat-

ing the visual vocabulary can result in changes in the kernel

computed based on the representation using the modified

vocabulary. While the vocabulary update is incremental,

the underlying SVM still needs to be retrained every time.

This shortcoming makes the method in [21] inefficient when

applied to category learning problems. Our method over-

comes this limitation because it updates SVM parameters

directly given the changes in the kernel matrix; it is appli-

cable to both static and dynamic visual vocabularies.

3. Background: SMO-based SVM learning

Our incremental approach to dynamic visual category

learning is based on Sequential Minimal Optimization

(SMO) [17], a fast and efficient algorithm for learning SVM

parameters. libSVM [5], a popular SVM package used by

many recent works on visual category learning [13, 22], im-

plements a variant of this algorithm. The memory require-

ment of this algorithm is minimal because there is no need

to keep temporary matrices as in chucking-based decom-

position techniques. The low memory requirement makes

this algorithm attractive for large category learning prob-

lems with thousands of images, such as Caltech 101 [7] or

256 [10].

The basis of SVM learning is a QP optimization problem

that seeks to find a set of weights αi for example vectors �xi

that satisfy the KTT conditions:

αi = 0 ⇒ yif(�xi) ≥ 1,

0 ≤ αi ≤ C ⇒ yif(�xi) = 1,

αi = C ⇒ yif(�xi) ≤ 1.

(1)

where yi is the label of �xi and f(�xi) gives the margin of �xi.

Note that �xi is a support vector iff 0 < αi < C.

To find the sets of weights that can satisfy the KTT con-

dition, SMO begins by initializing the weight αi of each

example �xi to zero. It decomposes the optimization prob-

lem into the smallest possible subproblems involving only

two examples, �xp and �xq , jointly optimizing the objective

function with respect to their weights αp and αq . Each op-

timization step is fast because the optimal weights can be

found analytically as follows:

αopt
q = αq − y2

(Ep−Eq)
η

αopt
p = αp + s(αq − αopt

q)

where s = ypyq , η is the second derivative of the objective

function, and Ei is the error of �xi, indicating how much �xi

violates the KTT conditions, which can be calculated as:

Ei = f(�xi) − y (2)

At each step, the weights of the two examples with the

largest errors take part in the joint optimization. Since the

error calculation dominates the computation time, the algo-

rithm caches the error Ei of each example �xi and updates

its value incrementally by:

Ei ← Ei + ypΔαpk(�xp, �xi) + yqΔαqk(�xq, �xi) + Δb

where Δb is the change in the offset. The algorithm con-

verges when all the errors are below some small threshold.

Although the SMO algorithm requires all the weights to

be initialized to zeros, non-zero initial weights can still con-

verge to an optimal solution when the underlying kernel ma-

trix satisfies the Mercer’s condition. In fact, careful choices

of initial values can significantly shorten the convergence

time. This observation forms the basis of our incremen-

tal approach to dynamic visual category learning, which we

turn to in the next section.

4. Dynamic Visual Category Learning

In this section, we describe how to extend the existing

SVM-based approach to static visual category learning to

handle the following dynamic events: a new training im-

age becomes available (Section 4.1), an existing training

image becomes irrelevant (Section 4.2) or is modified (Sec-

tion 4.3), a new category becomes necessary (Section 4.4),

or an existing category becomes obsolete (Section 4.5), di-

vided into subcategories (Section 4.6), or merged together

with other categories (Section 4.7).

Figure 2 shows examples of adding, removing, and mod-

ifying examples using a synthetic dataset for a two-class

SVM. For a multiclass SVM, Figure 3 shows examples of

adding, removing, and merging categories, and Figure 4

shows an example of creating subcategories.

