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Abstract

This paper addresses human pose recognition from video
sequences by formulating it as a classification problem. Un-
like much previous work we do not make any assumptions
on the availability of clean segmentation. The first step of
this work consists in a novel method of aligning the train-
ing images using 3D Mocap data. Next we define classes by
discretizing a 2D manifold whose two dimensions are cam-
era viewpoint and actions. Our main contribution is a pose
detection algorithm based on random forests. A bottom-
up approach is followed to build a decision tree by recur-
sively clustering and merging the classes at each level. For
each node of the decision tree we build a list of potentially
discriminative features using the alignment of training im-
ages; in this paper we consider Histograms of Orientated
Gradient (HOG). We finally grow an ensemble of trees by
randomly sampling one of the selected HOG blocks at each
node. Our proposed approach gives promising results with
both fixed and moving cameras.

1. Introduction

Full-body human pose recognition from monocular im-
ages constitutes one of the fundamental problems in Com-
puter Vision. It has a wide range of potential applications
such as human/computer interfaces, video-games or surveil-
lance. Given an input image, an ideal system would be able,
first, to localize any humans present in the scene and second
to recover their poses. The two stages, known as human de-
tection and human pose recognition, are usually considered
separately. There is an extensive literature on both detection
[9, 12, 27, 25, 26, 18] and recognition [1, 16, 19, 4, 17, 22]
but relatively few papers consider the two stages together
[10, 3]. Most algorithms for pose recognition assume that
the human has been localized and the silhouette has been
recovered, making the problem substantially easier.

In this work, we propose an efficient method to jointly
localize and recognize the pose of humans, using an exem-
plar based approach and fast search technique. Such pose
detector would be very useful for initializing model-based-
approaches[17], tracking algorithms [24] or segmentation
algorithms [7].

1.1. Related Previous Work

Exemplar based approaches have been very successful in
pose recognition [16]. However, in a scenario involving a
wide range of viewpoints and poses, a large number of ex-
emplars would be required. As a result the computational
time would be very high to recognize individual poses. One
approach, based on efficient nearest neighbours search us-
ing histogram of gradient features, addressed the problem of
quick retrieval in large set of exemplars by using Parameters
Sensitive Hashing (PSH) [19], a variant of the original Lo-
cality Sensitive Hashing algorithm. The final pose estimate
is then produced by locally-weighted regression which uses
the neighbours found by PSH to dynamically build a model
of the neighbourhood.

The method of Agarwal and Triggs [1] is also exemplar
based, they also use a kernel based regression but they do
not perform a nearest neighbors search for exemplars, in-
stead using a hopefully sparse subset of the exemplars learnt
by the RVM. Their method has the main disadvantage that it
is silhouette based, perhaps, more serious it can not model
ambiguity in pose as the regression is unimodal. In [12],
Gavrila presents a probabilistic approach to hierarchical,
exemplar-based shape matching. This method achieves a
very good detection rate and real time performance but does
not regress to a pose estimation.

In [10], the authors present a template-based pose de-
tector and solve the problem of huge dataset by detecting
only human silhouette in a characteristic postures (sideways
opened-leg walking postures in this case). They recently
extended this work in [11] by inferring 3D poses between
consecutive detections using motion models. This work
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gave some very interesting results with moving cameras.
However it seems somehow difficult to generalize to any
actions that do not exhibit characteristic posture. In [23],
an exemplar-based approach with dynamics is proposed for
tracking pedestrians.

In this work, we propose to solve human pose recogni-
tion problem by formulating it as a classification task. Our
pose detection algorithm uses the best components of hier-
archical trees as well as randomized forests. Indeed, Ran-
domized trees [2] and Random Forests [8] have shown to
be fast and robust classification techniques that can handle
multi-class problems [14]. More recently Bosh et al. used
Random forests for object recognition [6].

Many different types of features have been considered
for human detection and pose recognition: silhouette [1],
shape [12], edges [10], HOG descriptors [9, 27, 19], Haar
filters [25], motion and appearance patches [4], edgelet fea-
ture [26], shapelet features [18] or SIFT [15]. Driven by the
recent success of HOG descriptors for both human detec-
tion [9, 27] and pose recognition [19], we chose to use them
in our work.

