
Relaxed Matching Kernels For Robust Image Comparison

Andrea Vedaldi Stefano Soatto
University of California at Los Angeles, 90095, USA

{vedaldi,soatto}@cs.ucla.edu
http://vision.ucla.edu/

Abstract

The popular bag-of-features representation for object
recognition collects signatures of local image patches and
discards spatial information. Some have recently attempted
to at least partially overcome this limitation, for instance
by “spatial pyramids” and “proximity” kernels. We intro-
duce the general formalism of “relaxed matching kernels”
(RMKs) that includes such approaches as special cases, al-
low us to derive useful general properties of these kernels,
and to introduce new ones. As an example, we introduce a
kernel based on matching graphs of features and one based
on matching information-compressed features. We show
that all RMKs are competitive and outperform in several
cases recently published state-of-the-art results on standard
datasets. However, we also show that a proper implemen-
tation of a baseline bag-of-features algorithm can be ex-
tremely competitive, and outperform the other methods in
some cases.

1. Introduction
Many visual tasks, such as visual recognition, catego-

rization or three-dimensional reconstruction, hinge on es-
tablishing at least partial correspondence between different
images affected by intrinsic variability of the underlying
scene (e.g. “chair”), as well as by variability due to changes
in viewpoint and illumination. In order to mitigate the ef-
fects of occlusions of line-of-sight, many methods employ
a representation of the image in terms of “local features.”
These are statistics, i.e. functions of the image, defined in a
neighborhood of a discrete (finite) set of locations, or “key-
points.” Such methods, however, vary significantly in how
such locations are treated in the representation. At one end
of the spectrum are so-called “constellation models” that
allow for affine transformations of keypoint locations [24],
or more general “deformable templates” that allow for more
general transformations, for instance represented by a finite-
dimensional thin-plate spline [1]. At the other end of the
spectrum are so-called “bags of features” (BoF) methods

[2], that discard the location of the features altogether [7].
The fact that BoF methods have been so successful in vi-

sual categorization tasks may seem surprising. A possible
reason is that, as we showed in [23], achieving viewpoint
invariant image representations forces to discard shape in-
formation. However, this does not necessarily mean that
a fully invariant representation is preferable to one which
is perhaps less invariant, but more discriminative. In this
context, works such as [11, 13] proposed variants of the
bag-of-feature model that tries to capture part of the spa-
tial information as well. In particular, they propose kernels
for image comparison which are based on a bag-of-feature
representation augmented with spatial information.

In this paper we build upon those works and define a
general family of kernels, called “relaxed matching ker-
nels” (RMK) (Sect. 2). This family include as special
cases and unifies existing approaches such as the pyra-
mid matching kernel [7], the spatial pyramid matching
kernel [11] as well as the proximity distribution kernel
[13]. We study interesting properties shared by these ker-
nels and we show that all of them can be computed effi-
ciently. This helps understanding the difference between
these approaches, and at least in one case it highlights in-
consistencies in the weighting scheme and suggests a bet-
ter kernel. More importantly, our approach allows us to
define new kernels, for instance the “graph-matching ker-
nel” (GMK) and agglomerative-information-bottleneck ker-
nel (AIBMK) proposed in Sect. 3.

In Sect. 4.1 we test GMK on matching graphs of generic
features, such as those used in the “sketch” [8], for wide-
baseline correspondence. We show that, even when fea-
tures are ambiguous and their identity becomes unstable due
to viewpoint changes, the graph matching is robust enough
to absorb much of the variability. Finally, in Sect 4.1 we
compare various kernels on the task of object recognition
on benchmark datasets such as Graz-02 and Pascal-05. We
show that our kernels are very competitive with respect to
state of the art [21, 13]. We also show, however, that a good
baseline implementation of bag-of-features is very compet-
itive with this more advanced methods, an is capable to out-
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perform those and previously published sate-of-the-art re-
sults in some cases.