4.1. Adding a new example

In dynamic visual category learning, new training im-

ages can become available over time . Given a new training

example �x, we want to update the current SVM and obtain

a new SVM that incorporates �x. Instead of re-estimating

the parameters of the new SVM from scratch (i.e., initial-

izing all the weights to zeros), we start the SMO procedure

by reusing the current weights and setting the weight of the

new example to zero. The motivation behind this method is

that a new training example may modify only some parts of

the current decision hyperplane; the new hyperplane is not

expected to be completely different from the current one.

Therefore, a new optimal solution is likely to be reasonably

close to the current solution in the search space. By reusing

the parameters of the current hyperplane, the optimization

procedure can converge sooner to the parameters of the new

hyperplane versus starting from the default starting point.

When the kernel matrix is a Mercer’s kernel, this method

is guaranteed to converge to the same optimal solution be-

cause the optimization problem is convex.

In realistic online learning scenarios, new training ex-

amples incrementally modify the decision hyperplane in a

relatively smooth manner; however, in certain pathological

situations, new training examples may alter the hyperplane

in a way so drastic that no parameter is worth transferring

from the current hyperplane to the next hyperplane. For ex-

ample, observing a new example labeled by a human as neg-

ative but predicted by the current SVM to have an extremely

large positive margin may trigger fundamental changes to

the structure of the current classifier in order to account for

the surprising observation. In such cases, initializing the

optimization procedure to the current parameter values may

put the optimizer in a worse position than resetting the pa-

rameters to zeros, and the incremental method may provide

no computational advantage. However, we have found em-

pirically that these cases are rare.

4.2. Removing an existing example

To remove an existing example �x from the current SVM,

there are two cases we need to consider. The first is when

1. Original 2. Add examples 3. Modify examples 4. Remove examples

−2 0 2
−3

−2

−1

0

1

2

3

−2 0 2
−3

−2

−1

0

1

2

3

−2 0 2
−3

−2

−1

0

1

2

3

−2 0 2
−3

−2

−1

0

1

2

3

Figure 2. Incremental update of a single SVM: Each dot is a training point. A circle indicates that the point is a support vector. The

white area is the positive region. (1) An SVM decision hyperplane separates the two groups of training points. (2) The hyperplane expands

toward the lower-left as more positive points are added to that region (Section 4.1). (3) The hyperplane expands to the top-right as some

existing points moved outward that region (Section 4.3). (4) The hyperplane retreats as some positive points are removed (Section 4.2).

�x is not a support vector. We can simply discard the exam-

ple, since �x is not involved in the definition of the decision

hyperplane. On the other hand, when �x is a support vector,

removing �x in effect decreases its weight α to zero. To bring

the objective function back to a new optimal state would re-

quire either some non-support vectors to assume the role of

the missing support vector, or some remaining support vec-

tors to increase their respective weights, in order to compen-

sate for the loss of α. To achieve this, we simply find the

example �x′ closest to �x and allow �x′ to increase its weight

α′ by α without exceeding C (i.e., α′ ← min(α′ + α, C)).
Instead of the costlier application of Equation 2, the cached

error of each remaining support vector �xi can also be incre-

mentally computed by

Ei ← y′αk(�x, �xi) − yΔα′k(�x′, �xi)

where y and y′ are labels of �x and �x′ respectively. The opti-

mization procedure started with these initial conditions not

only can converge sooner, but also is guaranteed to find the

optimal solution if the kernel satisfies Mercer’s condition.

4.3. Modifying one or more existing examples

In dynamic visual category learning, one or more train-

ing examples already added to an SVM may be modified

due to external circumstances, such as when the label has

changed, when the weights of individual images are ad-

justed, or when the underlying visual vocabulary is updated.

The affected SVM is no longer valid unless its parameters

are also updated accordingly.

First we consider the cases when a single example �xk is

modified by Δ�xk. If Δ�xk is small, simply resuming the

SMO procedure using the current parameters can quickly

converge to a new set of optimal SVM parameters. The

cached errors can be updated incrementally as follows:

Ei ← Ei + ykΔ �xk, ∀i �= k.

