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Abstract

In this work we aim to capitalize on the availability of
Internet image search engines to automatically create im-
age training sets from user provided queries. This prob-
lem is particularly difficult due to the low precision of im-
age search results. Unlike many existing dataset gathering
approaches, we do not assume a category model based on
a small subset of the noisy data or an ad-hoc validation
set. Instead we use a nonparametric measure of strangeness
[8] in the space of holistic image representations, and per-
form an iterative feature elimination algorithm to remove
the most strange examples from the category. This is the
equivalent of keeping only features that are found to be
consistent with others in the class. We show that apply-
ing our method to image search data before training im-
proves average recognition performance, and demonstrate
that we obtain comparative precision and recall results to
the current state of the art, all the while maintaining a sig-
nificantly simpler approach. In the process we also extend
the strangeness-based feature elimination algorithm to au-
tomatically select good threshold values and perform filter-
ing of a single class when the background is given.

1. Introduction
The field of object and category recognition is inher-

ently dependent on image datasets for classifier training and
evaluation. Until very recently, such training and testing
datasets were gathered and annotated manually. In addition
to the high labor cost that goes into an endeavor like manual
collection and annotation, other now known problems [14],
such as artificially introduced artifacts, have resulted from
manual image dataset collection.

Since a large majority of current recognition algorithms
require at least a weak level of supervision, the quantity of
available training and testing data must continue to grow

with increasing algorithm capabilities. This is necessary in
order for the field to continue making progress towards the
lofty goal of someday scaling to human-level recognition.

To avoid manual collection and annotation, a number of
vision researchers have recently turned to the Internet as a
source of loosely annotated image data [2, 5, 6, 9, 15, 17].
Image search engines can provide up to thousands of im-
ages in response to a particular query, thus they seem like a
promising starting point for automated dataset acquisition.
The problem is that the precision of image search results
is low, and retrieved results are therefore typically polluted
with large amounts of noise. If this noise can be consis-
tently overcome, the vision community would have a pow-
erful tool to automatically collect representative image data
for any desired keyword.

There are two clear starting points from where one can
approach this noise reduction issue. The first approach is to
design models and learning procedures to be robust to noisy
training data. A classifier can then either be learned di-
rectly for recognition, or it can be applied back to the noisy
data for the purpose of filtering or re-ranking, generating a
dataset with improved precision for other algorithms to use.

A second approach is to first filter the data using discrim-
inative methods, and then use the new noise reduced set of
images to train any desired classifier for recognition.

It is important to note that capturing diversity is just as
critical as obtaining high precision, since category objects
may appear in distinct but common poses, and may vary sig-
nificantly in appearance. It may also be the case that a sin-
gle keyword may have multiple visual meanings, a situation
known as polysemy. We argue that at the lowest level of ob-
servation, it is important to capture all consistent visual def-
initions corresponding to a particular keyword query. For
example, one could imagine requesting that a hypothetical
recognition system learn to detect the visual interpretation
of the keyword “bat”. A classification decision made by
such a system would be considered correct whether it pos-
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itively classified a baseball bat or a winged rodent. If de-
sired, further disambiguation should either be up to the user
or a higher level reasoning component.

Until now, the majority of automatic dataset gathering
approaches have fallen into the paradigm of first learning
a model or classification boundary from the noisy training
data, and then applying a classifier back to the data to refine
the image search results. Unfortunately, such a procedure
typically encourages the selection of a dominant appearance
model, which is likely to noticeably reduce diversity in fil-
tered data.

In this work we outline a very simple and computation-
ally inexpensive method for consistency based filtering. Be-
cause it is a nearest neighbor based approach, it is robust to a
discontinuous category appearance by design. We show that
it performs sufficiently well to generate an improvement of
15.2% in the average recognition performance on a 21 cat-
egory subset of Caltech-101 [4], using filtered versus unfil-
tered training data gathered from the web. We also compare
recall and precision performance with other, more complex,
recent approaches and demonstrate comparable results.

In the process of defining our filtering approach we also
contribute a simple heuristic for automatically choosing a
good threshold for the strangeness-based feature selection
method developed by Li et al. [8]. Finally, we also adapt
the Li et al. approach to the case where only one category
must be filtered, but a known background category is given.