1.1. Bag-of-Features and Beyond

Constructing the Bag-of-Features (BoF) representa-
tion [2] of an image starts from the extraction of local image
features. First, the image I is decomposed in a number of
interest regions. To this end, several operators (feature de-
tectors) are available, ranging from the selection of random
patches [16] to the extraction of scale or affine covariant
blobs and corners [15]. This results in a list l1, . . . , lN of
feature locations (and the associated regions). Then the ap-
pearance of each region is encoded by a compact but dis-
criminative statistic (feature descriptor). Again, several op-
erators can be used, many of which are based on computing
an histogram of the image intensities or gradients [14]. This
results in a second list d1, . . . , dN of feature descriptors.

The locations l1, . . . , lN are then disregarded and the
image is represented by the distribution of the feature de-
scriptors d1, . . . , dN alone. The distribution is estimated by
quantizing the descriptor space F and then computing an
histogram1 h(b) of the occurrence of the quantized descrip-
tors (it is also possible to avoid quantizing altogether [17]).
The quantization B ⊂ 2F may be obtained by a variety of
methods, such as K-means or regular partitioning [7, 21].
By analogy with the bag-of-words model of text analysis,
the quantized descriptors b1, . . . , bN ∈ B are also called
visual words and the quantization B visual dictionary.

Comparing two images I1 and I2 is then reduced to
evaluating the similarity K(h1, h2) of the respective bag-
of-features hk(b), k = 1, 2 representations. Recently [25]
has shown that the χ2 Radial Basis Function (RBF) ker-
nel (Sect. 2) yields particularly good performances in object
categorization with the advantage of being directly operable
in an SVM classifier.

A problem with the dictionary approach to BoF is the
choice of the resolution of the visual dictionary B. An ex-
cessively fine quantization causes features from two images
to never match (overfitting), while an excessively coarse
quantization yields non-discriminative histograms (bias).
Grauman et al. [7] proposed Pyramid Matching Kernel to
overcome this issue. The idea is to work with a sequence of
R progressively coarser dictionariesB0, B1, . . . , BR−1 and
to define a similarity measure as a positive combination of
the BoF similarities at the various levels. The formulation
yields a proper Mercer (positive definite) kernel.

While BoF is a powerful paradigm, disregarding com-
pletely the image geometry limits the discriminative power
of the representation. Several attempts have been made to
extend BoF to account for geometric information. The eas-
iest way is to append the interest point locations to the de-

1We assume that histograms are normalized to one.
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Figure 1: RMK construction: agglomerative tree. Left.
The feature spaceF and a sequence of three relaxationsB0,
B1 and B2. Right. The agglomerative tree represents the
merging operations transforming a relaxation to the next.
Each relaxation Br corresponds to a cut of the tree (dotted
boxes).

scriptors (Sect. 4 of [7]). Lazebnik et al. [11] extend this
idea and introduce the Spatial Pyramid Matching Kernel
(SPMK): They propose to use quantized pairs (li, di) of in-
terest point location-descriptor as element of the base vi-
sual dictionary B0. The pyramid B0, B1, . . . , BR−1 is then
formed by coarsening the quantization of the location com-
ponent l only. In this way, the representation captures the
distribution of both the appearance and location of the in-
terest points.

A limitation of this approach is that, since the location
l is expressed in absolute coordinates, the representation
is unsuitable for objects which present large variations in
pose. To address this issue, Ling et al. [13] introduced
the Proximity Distribution Kernel (PDK). The idea is to
start from triplets (di, dj , ρij), where di and dj are inter-
est points descriptors and ρij is their (nearest neighbors)
distance. Successive relaxations merge increasing values of
the ρ component (Sect. 2). Since ρ is a relative quantity, the
limitation of SPMK is removed.

2. Relaxed Matching Kernels

In this section we introduce the “relaxed matching ker-
nels” which generalize PMK, SPMK and PDK.

Construction. Let B0 ⊂ 2F a quantization of the feature
space F (base visual dictionary). To obtain coarser quan-
tizations Br, we recursively merge bins b ∈ B0 (Fig 1).
The result of this process is an agglomerative tree, whose
nodes are bins and parents are obtained from children by
merging.2

The base dictionary B0 corresponds to the leaves of the
agglomerative tree and the coarser dictionaries Br corre-

2In practice the tree might be a forest if one stops merging before all
bins are merged into one (but one can always assume that the latter is the
case).



spond to tree “cuts”. A cut (Fig. 1) is just a subset Br of the
tree nodes such that any leaf b ∈ B0 is descendent of ex-
actly one node b′ ∈ Br of the cut. Cuts have the property of
preserving the mass of the dictionary: If hB0(b), b ∈ B0 is
an histogram on the finer dictionary B0, then its projection
hBr (b) on the cut Br satisfies∑

b∈B0

hB0(b) = 1 =
∑
b∈Br

hBr (b).