When multiple examples are modified, there are two al-

ternatives for incrementally updating the SVM parameters.

The simpler alternative is the indirect example update

method where we sequentially remove each example and

add its modified version back to the classifier.

A better alternative is the direct kernel update method

where we analytically derive new support vector weights

�αs given the changes in the kernel matrix ΔK. The di-

rect kernel update method is an extension of the method de-

scribed in [4] for updating support vector weights �αs when

a new support vector �xk is introduced with weight αk. Their

method is based on a reformulation of the KTT conditions:

[
�ysΔ�fs

0

]
=

[
�ys K̃ss

0 �yT
s

] [
Δb

Δ�αs

]
+ ΔαkK̃T

ks

where the unknown are the changes in the weights of the

existing support vectors Δ�αs and the changes in the offset

Δb, and the known are the weight of the new support vector

Δαk, the parts of the kernel matrix corresponding to the

support vectors Kss, the signs of the other support vectors

�ys, and the changes to their margins �fs.

When all the support vectors are still valid support vec-

tors after the update, the changes to their margins Δ�fs must

be zero so that they can continue to meet the KTT condition

necessary for support vectors (i.e., yf(�x) = 1). Knowing

the right-hand size is zero, we can solve this linear equa-

tion for Δ�αs and Δb. However, sometimes adding Δ�αs to

�αs may cause some support vectors to become invalid (i.e.,

α < 0 or α > C). Therefore, it is important to apply Δαk

piecewise and calculate appropriate Δ�αs to maintain a set

of valid support vectors at all times (see [12] for details).

We extend the above method to handle the cases when

changes are not restricted to a single vector but possibly to

multiple vectors. When multiple vectors are modified, all

rows and columns of the kernel matrix that correspond to

the modified vectors are also modified. Let ΔK denote the

change in the kernel matrix. We can reformulate the KTT

1. Original 2. Add a category 3. Remove a category 4. Merge two categories

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3. Basic category-level dynamic SVM update: (1) A four-class classifier with four 1-vs-all SVMs. Thick and thin color lines

respectively mark the decision hyperplane and the side of the positive region of each category. (2) A new category (gold) is added to the

classifier, by creating the fifth SVM and incrementally adding the new points to the other four SVMs as negative examples (Section 4.4).

(3) An existing category (green) is removed (Section 4.5). (4) Two categories (red, aqua) are merged into one category (red) (Section 4.7).

conditions in terms of ΔK as follows:

[
�ysΔ�fs

0

]
=

[
�ys (K̃ss + ΔK̃ss)
0 �yT

s

] [
Δb

Δ�αs

]

+

[
ΔK̃ss

0

]
�αs

Similarly, knowing that Δ�fs = 0, we can solve the lin-

ear system above to obtain Δ�αs and Δb. Also, we need to

maintain the set of valid support vectors by piecewise ap-

plication of ΔK in the same way as [12]. In Section 5.3

we show that our direct kernel update method was signifi-

cant faster than the indirect example update alternative, es-

pecially when the number of modified examples is large.

4.4. Adding a new category

In dynamic visual category learning, a new category y

can be encountered or deemed useful by a user. Suppose

there are n training images of the existing categories and m

new images of the category y. We want to incrementally

train a new 1-vs-all SVM Sy for category y and add Sy to

the current classifier ensemble Ψ:

Ψnew = Ψ ∪ {Sy}.

Our incremental method has two steps. First, a new

SVM Sy is trained in batch mode (standard SMO) using

the m new images as positive examples and the n existing

images as negative examples. Second, each existing SVM

Syi
∈ Ψ needs to be updated incrementally by adding the m

new images to Syi
as negative examples, using the method

described in Section 4.1. When n
 m, our incremental

method can enjoy the greatest speed advantage by reusing

the knowledge embedded in the original n examples instead

of relearning from scratch.