1.2. Overview of the Approach

We consider the problem of detecting people and recog-
nizing their poses at the same time as in [3] or [21] for
hands, and propose using the HumanEva data set [20] for
both training and testing as in [4]. In this work we focus
on walking motion sequences, although our algorithm can
be generalized for any action. Some work on pose recogni-
tion assumes that the bounding box is provided (e.g. [4]),
we will consider a multi-stage algorithm and try to combine
detection, classification and pose estimation in a cascade al-
gorithm as shown in the diagram presented in Figure 1.

Figure 1. Systems Diagram. The off-line stage can be divided into 2 types
of processes: the pre-processing blocks (A and B) and the learning Blocks
(C and D). The on-line algorithm comprises the detection and classifica-
tion block E and the regression block F.

Our first contribution is a novel method to improve the
feature relevance by aligning the training images using 3D
Mocap data (block A). Next we define the classes by dis-

cretizing a 2D manifold whose two dimensions are camera
viewpoint and action (block B). We combine ideas from hi-
erarchical clustering [12] and from [10] to select potentially
discriminative feature when building a hierarchical decision
tree. We thus propose growing a Random Forest by ran-
domly sampling one of the selected discriminative feature
at each node of the decision tree (block C). We then learn a
series of regressors (block D) to estimate the 3D pose. The
on-line stage is then made of the pose detection (block E)
and pose estimation (block F).

The structure of the rest of the paper is as follows. In § 2,
we introduce the pre-processing steps. In § 3, we detail the
generation of our Random Forest. In § 4, we detail our pose
detection algorithm. Some results are then presented in § 5
and some conclusions are finally drawn in § 6.

(a) (b) (c)

(d) (e) (f) (g)
Figure 2. Alignment of training images. (a) Training 3D poses from
Mocap data. (b) Training images with projected 2D Poses. (c) Average
gradient image over INRIA training examples (96x160). (d) Aligned and
re-sized 2D poses (96x160). (e) and (f) cropped images (96x160) with
normalized 2D poses. (g) Average gradient image over aligned HumanEva
[20] training examples.

2. Pre-processing Steps

As mentioned before, the first two contributions of this
work appear in pre-processing the training data. Firstly,
we aim to establish strong correspondences between all the
training images by aligning them automatically, thus mak-
ing the selection of useful features much easier. Secondly,
we need to define classes to train our pose classifier.

2.1. Alignment of training data

While other approaches require a manual process [9] or
a clean silhouette shape (either synthetic [19, 1, 10] or from



(a) (b)

Figure 3. Class definition. Top row (a): Torus manifold (see § 2.2) with discrete set of classes and training sequences (each blue dot represents a training
image). (b) Zoom on a particular class (yellow) with corresponding training images (green dots). Bottom row from left to right: 6 Examples of aligned
images belonging to the class highlighted in (b) for different subjects and different camera views, resulting average gradient and Log-likelihood ratio for
this same class vs all the other classes. We provide as supplemental material a video showing the Log-likelihood for all the classes.

manual labelling [12, 17]) for feature alignment, we pro-
pose a novel fully automatic process for accurately aligning
real training images. We make the assumption that the 3D
Mocap data (3D poses) corresponding to the training im-
ages are available. We then exploit a simple but effective
way of taking advantage of their 2D projections in the im-
age plane for aligning the images.

In more detail, the 3D joints of every training pose are
first projected onto the corresponding image plane. The
resulting 2D joints are then aligned using rigid body Pro-
crustes alignment [5], uniformly scaled and centered in a
reference bounding-box. For each training pose, we then
estimate the four parameters corresponding to a similarity
transformation (one for rotation, two degrees of freedom
for translation and one scale parameter) between the origi-
nal 2D joints locations in the original input image and the
corresponding aligned and re-sized 2D joints. This trans-
formation is finally applied to the original image leading to
the cropped and aligned image. In this work, we chose to
normalize all the training images to 96x160 as in [9].

The data set (images and poses) is flipped along the
horizontal direction to double the training data size. By
this process, and considering the HumanEva I data set (3
Subjects and 7 camera views) for training, we generate a
huge data set1 of more than 40,000 aligned and normal-
ized 96x160 images of walking people, with correspond-

1This data set will be publicly available soon.

ing 2D and 3D Poses. The complete process is depicted in
Fig. 2. Note that the average gradient image obtained with
our training data set shows more variability in the lower re-
gion compared to the one obtained from INRIA data set.
This is due to the fact that most of the INRIA images present
standing people.