We compare images Ik, k = 1, 2 by comparing histograms
of features defined on corresponding cuts. Given a cut Br,
the similarity measure is given by

Fr = k1(h1
Br , h

2
Br ) =

∑
b∈Br

min{h1
Br (b), h

2
Br (b)} (1)

To make the match robust, we adopt a “multiscale” ap-
proach. We consider multiple cuts Br at increasing relax-
ation levels r = 0, 1 . . . , R− 1 and define

K(h1, h2) =
R−1∑
r=0

wrFr, (2)

where wr ≥ 0 is a sequence of weights that establish the
relative importance of the relaxations. We define this quan-
tity relaxed matching kernel (RMK).

Base kernel, Mercer’s condition, and RBF. The RMK
is a positive definite (p.d.) kernel [19] since each term
k1(h1

Br
, h2
Br

) of the summation (1) is p.d. [9] and the
weights wr are non-negative [19]. Interestingly, Hein et
al. [9] provide a whole family of base kernels that can be
substituted to the l1 kernel k1 in (1). This family includes
the χ2 and Hellinger’s kernels

kχ2(p, q) = 2
∑
i

piqi
pi + qi

, kH(p, q) =
∑
i

√
piqi.

All of these choices yield p.d. RMKs (another useful prop-
erty is that the kernels are normalized to one, i.e. k(p, p) =
1).

Finally, each base kernel corresponds to a distance
d2(p, q) by the formula d2(p, q) = 2 − 2k(p, q). So, for
instance, k1(p, q) corresponds to d2

1(p, q) = ‖p − q‖1 and
the χ2 and Hellinger’s kernels correspond to

d2
χ2(p, q) =

∑
i

(pi − qi)2

pi + qi
, d2

H(p, q) =
∑
i

(
√
pi−
√
qi)

2.

These distances can be used to define corresponding RBF
kernels by setting k(p, q) = exp(−γd2(p, q)), where γ > 0
is a tuning parameter. These kernels are also p.d. [9].

This flexibility in the choice of the base kernel is inter-
esting as, for instance, [25] showed that the χ2 RBF ker-
nel may perform better than the l1 kernel (on which PMK,

B2

Figure 2: RMK: agglomerative trees for PDK, PMK and
SPMK. Left. PDK relaxations merge successive values of
the distance component ρ, yielding a “linear” agglomerative
tree. As an illustration, we highlight the cut corresponding
to relaxation B2. PDK fails to be a proper RMK, however,
as it considers only the shaded nodes and is not normal-
ized. Right. PMK and SPMK relaxations are obtained by
merging octaves of the scale space, yielding a “logarithmic”
agglomerative tree.

SPMK and PDK are based) for the task of object catego-
rization.

PMK, SPMK, and PDK. The RMK construction encom-
passes the approaches discussed in Set. 1.1. In PMK the
feature space F is the set of descriptors d, B0 is a regular
partition of F and Br are obtained by recursively merging
such partitions, reducing by half the resolution of the quan-
tization. The SPMK is similar, except that relaxations oper-
ate on the location component l of the features (Sect. 1.1).
The corresponding agglomerative tree height is logarithmic
in the size of the base dictionary B0 (Fig. 2).