To further optimize the speed in which the images are

inserted into Syi
as negative examples, we give priority to

those images with the largest positive margin values pre-

dicted by its decision hyperplane f . An image �x with a

larger margin is positioned further into the positive side of

the hyperplane. Since �x is to be added as a negative ex-

ample, we need to shift the hyperplane toward the positive

side to allow the negative size to grow in such a way that �x

will eventually fall under the negative side of the new hyper-

plane. While the negative side is expanding, some other �x′

with a margin smaller than �x may also benefit from the ex-

pansion, entering the negative side together with �x; adding

�x′ would take no time at all following the addition of �x. We

show empirically in Section 5.4 that margin priority order-

ing results in a 5% to 20% extra time saving.

4.5. Removing an existing category

In dynamic visual category learning, an existing category

may become obsolete and require the removal of the corre-

sponding 1-vs-all SVM from the ensemble. Our incremen-

tal category removal method involves two steps. First, we

remove the SVM Sy corresponding to the obsolete category

y from the current ensemble Ψ:

Ψnew = Ψ − {Sy}

Second, we undo the influence of the obsolete training im-

ages on the remaining SVMs, by incrementally removing

them using the method described in Section 4.2.

4.6. Creating new subcategories

New categories can also be created by dividing an exist-

ing category y into subcategories y′

1 . . . y′

m (Figure 4). The

original SVM Sy for the category y needs to be replaced by

a set of SVMs trained for the new subcategories, which can

be expressed as below:

Ψnew = Ψ ∪ {Sy′

1
. . . Sy′

m
} − {Sy}

where Sy′

i
is the new SVM of the subcategory y′

i. Each new

SVM can be derived incrementally from the original SVM

Sy as follows:

1. Create a new 1-vs-all SVM Sy′

i
and copy its parame-

ters from the original SVM Sy.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4. Incremental subcategory creation: (1) Three 1-vs-all

SVMs separate three categories of color points. (2) The SVM for

the blue category is replaced by three 1-vs-all SVMs for subcate-

gories black, aqua, and gold. Each subcategory SVM is incremen-

tally derived by cloning the SVM of the original category (blue)

and incrementally switching the labels of the points in the other

two subcategories from positive to negative (Section 4.6).

2. Incrementally modify the labels of the examples perti-

nent to the other subcategories from positive to nega-

tive, using the method described in Section 4.3.

4.7. Merging two existing categories

In dynamic visual category learning, existing categories

can be merged into a single category. Given two categories

p and q, the objective is to replace the SVMs Sp and Sq for

the two categories with a new SVM Sp∧q that generalizes

to their superclass:

Ψnew = Ψ ∪ {Sp∨q} − {Sp, Sq}

which can be achieved incrementally as follows:

1. Let p be the category with more training examples and

q be the other category.

2. Create Sp∨q and copy its parameters from Sp.

3. Incrementally modify the examples of category q

from negative examples to positive examples using the

method described in Section 4.3.

5. Experiments

In this section, we first show the accuracy benefit of up-

dating SVM parameters when the set of training examples

changes over time (Section 5.1). Then, we present four

experiments to show the speed benefit of our incremental

methods for updating SVM parameters: we show incremen-

tal update is faster than batch retraining when new training

examples become available (Section 5.2), our direct kernel

update method is faster than indirect example update when

training examples are modified (Section 5.3), margin pri-

ority ordering provides additional time benefit for category

creation (Section 5.4), and incremental update is faster than

batch retraining when categories change over time in an in-

teractive taxonomy learning task (Section 5.5).

500 1000 1500 2000 2500

10

20

30

40

50

60

Number of images

R
e
c
o
g
n
it
io

n
 r

a
te

 (
%

)

Adding useful examples

PMK−SIFT

PMK−ShapeContext

1000 1500 2000 2500 3000

55

60

65

70

75

80

Number of images

R
e
c
o
g
n
it
io

n
 r

a
te

 (
%

)

Removing obsolete examples

PMK−SIFT

PMK−ShapeContext

Figure 5. Recognition rate vs. dynamic dataset: Recognition

rate can be improved as more useful training examples are added

to the classifier (left) or as obsolete examples are removed from

the classifier (right) (Section 5.1).