1.1. Related work

Several very recent works have addressed the related
problems of image relevancy ranking and large image
dataset acquisition. Here we provide a quick overview of
existing approaches and explain what makes ours distinct.

From the domain of model based filtering approaches,
there exist three recent notable works [6, 5, 9].

In [6] a best constellation model was selected using a
RANSAC approach based on validation set classification
performance. Similarly [5] trained a multiple-topic pLSA
model directly on the full unprocessed image search re-
sult set. The topic most representative of the category
was selected according to individual topic performance on
a validation set classification task. The number of topics
used during model learning was a critical design parame-
ter. Since the number of visual clusters in a category will
vary depending on dataset and category characteristics, in-
cluding unpredictable factors such as polysemy, statically
fixing the number of topics may limit the robustness of this
approach.

In addition to limiting diversity by selecting only the
dominant model, these methods also used an ad-hoc vali-
dation set, gathered for each category by translating a query
into 7 languages, and keeping the top 5 image search re-
sults returned for each translation. Though this may work

in many cases, it introduces an additional point of failure
into both algorithms, since the wrong models are likely to
be selected if a keyword is mistranslated, resulting in a bad
validation set.

Li et al. [9] took a different approach, relying on a small
initial set of seed images to bootstrap an incremental learn-
ing procedure. The first 15 images returned by a search
engine were assumed to be sufficiently precise to serve as
the seed set for a category. The seed image set was used
to learn a Hierarchical Dirichlet Process (HDP) category
model. Using the HDP model allowed Li et al. to over-
come the issue of selecting the proper number of topics to
represent a category in advance. Once an initial model was
learned based on the seed set, it was used to classify subse-
quently obtained images. New positively classified images
were then added to the dataset, and the HDP model was
updated. Since such a learning approach is subject to be-
coming increasingly more specialized with each iteration, a
special training set selection step was necessary. This was
accomplished by only updating the HDP model with new
images that were positively classified but had high entropy
relative to those already incorporated into the model. This
concept is very similar in spirit to the automatic query ex-
pansion technique used by Chum et al. [3] to obtain robust
models for individual instances of objects.

Despite the query expansion style procedure to obtain
a more robust model, the OPTIMOL system of [9] still as-
sumes that as the classifier continues to expand its definition
of the category, it will be able to encompass the majority
of a class’s visual appearance characteristics. However, if
a category consists of two or more objects that occur con-
sistently within that data but are visually very different, it
is uncertain whether OPTIMOL would be able to learn both
category appearances, unless an instance of each variety ap-
pears in the 15 initial training examples.

Taking a different perspective, a recent discriminative
approach to image re-ranking ordered image search results
based on consistency of color blobs within the data [1].
However, this approach was limited by its color-only repre-
sentation and explicit selection of a dominant visual cluster.

Some other related approaches [2, 15], which set out to
construct datasets that are as large as possible, have gone
beyond the limitations of image search (whose results are
sometimes limited to the first 1000) by using a hybrid of vi-
sual features and their own text-based ranking to retrieve
images of interest directly from web pages. In compar-
ison, our method avoids reimplementing text-based web
search and relies on publicly available image search en-
gines, whose results are constantly improving. We focus
only on visual consistency within the image search results.

A final distinction of our approach from all of the above
methods is that our aim is exclusively the creation of a
good training set. Unlike some of the earlier discussed ap-



proaches, we are not trying to create the largest dataset pos-
sible, nor are we trying to capture difficult situations such as
occlusions for the purpose of creating a challenging test set.
We specifically seek easy images that are likely to contain
the most information about a particular class.

2. Approach
Underlying our method are two simple assumptions. The

first is the fundamental assumption of the category recogni-
tion problem; that objects belonging to the same category
share some common visual properties. Therefore, we can
expect that in an image search result for a particular query,
images relevant to the search will demonstrate some within
category visual consistency. Irrelevant images, on the other
hand, are much less likely to be related to each other, and
thus are not expected to express a similar degree of visual
consistency. Due to varying viewpoints, poses, and within
category appearance variations, relevant images may lie on
a discontinuous subset. This observation is critical because
it indicates that it is incorrect to select a single “most rep-
resentative” cluster of a category and rank all search results
with respect to its mean. Any consistency or model-based
method should anticipate such potential discontinuity in or-
der to retrieve a fair variety of representative category im-
ages.