In PDKB0 is obtained by quantizing the descriptor com-
ponent di and dj of the triplets (di, dj , ρij) (ρij is already
discrete). Then the successive relaxationsBr are defined by
merging triplets that have distance ρij ≤ r+1. Still PDK is
not a proper RMK because (a) the histograms are not nor-
malized and (b) at each level the comparison (1) is defined
as

kPDK(h1
Br , h

2
Br ) =∑

d1,d2

min

 ∑
ρ≤r+1

h1
B0

(d1, d2, ρ),
∑
ρ≤r+1

h2
B0

(d1, d2, ρ)


and misses part of the mass. Specifically, the RMK version
of PDK (Fig. 2) yields

kPDK/RMK(h1
Br , h

2
Br ) = kPDK(h1

Br , h
2
Br )

+
∑
d1,d2

∑
ρ>r+1

min
{
h1
B0

(d1, d2, ρ), h2
B0

(d1, d2, ρ)
}
.

Meaning of the weights. DefineWr =
∑r
q=0 wq and fr =

Fr − Fr−1, W−1 = F−1 = 0. Then the RMK (2) may be
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Figure 3: RMK computation: feature visit order. The
figure shows the feature space F and the quantization B0,
B1 and B2 of Fig. 1. The dots represents the features fki
and the dotted arrows a possible visiting order. Notice that
the visit traverses all the features of a bin b ∈ Br before
passing to the successive bin b′ ∈ Br, for all relaxations
r = 0, 1, 2.

rewritten as

K =
R−1∑
r=0

wrFr =
R−1∑
r=0

(WR−1 −Wr−1)fr. (3)

An interesting property of the successive relaxations,
proved in Theorem 1, is that Fr is a monotonically in-
creasing quantity (for a large choice of base kernels, in-
cluding all the popular ones). Moreover, if the last relax-
ation level corresponds to merging the whole feature space
into a single bin, since the base kernel is normalized we
also have FR = 1. Therefore we can interpret Fr as a cu-
mulative distribution function and the summation (3) as the
expected value K = Efr [WR−1 −Wr−1] of the function
WR−1−Wr−1 of the random variable r with (discrete) den-
sity fr. Notice that fr assigns more mass to the relaxation
levels r for which there is an abrupt increase in the match-
ing score Fr. Since WR−1 −Wr−1 decays with increasing
relaxation r (the weights are positive), this means that the
score is large if the two image statistics match early in the
relaxation sequence. In other words, the kernel is looking
for the finer relaxation level for which the statistics match
well.3

For instance the PMK and SPMK kernels have exponen-
tially decaying integral weights of the form Wr ∝ −e−λr,
λ > 0 (up to a positive factor and offset). In fact, computing
the differences Wr −Wr−1 yields wr ∝ e−λr and we have

KPMK ∝
R−1∑
r=0

(e−λr − e−λR)fr−1 ∝
R−1∑
r=0

e−λrFr.

For the PDK/RMK kernel we have wr = 1, Wr = r and

KPDK =
R−1∑
r=0

Fr =
R−1∑
r=0

(R− r)fr

3This also suggests why counting the same features at multiple relax-
ation levels do not really introduce bias in the comparison

so the weights are linearly decaying.

Computation. We show next that computing an RMK it is
a fast operation as it it is linear in the number of features
and relaxation levels.4

Let fki , i = 1, . . . , Nk, k = 1, 2 be the features extracted
from images I1 and I2 and quantized to the base level B0.
Let Fr, L1

r, L
2
r, r = 0, . . . , R − 1 be three accumulators

initialized to zero.
First, we show how to calculate Fr according to the def-

inition (1) for a fixed relaxation level r. To do this, we
need to compare histograms h1

Br
and h2

Br
defined over bins

Br = {br1, . . . , brM}. We start by visiting all the features
fki that belong to the first bin br1, incrementing the value
of the respective accumulators Lkr . When there are no more
features in br1, we compute min{h1

Br
(br1), h2

Br
(br2)} =

min{L1
r, L

2
r} as of equation (1), accumulate the result to

Fr, set L1
r and L2

r to zero, and proceed to the next bin
br2. When all bins brm ∈ Br are exhausted, Fr holds the
value (1).

This process can be extended to work simultaneously for
all relaxation levels r = 0, . . . , R − 1. This is possible
because bins bri at level r are fully contained in bins br+1,j

at level r+1, so visiting the features belonging to br+1,j can
be done by visiting the features belonging respectively to all
the bins bri ⊂ br+1,j in order, and so on recursively (Fig. 3).
So it suffices to scan the features once (in the proper order)
accumulating their mass to Lk1 , . . . , L

k
R−1. Whenever the

visit crosses a bin boundary at some level r, the algorithm
adds min{L1

r, L
2
r} to Fr, resets L1

r and L2
r and moves on.5

3. Two novel RMKs

To illustrate the flexibility of the RMK construction, we
introduce two new matching kernels.