1000 2000 3000 4000

10

20

30

40

50

60

70

80

Number of images

It
e
ra

ti
o
n
s
 (

K
)

Adding Example

Retrain

Incremental

1000 2000 3000 4000

10

20

30

40

50

60

70

80

Number of images

It
e
ra

ti
o
n
s
 (

K
)

Removing Example

Retrain

Incremental

Figure 6. Incremental update vs. batch retraining: To add (left)

or to remove (right) an example, as the size of the SVM grows

(x-axis), the computation cost of retraining (blue, higher) grows

dramatically, whereas the computation cost of incremental update

(red, lower) stays fairly constant (Section 5.2).

5.1. Recognition rate vs. dynamic dataset

This experiment studies the accuracy benefit of updating

SVM parameters when the set of training images grows or

shrinks over time. We used the Caltech 101 dataset [7] with

a Spatial Pyramid Match Kernel (SPMK) [13] based on two

different features: SIFT [15] and ShapeContext [2]. First

we measured the effect of adding useful training images on

the accuracy of the classifier. We randomly chose 3000 im-

ages to form the training set and added them to the classifier

in a random order. We also measured the accuracy in terms

of the mean recognition rate as defined in [13]. Second,

we measured the effect of removing obsolete images on the

accuracy. We used the same training set to obtain the ini-

tial classifier. Then we deliberately kept only 20 categories

and deemed the other 81 categories obsolete, removing the

images of the obsolete categories in a random order. We

measured the mean recognition rate of the 20 categories.

Figure 5 shows the that the recognition rate improved

as more useful images were incorporated into the classifier

or as more obsolete images were removed from the classi-

fier, which suggests the importance of updating the classi-

fier with the most up-to-date set of relevant training images.

5.2. Incremental update vs. retraining

This experiment examines the speed advantage of incre-

mental update (Section 4.1) over batch retraining when a

20 30 40 50 60 70 80
0

10

20

30

40

50

60

T
im

e
 (

s
e

c
.)

% of kernel modified

Direct

Indirect

20 30 40 50 60 70 80

86

88

90

92

94

96

T
im

e
 s

a
v
in

g
 (

%
)

% of kernel modified

Figure 7. Direct kernel update vs. indirect example update:

The direct kernel update takes less time (left, y-axis) than the naive

method for updating the SVM parameters given a modified kernel

matrix. As larger portions of the kernel (x-axis) are modified, the

time-saving increases (right, y-axis) (Section 5.3).

new training image is added to an SVM. For each n from

100 to 5000, we trained an SVM on n randomly selected

images from the Caltech 101 [7] dataset, using the standard

SMO with a spatial pyramid match kernel (SPMK) [13]. We

measured the running time of adding the n + 1-st example

by incremental update and by batch retraining.

Figure 6 shows as the number of training images in-

creased, incremental update achieved relatively constant

time performance, whereas the computation cost of retrain-

ing rose drastically.

5.3. Direct kernel vs. indirect example update

This experiment aims to determine whether our direct

kernel update method described in Section 4.3 for modify-

ing multiple examples is faster than the indirect example

update alternative that sequentially removes examples and

adds them back. Intuitively, the more entries in the kernel

that have been modified, the longer it will take to relearn

new SVM parameters. We were interested in the effect the

number of kernel changes has on the computation time to

update the SVM. We simulated kernel changes by adding

random noise to a fraction of the entries in the kernel. We

varied the percentage from 5% to 80% and compared the

computation time of our direct method with that of the in-

direct method. Figure 7 shows that our direct kernel update

method is significantly faster than the indirect method.