Our method capitalizes on the visual consistency as-
sumption by iteratively eliminating strongly inconsistent or
strange images as determined by the k-Nearest-Neighbor
(k-NN) strangeness measure [8]. The strangeness metric
and its associated selection algorithm are outlined in sec-
tions 2.1 and 2.2.

Our second assumption is that a better visual model can
be obtained from training images where the object of in-
terest is clearly visible, fills the majority of the given im-
age, and appears in one of several common poses. Note
that some of these assumptions contradict those desired in
a good testing set [14]. However, these conditions pro-
vide the most information about the appearance of the cat-
egory, and allow for maximum flexibility in the types of
models that could be learned. The driving intuition is that
more informed classifiers will generally be more robust to
noisy testing cases that may include occlusions, illumina-
tion changes or other factors.

This second assumption partially motivates our choice
of descriptor. Since we wish to find images where the ob-
ject fills the majority of the view, that means that we seek
appearance consistency on the scale of the entire image.
Holistic features are thus most appropriate for roughly com-
paring structure and appearance of whole images. In our
work we use the holistic features of Torralba [16] to encode
the gist of images. Even though these features were ini-
tially used for scene and context recognition, they become
object descriptors in cases where an object fills the majority

of an image. This was acknowledged by both Torralba [16]
and Lazebnik et al. [7]. We give a brief overview of these
holistic features in the latter portion of this section.

Considered in concert, the above assumptions suggest
that a simple discriminative framework with the ability to
capitalize on visual consistency of image search results may
be able to provide sufficiently good training data to enable
classification of previously unknown categories. In the re-
mainder of this section we describe our pursuit of such a
framework based on k-NN strangeness and image gist.

2.1. k-NN strangeness

The main workhorse of our filtering procedure is a fea-
ture elimination algorithm based on the k-Nearest-Neighbor
strangeness measure. The k-NN strangeness of a data point,
as defined by [8], is the ratio of the sum of distances to the k
nearest within class neighbors to the sum of distances to the
k nearest members of a different (closest) class. Formally,
the strangeness, α, of a data point j belonging to class c is
given by:

αj =

∑k
l=1 d

c
jl

minn,n6=c

∑k
l=1 d

n
jl

, (1)

where dn
jl is defined as the distance from point j to the lth

closest point that is a member of class n. In our applica-
tion the distance metric is simply the L1 distance between
holistic image descriptors.

When used as a classification boundary, Li et al. [8] show
that k-NN produces a smoother boundary than the stan-
dard Nearest Neighbors classifier, thus giving better over-
all generalization. In addition to its generalization benefits,
this particular strangeness metric is a natural choice for our
problem because it allows us to measure consistency with-
out assuming any explicit category model or specifying a
concrete number of feature clusters.

We performed experiments for a number of values of k,
and found that filtering results tend to stabilize and show
little change after k > 3. Thus, all experimental results
were obtained with k = 5.

2.2. Strangeness based feature selection

In [8], k-NN strangeness was used in an iterative fea-
ture elimination framework to simultaneously remove non-
discriminative feature instances from multiple classes. The
algorithm typically eliminated features that appeared in
more than one class, producing the net effect of eliminating
features belonging to the background and leaving features
that were most descriptive of the classes of interest.

The standard feature elimination as explained in [8] re-
quires that there initially be at least two classes of data,
and that an initial strangeness threshold, γ, be established.
Strangeness is then computed for each feature instance with



respect to its preliminary class label, as in equation 1. All
feature instances for which αj > γ are then eliminated and
strangeness values are updated appropriately. The process
of feature elimination and re-estimation of strangeness con-
tinues until αj ≤ γ for all j in the remaining set of features.

2.3. Feature selection with known background

The above feature selection framework relies on the ex-
istence of at least two classes for feature selection to be pos-
sible. As a result of refining the features in each class with
respect to the other classes, the background is effectively
eliminated.