Graph Matching Kernel. Graphs have been used exten-
sively for representing and matching images. Usually a
graph is constructed by connecting interest points or other
features in structures such as constellations, and sketches
(see for instance [4, 6, 12, 5] and references therein).
Matching graphs however is difficult due to the high insta-
bility of such structures and the combinatorial complexity
of the search. Roughly speaking, three approaches are used:
(i) focus on simple structures (such as small graphs, trees or
stars) that enable exhaustive search [6, 5], (ii) use statisti-
cal searching procedures (e.g. RANSAC, Swendsen-Wang

4The complexity is O(NR) where N = N1 + N2 is the number
of features from the two images to be compared and R is the number of
relaxations. The algorithm is also space efficient as it requires only O(N+
R) memory.

5A further speed-up is obtained if features are pre-merged at the finer
relaxation level B0 before running the algorithm. This is especially useful
for kernel such as PDK which compare pairs of interest point and may have
large feature sets.



sampling [12]), and (iii) use approximated matching meth-
ods (e.g. spectral methods [18]).

Here we experiment with a loose but robust voting
scheme, reminiscent of [10] and PDK, based on compar-
ing interest point pairs. Consider a graph G whose nodes
are interest points l1, . . . , lN with associated descriptors
d1, . . . , dN . Let G = {em,m = 1, . . . ,M} be the col-
lection of edges forming the graph, where em = {li, lj}
is an (unordered) pair of image locations. Let ρij be the
graph distance from li to lj (i.e. the length of the shortest
path connecting li to lj). We construct an RMK by consid-
ering triplets (di, dj , ρij) as the base features. We quantize
the descriptor space as in PDK or SPMK (ρ has already
a discrete structure) to obtain the base dictionary B0. We
then define the successive relaxation levels B1, . . . , BR−1

by merging values of the index ρ, using the linear scheme
of PDK/RMK. So the kernel has the form

K(G1, G2) =

R−1X
r=0

wr
X

(di,dj ,ρ)∈Br

k(h1
Br (di, dj , ρ), h

2
Br (di, dj , ρ)). (4)

In the following we refer to this kernel as Graph Match-
ing Kernel (GMK). GMK checks for the presence of edges
between images features, as specified by the graph struc-
ture. Despite this fact, in the limit when all nodes have
unique identifiers, K(G1, G2) assumes its maximum value∑R−1
r=0 wr if, and only if, G1 ≡ G2.

Agglomerative Information Bottleneck Kernel. As a sec-
ond example of RMK, we introduce a kernel similar in spirit
to PMK. We start by a basic quantization B0 of the feature
descriptors di (we discard the locations li). Then we define
the successive relaxations Br by iteratively merging bins of
the base dictionary B0. However, instead of guiding the
merges based on descriptor similarity (as PMK does), we
use Agglomerative Information Bottleneck (AIB, [20]) to
obtain a sequence of binary merges. AIB produces a se-
quence of relaxations Br so that the information I(d, c) be-
tween the feature descriptor d ∈ Br (regarded as a random
variable) and the class label c is maximally preserved. We
use wr = Ir to penalize coarser relaxations which corre-
spond to uninformative dictionaries, where Ir is the resid-
ual information I(d, c) at the relaxation level r. We call
this Agglomerative Information Bottleneck Matching Ker-
nel (AIBMK).