5.4. Margin priority vs. random ordering

This experiment evaluates the effect of margin priority

ordering on the running time of our incremental category

creation method described in (Section 4.4). There are two

factors that can affect the running time: the size of the cur-

rent classifier (number of categories/SVMs) and the size of

the new category (number of images). If a large classifier

with many categories is to incorporate a new category, there

are more SVMs we need to update. If a large category with

many images is to be added, it may take longer to add these

images to the other SVMs. We designed two experiments to

study each factor. First, we varied the size of the classifier (5

5 10 15
4

6

8

10

12

14

16

18

Number of categories

T
im

e
 S

a
v
in

g
 (

%
)

PMK

SPK

5 10 15 20 25 30 35

0

5

10

15

20

25

30

Number of examples

T
im

e
 S

a
v
in

g
 (

%
)

PMK

SPK

Figure 8. Time saving by margin priority ordering: The time

saving stays fairly constant as the number of categories increases

(left), but increases as the number of examples of the new category

increases (right) (Section 5.4).

to 20 categories) while keeping the size of the new category

constant (10 training images). Second, we varied the size

of the new category (5 to 40 examples) while keeping the

size of the classifier constant (5 categories). We measured

the running time of our incremental method with and with-

out margin priority ordering, and calculated the difference

as the benefit of this ordering scheme. Each experiment was

repeated ten times using a pyramid match kernel (PMK) [9]

and a Spatial Pyramid Kernel (SPK) [3] on Caltech 101 [7]

and Caltech 256 [10] datasets respectively.

Figure 8 shows the time saving by margin priority or-

dering for incremental category creation. The saving was

between 5% to 25%. As the size of the existing classifier

increased, the saving stayed fairly constant. On the other

hand, as the size of the new category increased, the saving

rose steadily, which may suggest that more training images

were able to benefit from the restructuring of the hyperplane

caused by earlier training images with larger margins.

5.5. Interactive taxonomy learning

In this section we evaluate the speed benefit of our

method for online, interactive applications, such as the one

shown in Figure 1. We focus on interactive taxonomy learn-

ing, a scenario where a user interactively constructs a tax-

onomy from a set of unlabeled object images, where a dy-

namic visual classifier acts as an assistant along the way.

A typical scenario is as follows: a user wants to orga-

nize images into categories, but does not have a concrete

idea about how many categories are necessary and how fine-

grained these categories should be. Thus, the user simply

creates two or three most general categories (animate, inan-

imate, others), and starts assigning images into these cate-

gories. Every time an image is assigned, the classifier is up-

dated incrementally. The classifier can suggest to the user

a list of probable images for each category, and constantly

refreshes the list after every update. From the list the user

can easily identify more training examples for each cate-

gory. After assigning a sufficient number of images to a

particular category (e.g., animate), the user may notice finer

distinctions within the category and may desire to split the

50 100 150 200 250 300

0.5

1

1.5

2

2.5

Number of events

T
im

e
 (

k
−

s
e

c
.)

Incremental

Retrain

50 100 150 200 250 300

40

50

60

70

80

90

S
a

v
in

g
 (

%
)

Number of events

Figure 9. Incremental update vs. retraining in interactive tax-

onomy learning (Section 5.5).

category into subcategories (e.g., animal, plant, insect). As

the user continues to do so, eventually the user will be able

to organize the image collection into a meaningful taxon-

omy as so desired by the user.

To simulate the interactive session above, we used the

taxonomy contained in the Caltech 256 dataset [10] and en-

gineered a sequence of dynamic events to construct a taxon-

omy as if it were done by a human user. We chose a subset

of the taxonomy, 30 categories at the leaf level, a branch

factor of three in the internal nodes (e.g., plant → cactus,

grapes, tomato) and two (i.e., root → animate, inanimate)

at the top-most level. Ten training images were selected for

each category. These images were added to the classifier in

a random order, starting with only two SVMs for the two

top-most categories (i.e., animate, inanimate). When a cat-

egory had more than 10 images, it was split into three sub-

categories. At each event, we measured the running time of

our incremental method versus that of retraining. Figure 9

shows that our incremental method was faster than retrain-

ing, especially when the taxonomy grew larger.