If instead samples from the background were given, we
could perform strangeness-based feature selection from a
different perspective. This time instead of refining the defi-
nition of multiple classes with respect to each other, we are
able to refine a single class with respect to the background.
Note that we are not interested in refining our concept of the
background. We also prefer to be extra cautious in refining
the class of interest to obtain high precision for the feature
instances that remain after elimination. To accomplish this,
features are only eliminated from the class being filtered,
and the background is kept unchanged throughout the itera-
tive filtering procedure. The algorithm operates the same as
described above, but terminates when all strangeness values
in the class being filtered are below γ.

If a background dataset is not available but multiple
categories exist, an initial background dataset can be con-
structed from all features filtered out by the procedure in
section 2.2 applied to the multiple bootstrap classes.

2.4. Strangeness threshold selection

As noted earlier, strangeness-based feature selection re-
quires a maximum threshold, γ, above which feature in-
stances are eliminated. For the single category versus
background filtering procedure, a threshold estimate can be
made based on the initial distribution of strangeness values
within the class to be filtered. We want to select a threshold
that will eliminate many strange images, but simultaneously
leave enough images to have diversity in the results when
the procedure converges.

Naively, we could assume that the distribution of pre-
liminary strangeness values of all within class features is
best separated at the mean. The problem is that the mean
incorporates highly strange data points that are practically
guaranteed to be out of class features. Therefore, we choose
to ignore outliers with very large strangeness by only con-
sidering a certain percentage of features with the lowest
αj . We have found empirically that computing the mean
within class strangeness based on the lowest 80% of the
strangeness values consistently provides a good γ.

The above gives a conservative approach that always bi-
ases the threshold closer to the consistent data than the noisy

samples. When the distribution of features is such that the
good samples appear in well defined clusters, the prelim-
inary αj values of the good samples will be low. In this
scenario even some noise samples may have αj < 1. In
such a case, our approach will select a γ < 1. When good
features are distributed in a more loosely structured fashion
but still distinguishable from the background, our heuristic
will choose γ ≈ 1. In the third case, when features are dif-
ficult to distinguish from the background and strangeness
values of even some good samples may be greater than 1,
our heuristic selects γ > 1. This ensures that not all fea-
tures are eliminated but only the most consistent ones are
kept.

All experiments performed use this threshold selection
technique, with the exception of the precision and recall
comparison, which is explained later.

2.5. A holistic image representation: image gist

In order to apply the strangeness procedure to whole
images, we need a lower dimensional description of im-
age content such that the difference between descriptors is
representative of image similarity. The majority of related
works have used bag-of-features or other part-based models
to represent image content. Instead of identifying an image
by a histogram of visual words, we select a holistic repre-
sentation that directly encodes global statistics of an entire
image.

The rationale for our feature choice comes from our ear-
lier assumption that we seek to find good training data,
where the object of interest fills the majority of the image.
Thus we are interested in computing visual consistency on
the scale of an entire image.

We selected Torralba’s holistic representation which cap-
tures the gist of an image by encoding spectral scene com-
ponents and their spatial layout at low resolution [16]. In
color images gist is computed independently for each color
channel, thus also incorporating color information.

Before computing gist on our data, all images were re-
sized to 128×128. This size was selected to approximately
match average search engine result thumbnail sizes, so that
only thumbnails needed to be harvested from image search
results. This allowed for a simpler harvesting procedure and
required less storage space than downloading all search re-
sults in their original sizes. After resizing, we used Oliva
and Torralba’s implementation [13] to compute the gist us-
ing Gabor filters quantized into 8, 8, and 4 orientations,
respectively, over three scales. We then projected the re-
sulting descriptors onto 32 principal components, found by
performing PCA on 12,651 images selected from a subset
of the Caltech-101 and Web-23 datasets (described below).
We also duplicated a number of our experiments in this pa-
per for a 64 principal component gist projection, but found
the results to be nearly identical. Thus 32 principal compo-



nents were used for all reported results.

2.6. Automatic duplicate removal

Because our method relies on visual consistency, results
can be thrown off by the presence of duplicate images in
web gathered data. Since duplicate images tend to occur
sufficiently often in Internet image search results to affect
our filtering procedure, we devised a very simple automatic
duplicate removal scheme based on the gist descriptors be-
fore projection onto their principal components.

To overcome differences in compression, size, and other
small but insignificant inconsistencies between otherwise
visually identical images, we identified duplicates by es-
tablishing a threshold on the L1 distance between gist de-
scriptors. The threshold was selected based on duplicates in
the Fergus [5] dataset. Visually exact duplicate images in
several categories were manually identified, and the lowest
threshold that eliminated all duplicates was selected.