4. Experiments
4.1. GMKs to match unstable graphs

The first experiment (Fig. 4) illustrates graph matching
by GMK. Given an image Ik, we construct a graph as fol-
lows: we run Canny’s edge detector on the image, we ex-
tract straight edge segments, and we complete the graph by
constrained Delaunay triangulation. We then extract SIFT

keys at the node locations (fixed window size and orienta-
tion) using software from [22] and we create a dictionary
of only sixteen visual words (such a vocabulary is not very
distinctive but quite invariant). This yields graphs G1 and
G2 from the two images. We then select a location li in
the first image and extract a subgraph S1(li) ⊂ G1, defined
as the union of li with its neighbors at (graph) distance not
greater than T = 2. Then we try to match S1(li) to S2(lj)
for all similarly constructed subgraphs in the second image.
Notice the large variation in the structure of the graphs be-
ing matched, due both to instability of the construction of
the image graphs Gk and the selection of the subgraphs Sk.
We evaluate quantitatively how many subgraphs can be suc-
cessfully matched in a test sequence from [15]. This data
is devised to evaluate affine invariant descriptors; here we
show that RMK is robust enough to match unstable interest
points graphs.

4.2. RMKs for object recognition

We evaluate GMK, AIBMK, PDK, PDK/RMK in ob-
ject recognition experiments on the Graz-02 and Pascal-05
datasets (mainly for the sake of comparison with previous
related approaches). We also compare the methods against
the baseline BoF as described by [25], which we summa-
rize next. Each image is normalized so that the largest side
measures 640 pixels. Then the Harris and Laplace operators
are used to extract multiscale interest points using publicly
available code from [3]. We remove features of scale be-
low 2.5 pixels (we also remove duplicate features due to a
bug in the software). As in [25], we fix the orientation of
the patches to a nominal value (i.e. the interest points are
not rotationally invariant). At each interest point we com-
pute a SIFT descriptor. The visual vocabulary is formed by
running k-means with k = 200 (Lloyd algorithm) for each
category independently, and then joining the dictionaries.
Bag of features are compared by the χ2 RBF kernel, which
performs better on average. The GMK, AIBMK, PDK,
PDK/RMK also use the same χ2 basis kernel and the RBF
transformation. We use an SVM in all experiments. The
parameter C of the SVM [19] is learned by 10-fold cross
validation. The graph used in GMK is computed by Delau-
nay triangulation of the points (we do not extract edges).

For Graz-02 we use the same training and testing sets
of [13, 21]. For Pascal-05 we use the training and valida-
tion sets from the challenge as training data and the test-2
(difficult) test set as testing data. Results are compared in
Table 6 against [13, 21] and the winner of Pascal-05 VOC
competition. ROC curves are reported in Fig. 5.

Our kernels are competitive, outperforming previous
state of the art in four of the seven categories. Our imple-
mentation of PDK outperforms the original paper [13] in all
but one cases, perhaps due to the fact that we use the χ2 and
RBF compbination. We also compare favorably to [21] and



(a) (b) (c)

(d) (e) (f)
Figure 4: GMK: robustness evaluation. (a) A few images from [15]. The data consists of six image: a frontal view five
other views from, 20 to 60 degrees of slant. Here we construct a graph by downsampling the images by half, computing a
Canny edge map and running constrained Delaunay triangulation. We then compute SIFT features at nodes (fixed orientation
and window size of 20 pixels). This construction is not affine invariant and the resulting graph is highly unstable. We make
the node labels as invariant as possible by choosing a small dictionary size (64 bins). We then match each subgraph S1(li) in
the frontal view to similar graphs Sk(lj) in the other views (we do not try to remove ambiguous matches). Using the ground
truth homography, we record the graph distance from the center of the best matching subgraph to the actual reprojection. (b)
a match at graph distance 0 from the 20o views pair. (c) A match with graph distance 1 – the overlap is still very good. (d)-(f)
two matches at 30o. (f) A match at 50o. Up to 20o of slant 83% of the match are within graph distance 2. At 30o this number
reduces to 57%. After that the deformation of the descriptors is excessive and matching becomes unreliable.
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Figure 5: ROC curves for Pascal-05 and Graz-02. We compare the average ROCs obtained in several runs of the various
algorithms (we average ROC curves along lines from the origin; in this way the curve passes by the average equal-error-rate
point).
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(a) Graz-02 Bicycles
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(b) Graz-02 Cars
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(c) Graz-02 People
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(d) Pascal-05 Bicycles
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(e) Pascal-05 Cars
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(f) Pascal-05 People
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(g) Pascal-05 Motorbikes