2.2. Class definition

We intend to discretize the pose space into a distinct set
of classes. Class definition is not a trivial problem because
changes in both the human motion as well as the viewpoint
are continuous and not discrete. In other words, it is not
trivial to decide where a class ends and where the next one
starts. In [19], the authors define the pose neighbors based
on the distance between 3D joints. This definition produced
good results in the absence of viewpoint changes. How-
ever, two poses which are exactly the same in the pose space
could still have completely different appearances in the im-
ages due to changes in viewpoint. Thus it is critical to con-
sider viewpoint information in the class definition.

We propose the use of a 2D manifold representation
where the action (consecutive 3D poses) is represented by
a 1D manifold and the viewpoint by another 1D manifold.
Because of the cyclicity of the viewpoint parameter, if we
model it with a circle the resulting manifold is in fact a
cylindrical one. When the action is cyclic too, as with gait,
jog etc., the resulting 2D manifold lies on a “closed cylin-



der” topologically equivalent to a torus [13, 17]. The classes
definition task then takes the following steps:

1. “Align the gait sequences temporally” as proposed in
[24] and map them to a torus manifold (cf [13])

2. Define the classes on this torus manifold by discretiz-
ing both the gait cycle and the viewpoint (Ng x Nv = N
classes). See Fig. 3. In this paper, we chose to define
12x16=192 classes and let for future work the estima-
tion of the optimum number of classes.

This definition of the classes on a torus leads to the cre-
ation of the toroidal Probability Transition Matrix [17] that
can solve ambiguities and misclassification issues: along a
sequence the most probable classes can be selected using
spatio-temporal constraints. Because of the continuity of
the motion and viewpoint, adjacent cells should not be con-
sidered as misclassification to solve some potential issues
on the “boundaries of each class”. We thus propose defin-
ing the misclassification based on an 8-neighbors similarity
on the toroidal matrix.

3. Random Forest Generation

As described in [8], Random Forests work as follows.
Given a set of training examples, a set of random trees H
is created such that for the k-th tree in the forest, a random
vector Φk is generated independently of the past random
vectors Φ1..Φk−1. This vector Φk is then used to grow the
tree resulting in a classifier hk(x,Φk) where x is a feature
vector. For each tree, a decision function splits the training
data that reach a node at a given level in the tree.

The resulting forest classifier H is used to classify a
given feature vector x by taking the mode of all the clas-
sifications made by the tree classifiers h ∈ H in the forest.

3.1. Selection of Discriminative features

It is very important to select the relevant and most infor-
mative features in order to alleviate the effects of the curse
of dimensionality. Many different features are used in gen-
eral recognition problems. However, only few of them are
useful in the given exemplar-based pose recognition task.
For example, features like color and texture are very in-
formative in general recognition problems, because of their
variation due to clothing and lighting conditions, they are
seldom useful in exemplar-based pose recognition. On the
other hand, gradients and edges are more robust cues with
respect to clothing and lighting variations 2. Thus, after
much experimentation, we chose to build our feature vec-
tor using HOG descriptors [9, 27, 19].

2Note that clothing could still be a problem for edges if there are very
few subjects in the training set: some edges due to clothing (and not due
to the pose) could be considered as discriminative edges when they should
not be.

The usage of HOG blocks over the entire image leads to
a very large feature vector. Thus an important question is
how to select the most informative HOG blocks to use in
the feature vector. Some works have addressed this ques-
tion for human detection and pose recognition problems us-
ing SVM’s or RVM’s [9, 27, 3]. However, such learning
methods are computationally inefficient for huge data sets.

In [10], the authors use statistical learning techniques
during the training phase to estimate and store the rele-
vance of the different silhouette parts to the recognition
task. We use a similar idea to learn relevant features, al-
though slightly different because of the absence of silhou-
ette information. In what follows, we present our method
to select the most informative HOG blocks. The basic idea
is to take advantage of the accurate image alignment, that
we achieved in section 2.1, and locate the most informative
HOG blocks. In order to do this we study edge distribution
over the entire training set p(E), and favor locations that we
expect to be more discriminative between different classes
(similar in spirit to [19]). We thus construct intra and inter-
class probability density maps of edge distribution that can
be used to select the right features: the log-likelihood ra-
tios give information on how discriminative the features are,
based on their location. Here we describe a simple Bayesian
formulation to compute the log-likelihood ratios which will
give us the importance of different regions in the image. Let
C1, C2,..Cn be n different classes. Let the probability for
the class Ci, given the complete edge map, be p(Ci|E). Us-
ing simple Bayes rule we have the following:

p(Ci|E) =
p(E|Ci)p(Ci)

p(E)
(1)