We found that this simple method consistently removed
exact duplicates from other datasets as well, even with vary-
ing levels of compression, and kept any images with visu-
ally detectable differences.

3. Results
3.1. Datasets

Three datasets were used in the experiments described
in this paper. The first was Caltech-101 [4], which includes
annotated images of 101 different object categories, with 31
to 800 images per category. Caltech-101 was selected for
initial experiments because it provided good ground truth
labels, allowing for a quantitative evaluation of the filtering
procedure proposed by this work.

The second dataset used was Web-23 [9]. This dataset
includes a set of 23 object categories, downloaded from In-
ternet image search engines in response to 21 query words
randomly selected from labels in the Caltech-101 dataset,
as well as two additional categories. The number of images
per category in Web-23 ranges from 577 to 12414. How-
ever, reflecting the nature of currently existing image search
engines, each harvested category includes a high number of
irrelevant images. Li et al. [9] noted that the accordion cat-
egory, for example, contains only 352 out of 1659 correct
accordion images.

For the purpose of recognition performance comparison,
throughout this work we used only the 21 category subset
of Caltech-101 for which corresponding categories exist in
Web-23.

Our final dataset was that of Fergus et al. [5], which con-
sists of 7 categories of images gathered from Google’s im-
age search in 2005. Each image in the data set includes
a ground truth label indicating whether it is a good repre-
sentation of its category, a mediocre one (termed okay), or

Category (C) |C| |+BG| γ |C∗
good| |C∗

BG|
accordion 55 55 0.98 54 0
bonsai 128 128 0.995 85 1
euphonium 64 64 1.03 37 0
Faces 435 200 0.78 199 0
grand piano 99 99 0.949 62 0
inline skate 31 31 1.07 27 0
laptop 81 81 1.06 63 0
menorah 87 87 1.02 54 0
nautilus 55 55 1.13 23 0
pagoda 47 47 0.968 47 0
panda 38 38 1.14 29 0
pyramid 57 57 1.09 43 1
revolver 82 82 0.957 56 0

Table 1. Results of filtering polluted Caltech-101 categories. |C| is
the size of each category dataset, |+BG| is the number of random
images mixed in from the Caltech-101 background dataset, γ is the
strangeness threshold used, and |C∗

good| and |C∗
BG| are the number

of good images and background images remaining after filtering,
respectively. The γs are selected automatically via our described
heuristic.

completely unrelated (called junk). This dataset was useful
for evaluating recall and precision on real web gathered data
and comparison to past approaches.

3.2. Filtering polluted Caltech-101 categories

Several categories from the Caltech-101 dataset were se-
lected and polluted with random images from the Caltech-
101 background category. The background dataset was split
so that the background images used in the filtering proce-
dure were disjoint from the set used to pollute individual
categories.

The results of filtering each polluted category with our
method are outlined in Table 1. One can see that the algo-
rithm proved to be fairly effective in these simple test cases.
Thus this experiment confirmed that the concept of our ap-
proach is reasonable for the desired task.

3.3. Training on polluted Caltech-101 data

The following three experiments serve to demonstrate
the critical importance of good training data and put a quan-
titative measure on the performance of our filtering ap-
proach, in terms of percentage improvement on the category
classification task.

To reflect current trends in computer vision, we used a
simple bag-of-features approach, as proposed by [11, 12],
the implementation of which has been made available at
[18]. The algorithm constructs a hierarchical dictionary
of SIFT [10] features with which each image is repre-
sented, and performs simple classification using the k-
Nearest Neighbors method with k = 5. It has been found



to give an average recognition rate of 46% when evaluated
on the full Caltech-101 dataset. The key contribution of this
paper, however, is the dataset filtering procedure; thus we
are interested in the algorithm’s sensitivity to noisy train-
ing data, rather than the absolute recognition performance.
Since the bag-of-features model is currently prevalent in the
field, the effect of bad training data on the algorithm’s per-
formance will be reflective of a large number of recently
published recognition algorithms.