Figure 6: Equal Error Rates for Pascal-05 and Graz-02. We report the maximum, minimum and average EER for each
algorithm in multiple runs (as the construction of the dictionary is randomized). The variability, especially in the smaller
Graz-02 dataset, is relatively large. This makes it difficult to compare directly to previous work, which do not report this
information. Here PDK.O refers to [13], TU to [21] and PA5 to Pascal-05 winner. All algorithms, whether they use spatial
information or not, are very close. The baseline algorithm performs as well or better in many of the cases, and it is very close
to the best algorithm in the others. Makes exception Pascal-05 bikes, where we were able to obtain the better performance
by method exploiting the spatial structure.

the Pascal-05 winner.
We should note, however, than in most cases the advan-

tage of one method on another is small (see for instance GR-
bicycles). In particular, the baseline algorithm performs in
practice as well and in some case better than these more so-
phisticated kernels and [21] (which uses dense features and
a large vocabulary as opposed to sparse feature and a small
vocabulary).

5. Conclusions

We have introduced RMK as a generalization of popular
kernels for image categorizations. The formulation defines
a large space of possible useful kernels, and suggests mod-
ifications and improvements to the current ones. We also
have introduced a novel interpretation of the kernel weights
and showed the monotonicity property of the relaxed sim-
ilarity scores (1). These observations transfer directly to
previous method as well.

We have introduced two new examples of RMKs: the
GMK and AIBMK kernels. GMK have been demonstrated
successfully for matching graphs of features in a wide-
baseline matching experiment. We also have tested our
kernels on object categorization on Pascal-05 and Graz-02.
However, we also noticed that a baseline BoF formulation
is often as competitive, which, we hope, will stimulate a

useful debate in the community.

Acknowledgments. Research supported by ONR 67F-1080868
and AFOSR FA9550-06-1-0138.

A. Appendix
We study the parametric family of kernels among his-

tograms given by K(p, q) =
∑
i kα|β(pi, qi), where [9]

kα|β =
pi + qi

2
− 1

2Z

(pαi + qαi
2

) 1
α

−

(
pβi + qβi

2

) 1
β


(5)

where α ≥ 1 and β ∈ [−∞,−1]∪ [ 12 , α] and the normaliza-
tion constant Z is equal to 2−

1
α −2−

1
β if β > 0 and to 2−

1
α

if β < 0. l1, Hellinger’s and χ2 kernels are obtained for
(α, β) equal to (∞, 1), (1, 1

2 ) and (1,−1) respectively. In
the following we restrict to the case β ≤ 1 (we verified by
simulation that these results do not always hold if β > 1).

Lemma 1. Let x1, x2, y1, y2 ∈ R+ be non negative num-
bers and let k = kα|β as defined above. Moreover, let
β ≤ 1. Then

k(x1 + x2, y1 + y2) ≥ k(x1, y1) + k(x2, y2)

Proof. Let fα(xi, yi) = (xαi + yαi )1/α. Since α ≥



1, by Minkowsky’s inequality6 fα(x1 + x2, y1 + y2) ≤
fα(x1, y1) + fα(x2, y2). Minkowsky’s inequality reverses
when the exponent is smaller than 1, for which fβ(x1 +
x2, y1 + y2) ≤ fβ(x1, y1) + fβ(x2, y2). Substituting back
in (5) we obtain the desired inequality.

Theorem 1 (Monotonicity of the kernel). Let p, q ∈ Rn+
be non-negative real vectors. Let W be a stochastic matrix
(i.e. W ∈ Rm×n+ , 1>W = 1>). Let K(p, q) defined as
above, with β ≤ 1.Then

K(Wp,Wq) ≥ K(p, q).

Proof. We have

K(Wp,Wq) =
∑
i

K

∑
j

wijpj ,
∑
j

wijqj


Applying iteratively the lemma n− 1 times yields

K(Wp,Wq) ≥
∑
i

∑
j

K(wijpj , wijqj).

But K is homogeneous (i.e. K(cx, cy) = cK(x, y)), so

K(Wp,Wq) ≥
∑
j

∑
i

wijK(pj , qj) = K(p, q).
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