We present the log-likelihood ratio for the ithclass:

Li = log(
p(E,Ci)

p(E)
) (2)

We compute p(E,Ci) using the edge maps that corre-
spond only to the training images belonging to class Ci.
p(E) is computed using all the training images correspond-
ing to classes C1 to Cn. Given this log-likelihood ratio, we
can randomly sample boxes from positions where they are
expected to be useful and reduce the dimension of the fea-
ture space considering only the discriminative HOG blocks.
For the example given in Fig. 3, we can observe how the
right knee is a very discriminative region for this class.

3.2. Bottom-up Hierarchical Tree learning

A hierarchical tree is then built using a bottom-up ap-
proach by recursively clustering and merging the classes
based on a similarity matrix that is recomputed at each
depth of the tree (Fig. 4). By “hierarchical” , we mean that
the similarity between compared classes increases and that



(a) (b) (c)
Figure 4. Bottom-up Hierarchical Tree learning. The hierarchical tree is built using a bottom-up approach by recursively clustering and merging the
classes at each level. The similarity matrix is computed using the L2 distance between the log-likelihood ratios of the classes. The matrix presented here (a)
is built from the initial 192 classes and used to merge the classes at the very lowest level of the tree. The similarity matrix is then recomputed at each level
of the tree with the resulting new classes. The resulting tree is shown in (b) while the merging process on the torus manifold is depicted in (c).

the classification gets more difficult when going down the
tree and reaching lower levels.

At each depth of the tree, we repeat the following steps:

1. Compute new edge maps with the subclasses belong-
ing to each cluster

2. Compute log-Likelihood ratios Li for the new clus-
ters/classes

3. Compute similarity matrix over the clusters at this
depth using L2 distance between Li

4. Merge classes based on similarity and define new
classes

This process leads to the hierarchical structure repre-
sented in Fig. 4.

3.3. Random Selection of Discriminative Features

HOG descriptors need only to be placed near areas of
high edge probability for a particular class. We then se-
lect the most discriminative (HOG) features at each node
using the log-likelihood ratio as explained in section 3.1.
This log-likelihood ratio is recomputed for each child at
each node of the tree. Features are then extracted from all
positive and negative training examples reaching the node
using HOG boxes positioned using the global p(E) distrib-
ution over the training set. The most discriminative ones are
selected by minimizing False Positive (FP) and False Neg-
ative (FN) rates. The tree learning and the feature vector
construction are depicted in the algorithm 1.

Algorithm 1: Discriminative Features Selection
input : Hierarchical structure and training images.
output: List of discriminative HOG blocks.

for each level l do
for each node n do

Compute edge probability p(El,n) over
images that pass through n;
for each child c do

Compute edge probability p(El,n,c) over
images that pass through c;
Compute log-likelihood Ll,n,c (cf
Sec. 3.1);
Sample nh HOG blocks {hi}nh

i=1 from
Ll,n,c.
for each hi do

Extract hi for all the images reaching
n;
Compute the mean histogram h̄i over
images that pass through c ;
Compute L2 distances to h̄i;
Compute the best threshold ti that
splits the data and minimizes FP and
FN rates;

Select the N best HOG blocks that
minimizes FP and FN rates;

Features are extracted from areas of high edge probabil-
ity across our training set more than areas with low prob-
ability. By using this information to sample features, the



(a) (b) (c)
Figure 5. Pose Detection. (a) Input image from the moving camera sequence from [11]. Scanning in X and Y directions of the image. (b) Resulting cropped
image and pose corresponding to the “pick” resulting from the classification using Random Forest. (c) Resulting distribution over the 192 classes after
classification using Random Forest. We also represent this distribution on the 3D and 2D representations of the torus manifold.

amount of useful information available to the forest for ran-
dom selection is increased. We then grow an ensemble of
trees, a forest, by randomly sampling one of the N selected
HOG blocks at each node of each tree.

4. Human Pose Detection and Classification

Given a new image, the task is to localize the individ-
ual within that image and classify the pose with the pose
classifier forest. Since we learn a forest that is able to dis-
criminate between very similar classes, we suppose that it
could discriminate a human pose from the background.