We first trained the bag-of-features algorithm in the
canonical fashion to provide a baseline: splitting each cate-
gory in the Caltech-101 dataset, and using one fraction for
training and the remainder as a test set. Throughout all ex-
periments, 30 random images were taken from each cate-
gory as good images for the training set. With only good im-
ages used for training, the recognition algorithm achieved
an average recognition rate of 77.4 ± 1.8% for the 21 se-
lected categories.

To investigate the effect of noisy training data on recog-
nition algorithm performance, each good training set was
polluted with an equal amount of randomly selected images
from the Caltech-101 background dataset. 30 training im-
ages were then sampled uniformly from the 60 images con-
stituting a polluted training set. With the noisy training set,
the algorithm experienced a significant reduction in perfor-
mance, yielding a 66.5 ± 1.1% average recognition rate on
the 21 categories.

In order to avoid any overlap with the training set and
the filtering algorithm’s background data, the background
dataset was split randomly into 200 training images used
for category pollution, and the remaining 267 images, used
as the known background dataset for the filtering procedure.

In the third experiment, each category training set was
polluted as in the second experiment, but the full polluted
training sets of 60 images each were then immediately fil-
tered with the algorithm presented in this paper. If more
than 30 images remained in a category after the filtering pro-
cedure, then 30 were uniformly sampled from the filtered
set to create each training set. Otherwise, all remaining im-
ages were used as the training set. The experiment was re-
peated 10 times. Training from noisy data after applying
our filtering approach yielded a 73.9±1.6% average recog-
nition rate, an improvement over the 66.5± 1.1% obtained
without filtering. Confusion matrices from one experiment
sequence are illustrated in Figure 1.

3.4. Filtering Web-23

To demonstrate how our approach improves recogni-
tion performance when training on real web-gathered im-
ages, we performed similar classification experiments to
those above, but replaced artificially polluted Caltech-101
training data with sampled images from Web-23. In these
experiments, we also augmented the Caltech-101 back-

ground dataset with 1000 images gathered from Yahoo Im-
age Search for the query “things”. Duplicates were elim-
inated from the combined dataset using the approach de-
scribed in section 2.6.

For each of the 21 Web-23 categories that corresponded
to categories in Caltech-101, we randomly sampled 30 im-
ages before and after filtering, to respectively serve as the
noisy and filtered training sets. Over 15 experiments, av-
erage classification performance on 21 Caltech-101 cate-
gories when trained on unfiltered Web-23 data was 25.8 ±
2.8%. When filtered data was used for training, perfor-
mance improved to 41.0±2.3%. Sample confusion matrices
from one run are shown in Figure 2.

3.5. Precision-recall in search engine gathered data

To further analyze filtering performance on web gathered
data and compare to other approaches, the filter was tested
on the dataset of Fergus et al. [5].

Fergus et al. [5] and Schroff et al. [15] compared the
precision of their image re-ranking methods at 15% re-
call. Since our approach eliminates images until stable
strangeness values are achieved with respect to a specified
threshold, we cannot provide precision results at exactly
15% recall. To compare as fairly as possible, we generated
results for a large range of strangeness thresholds and pro-
vided our precision and recall values for our closest avail-
able datapoints. This comparison is shown in Table 2.

We found that the categories for which filtering perfor-
mance was the lowest were “polluted” in a consistent man-
ner. For example, the airplane category contained over
170 screen captures of software, all of which were similar
enough to emerge as a part of the airplane category. With
such a high number of a particular type of image appear-
ing in the search results, one could argue that according to
visual consistency, the keyword “airplane” visually corre-
sponds to not only a familiar mode of transportation, but
a software application as well. In our case, the resulting
filtered training set consisted of a mixture of both of these
visual sub-categories.

As a secondary experiment, to compare more closely
with the results of Schroff et al., we trained a χ2 kernel
SVM with the same training set as [15], in order to duplicate
the drawing filter used in that work. For the more difficult
categories such as airplane, this filter helped significantly
because it eliminated some consistent noise images, such as
screenshots, which were previously being incorporated into
the category. For simpler categories, such as wristwatch,
however, many good images were eliminated by the draw-
ing filter due to their simplicity. For the wristwatch category
in particular, over half of the best images were removed by
the drawing filter. Our precision and recall results after use
of the drawing filter are reported in Table 2.