6. Conclusion

We described incremental methods for dynamic cate-

gory learning which can efficiently update SVM parameters

in visual recognition tasks. Our methods extend previous

incremental techniques to handle both example and cate-

gory level update. We demonstrated an interactive catego-

rization application which uses dynamic update, evaluated

our method on taxonomy formation tasks, and showed our

methods are faster than retraining.

References

[1] J.-L. An, Z.-O. Wang, and Z.-P. Ma. An incremental learning

algorithm for support vector machine. In ICMLC, 2003. 2

[2] S. Belongie, J. Malik, and J. Puzicha. Shape matching and

object recognition using shape contexts. PAMI, 2001. 6

[3] A. Bosch, A. Zisserman, and X. Munoz. Representing shape

with a spatial pyramid kernel. In CIVR, 2007. 1, 7

[4] G. Cauwenberghs and T. Poggio. Incremental and decremen-

tal support vector machine learning. In NIPS, 2000. 2, 4

[5] C.-C. Chang and C.-J. Lin. Libsvm: a library for support

vector machines (version 2.31). 2

[6] Z. Erdem, R. Polikar, F. Gurgen, and N. Yumusak. Ensem-

ble of svms for incremental learning. In Multiple Classifier

Systems, pages 246–256. 2005. 2

[7] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative

visual models from few training examples: An incremental

bayesian approach tested on 101 object categories. In CVPR

Workshop, 2004. 1, 3, 6, 7

[8] G. Fung and O. L. Mangasarian. Incremental support vector

machine classification. In SDM, 2002. 2

[9] K. Grauman and T. Darrell. The pyramid match kernel:

discriminative classification with sets of image features. In

CVPR, 2005. 1, 7

[10] G. Griffin, A. Holub, and P. Perona. Caltech-256 object cat-

egory dataset. Technical report, California Institute of Tech-

nology, 2007. 3, 7, 8

[11] S. C. H. Hoi and M. R. Lyu. A semi-supervised active learn-

ing framework for image retrieval. In CVPR, 2005. 2

[12] P. Laskov, C. Gehl, S. Kruger, and K.-R. Muller. Incremental

support vector learning: Analysis implementation and appli-

cations. Journal of Machine Learning Research, 7:1909–

1936, 2006. 2, 4, 5

[13] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural

scene categories. In CVPR, 2006. 1, 2, 6, 7

[14] L. Li, G. Wang, and L. Fei-Fei. Optimol: automatic online

picture collection via incremental model learning. In CVPR,

2007. 1

[15] D. G. Lowe. Object recognition from local scale-invariant

features. In CVPR, 1999. 6

[16] A. Opelt, A. Pinz, and A. Zisserman. Incremental learning

of object detectors using a visual shape alphabet. In CVPR,

2006. 1

[17] J. Platt. Sequential minimal optimization: A fast algorithm

for training support vector machines. Technical report, Mi-

crosoft Research, 1998. 2

[18] A. Tveit and M. Hetland. Multicategory incremental proxi-

mal support vector classifiers. In Knowledge-Based Intelli-

gent Information and Engineering Systems. 2003. 2

[19] M. Varma and D. Ray. Learning the discriminative power-

invariance trade-off. In ICCV, 2007. 1

[20] R. Yan, J. Yang, and A. Hauptmann. Automatically labeling

video data using multi-class active learning. In ICCV, 2003.

2

[21] T. Yeh, J. Lee, and T. Darrell. Adaptive vocabulary forests

for dynamic indexing and category learning. In ICCV, 2007.

2

[22] H. Zhang, A. C. Berg, M. Maire, and J. Malik. Svm-knn:

Discriminative nearest neighbor classification for visual cat-

egory recognition. In CVPR, 2006. 1, 2