Selecting and normalizing a bounding box in the input
image, each tree gives a binary decision for each class, re-
sulting in a distribution over all the classes when consider-
ing the entire forest. The decision can then be taken based
on this distribution by choosing for instance the class that
received more “votes”. Taking the maximum classification
value over the image (after exploring all the possible po-
sitions, scales and orientations) results in reasonably good
localization of walking pedestrian, as shown in Fig. 5.

Once the best bounding box has been selected and clas-
sified, the 3D joints for this image are directly estimated by
weighting the mean poses of the classes resulting from the
distribution, using the distribution values as weights. The
normalized 2D pose is computed in the same way and re-
transformed from the normalized bounding box to the input
image coordinate system obtaining the 2D joints location.

The construction of the initial hierarchical tree structure
is slightly similar to [12] even if, in our case, the process
is bottom-up and the leaves are the classes we previously

defined. However, it presents the following key differ-
ences with this work: first, the selection of the relevant
HOG feature blocks at each node of the structure using
log-likelihood ratio; and secondly, the way we grow an en-
semble of trees by randomly sampling one of those selected
HOG blocks at each node. This randomness makes the algo-
rithm more robust to noise compared to a single hierarchical
decision tree that would use all the features once. More im-
portantly, it leads to a distribution over the classes that could
be useful for tracking as in [21].

The algorithm used to grow the Random Forest type clas-
sifier proposed in this paper shares some similarities with
PSH [19]. In PSH, the authors learn a set of hashing func-
tions that efficiently index examples for the pose recogni-
tion task. The hash functions are sensitive to the similarity
in the parameter space. In our work, we use the pose space
to define classes that are then used to select relevant fea-
tures and thresholds in the image space. Secondly, the hier-
archical structure we build is similar to the set of projections
found by PSH that best define nearest neighborhoods.

Even if our work shares some similarities with PSH, it is
different in various aspects. First, thanks to our class def-
inition, we can manage extensive viewpoint changes. Sec-
ondly, our search through the training data set is hierarchi-
cal which means that if the input vector is rejected after the
first node, we do not have to extract all the other features.
Finally, since the tree nodes are represented by a mean his-
togram and a threshold, it’s possible that multiple branches
can be explored as in [12] while PSH only considers bi-
nary splits. Deciding on a threshold is not an easy problem
as each of the class super-sets to be separated at a given



Figure 6. Pose detection results on HumanEva II data set. Top row: normalized 96x160 images corresponding to the pick obtained when applying the
pose detection in one of the HumanEva II sequences (subject S2 and Camera 1). For each presented frame (1, 50, 100, 150, 200, 250, 300 and 350) the
resulting pose is represented on top of the cropped image. Bottom row: mean 2D error (in pix.) plots for the same sequence using Random Forest and [17].

node have instances that have some similarities between
each other, so exploring multiple branches is necessary.

Our approach is computationally efficient since our tree
learning takes around 2 hours while SVM approaches take
several days with a similar training set. Given a bounding-
box, the classification with a 100 tree forest takes around 15
ms with our Matlab implementation.

5. Experiments

The proposed algorithm is first validated in similar con-
ditions (indoor with a fixed camera) using HumanEVA II
data set (Fig. 6) and secondly tested with a moving cam-
era as in [10] (Fig. 7). We apply a simple Kalman filter
on the position, scale and rotation parameters along the se-
quence and locally look for the maxima, selecting only the
probable classes based on spatio-temporal constraints (i.e.
transitions between neighbouring classes on the torus). By
this process, we do not guaranty to reach the best result but
a reasonably good one in relatively few iterations. Note that
since we only learnt our pose detector from walking human
sequences, we do not pretend detecting people performing
other actions than walking. Quantitative evaluation is pro-
vided using HumanEva II data set in Tab.1.

6. Conclusions and Discussions

We have presented a novel approach to exemplar-based
human pose detection and recognition using randomized
trees. Unlike most previous works, our pose detection algo-
rithm is applicable to more challenging scenarios involving
extensive viewpoint changes and moving camera, without

any prior assumption on an available segmented silhouette
or normalized input bounding box. Moreover, our random
forest classifier allows to model distribution over pose.

In future work, we will consider different actions and
combine this approach with a pose tracking algorithm to
make the system more robust. Finally we will improve the
search to get real-time performances.
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