To see how use of the drawing filter impacts a larger



Figure 1. Confusion matrices demonstrating results on the category recognition task for a 21 category subset of Caltech-101. Lighter colors
indicate higher percentage accuracy. The rightmost confusion matrix shows performance when trained on 30 good images per category
(77.4± 1.8% average recognition rate). The leftmost matrix shows the degrade in performance when 30 training images are sampled from
an image set where half the samples are background (66.5± 1.1% average recognition). Finally, the center matrix shows the performance
improvement when each noisy dataset is filtered with the method described in this work before training (73.9±1.6% average recognition).

Figure 2. Confusion matrices demonstrating results on the 21 category recognition task when trained with Web-23 data and tested on
Caltech-101. The two matrices on the left show sample results based on unfiltered training data, and the rightmost confusion matrix
demonstrates sample results when trained from filtered data. Due to some polysemy effects in the web data and known artifacts in Caltech-
101, recognition performance is not matched with the good data only training scenario. However, filtering with our approach was found to
improve average recognition performance to 41.0± 2.3% from the 25.8± 2.8% achieved when using unfiltered Web-23 training data.

number of categories, we repeated our Web-23 recognition
test, but applied the drawing filter to the data before using
our procedure. We found, however, that over the 21 cate-
gories used, filtered recognition performance dropped from
41.0 ± 2.3% to only 32.1 ± 3.0%. We thus conclude that
for our method, filtering out simple images before applying
our procedure is not practical in the general case.

4. Conclusions

We introduced a simple approach to filter Internet im-
age search results based exclusively on visual content. We
showed that this filtering procedure significantly improved

performance of popular classifiers when trained on data ob-
tained automatically from Internet image search engines.
Specifically, we showed an improvement of 15.2% in the
average recognition performance on a 21 category subset
of Caltech-101, using filtered versus unfiltered web gath-
ered data. We also compared our method against precision
and recall results of previous model-based and text/image
hybrid re-ranking algorithms, demonstrating comparable
or improved performance with a significantly simpler ap-
proach.

In the process of defining our filtering procedure we
also provided a simple heuristic for automatic strangeness
threshold selection, and adapted the strangeness-based fea-



airplane guitar leopard motorbike wristwatch
our-D(OK) 76.19 @ 13.73 80.39 @ 14.39 58.33 @ 14.4 84.09 @ 17.01 88.89 @ 15.15
our-D(G) 62.16 @ 14.56 28.79 @ 14.73 35.00 @ 20.79 61.22 @ 13.04 84.21 @ 14.75
our(OK) 34.27 @ 15.45 69.91 @ 27.72 75.76 @ 20.57 86.11 @ 14.25 100 @ 14.39
our(G) 74.19 @ 14.56 26.55 @ 23.26 41.67 @ 14.81 63.89 @ 20 100 @ 17.51
[15](OK) 45 ± 5 72 ± 11 72 ± 6 81 ± 9 97 ± 4
[15](G) 35 ± 4 29 ± 4 50 ± 5 63 ± 8 93 ± 7
[5](G) 57 50 59 71 88

Table 2. A comparison of precision at 15% recall on a subset of the [5] dataset. Since specifying an exact precision is not possible in our
approach, we compare the closest available datapoint, specified in the form “precision @ recall”. The (G) indicates that recall and precision
were computed using only data with ground truth labels of good as positive retrievals. (OK) indicates that both good and ok images were
counted as positive. Further, the “-D” label indicates that the drawing removal SVM filter used in [15] was applied to the data before our
filtering procedure. It is critical to note that the performance metrics reported by others may be influenced by the existence of duplicate
images. The airplane category, for example, contains 24 exactly identical images of a particular airplane, all classified as good. Since our
method eliminates duplicates before processing, all result images are guaranteed to be unique in our approach. However if duplicates are
not eliminated, it may be possible that a high precision score is obtained for a low recall value by reporting duplicates of good images.

ture selection method to the case where a known back-
ground category is given.

In future work we wish to perform several additional ex-
periments, including automatically learning all categories
in Caltech-101 from keyword based image search results,
and using our approach to gather training data for a window
based classifier in order to evaluate classification perfor-
mance improvements on more difficult data. We also plan
to experiment with incorporating search engine ranking to
improve the strangeness measure.
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