
Improving Local Learning for Object Categorization
by Exploring the Effects of Ranking

Tien-Lung Chang1,2 Tyng-Luh Liu1 Jen-Hui Chuang2
1Institute of Information Science, Academia Sinica, Taipei 115, Taiwan

liutyng@iis.sinica.edu.tw
2Dept. of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan

Abstract

Local learning for classification is useful in dealing
with various vision problems. One key factor for such ap-
proaches to be effective is to find good neighbors for the
learning procedure. In this work, we describe a novel
method to rank neighbors by learning a local distance func-
tion, and meanwhile to derive the local distance function by
focusing on the high-ranked neighbors. The two aspects
of considerations can be elegantly coupled through a well-
defined objective function, motivated by a supervised rank-
ing method called P-Norm Push. While the local distance
functions are learned independently, they can be reshaped
altogether so that their values can be directly compared. We
apply the proposed method to the Caltech-101 dataset, and
demonstrate the use of proper neighbors can improve the
performance of classification techniques based on nearest-
neighbor selection.

1. Introduction
Supervised learning for classification is an area that in-

corporates rigorous analysis, practical techniques, and rich
applications. When dealing with computer vision tasks, its
effectiveness over other approaches is particularly manifest,
owing to the inherently complicated nature of the problem
itself as well as the data. In this work, our goal is to pro-
pose a new technique based on ranking that improves local
learning. To demonstrate the advantage of our method, we
apply it to object categorization, and carry out insightful
comparisons to other related ones.
In the literature of learning for classification, techniques

based on local learning now attract much attention, mostly
because a single global model may not fit nowadays data
complexity. Among the numerous localized approaches,
the nearest-neighbor (NN) technique may be one of the
simplest in concept and in practice. While the nearest-
neighbor framework is originally proposed as a tool for pat-
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Figure 1. The dashed ellipse in (a) and the ellipse in (b) show
level contours of two local distance functions learned at the black
square. In (a) the distance function tries to fit more data but it
causes a nearest-neighbor search scheme easier to encounter sam-
ples that are in a different class.

tern recognition since its introduction in the 1950’s [16],
many researchers also adopt it as a classification method
and achieve satisfactory results. In particular, there are ap-
proaches that directly form a k-nearest-neighbor classifier,
and focus on organizing training data to improve accuracy
and efficiency [19, 25]. The emphasis could also be on
learning local distance functions to best separate training
samples according to their class label and, for example, use
nearest-neighbor classifier as a post-procedure [7]. On the
other hand, one could try to find certain nearest neighbors
first, and then learn a metric or a local classifier [26].
While the concept of nearest neighbor or k nearest neigh-

bors has been broadly employed, we notice that the term
“neighbor” itself is often defined only with a simple dis-
tance function such as the L2 distance (Euclidean distance),
or with a learned distance function that is optimized over
either the whole data or those within a manually specified
region. Therefore, the selected “neighbors” may include
some undesired samples, as is illustrated in Figure 1. Our
approach toward addressing this problem is closely related
to the “P-Norm Push” ranking formulation by Rudin [15].
Specifically, for each labeled sample, the proposed tech-
nique learns a local distance function and ranks its neigh-
bors at the same time. As a result, we avoid manually pre-
defining the neighbors of a training sample in learning the
respective local distance function, which will turn out to be
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Figure 2. Some examples of intraclass variations: Consider the Wild Cat class in Caltech-101. (a) A typical instance of a wild cat for
reference. (b) A wild cat in a different pose. (c) A wild cat under a different lighting condition. (d) A drawing of wild cat with some
unnatural features. (e) A wild cat example in which over 60% of the image belongs to the background.

more precisely explaining the relationship between the sam-
ple and its high-ranked neighbors (whose ranks are given by
the distance function itself). These distance functions are
learned independently to fit local properties of each sam-
ple, and are subsequently reshaped altogether to avoid data
overfitting and achieve a unified effect. Classifying a test-
ing sample can then be conveniently done through these dis-
tance functions to find neighbors in training data which are
very likely in the same class with this testing sample.
Throughout this work we focus on the classification

problem of visual object categories, and show that the pro-
posed method can compete with other related techniques as
well as the ability to improve them. The paper is organized
as follows. In Section 2 we discuss related work, and then
explain the P-Norm Push formulation in Section 3. The de-
tails of our approach are presented in Section 4, while some
experiments and discussions are included in Section 5.

2. Related work
Despite a long history of research on visual object clas-

sification and its related problems, some noteworthy rapid
progress has been made in recent years, especially on those
applications involving numerous object classes. For exam-
ple, the first reported recognition rate in 2004 on the popular
102-class image dataset Caltech-101 is 17% [6]. In 2006 a
number of methods, e.g., [7, 26], have boosted the accuracy
rate to near 60%. More recently, the march of recognition
rate on this dataset is now around 87% [23].
Among the many efforts on solving this particular appli-

cation, one important issue is often discussed: the intraclass
variations due to the sparsely distributed objects for describ-
ing a general concept. In Figure 2, we show some exam-
ples of intraclass variations, which are caused by differ-
ent poses, lighting conditions, representations (painting or
photographing), and backgrounds. These variations make
the visual object classification a very challenging problem,
since it is hard to find an overall applicable criterion to sep-
arate objects from different classes. Previous approaches
to addressing intraclass variations generally proceed on two
fronts: one is to develop a good image representation so
that it becomes easier to distinguish different classes by

simple calculations on the representation, and the other is
to learn some sophisticated classifiers by machine learning
techniques. Although the emphasis could be on one or the
other, current methods mostly have their formulations es-
tablished by investigating both the two aspects. After all,
a more meaningful image representation can often improve
the efficiency of a fine classifier, and vice versa.

Representing an image for object categorization appears
frequently in the form of a set of patches. (We also adopt the
representation.) While such a representation is already flex-
ible, adding various types of image feature to record differ-
ent properties of a patch have been further proposed to han-
dle issues caused by, say, the changes in an object’s shape
and pose. The SIFT framework by Lowe [12] is one of
the most successful and widely used appearance feature de-
scriptor. In its original version, Lowe first uses a difference-
of-Gaussian (DoG) function to find scale-space extrema in
an image, and then calculates a 3-D histogram over gradient
locations and orientations within each patch covering an ex-
tremum. Subsequently, Csurka et al. [5] describe a bag-of-
keypoints model, based on the SIFT descriptor, to quantize
the collected features into a finite dictionary, and represent
each image as a histogram over this dictionary. They then
apply the SVM classification method [22] to the new repre-
sentation to achieve better scores than those from applying
SVM to the original image data. While the SIFT feature
seems to be effective in object recognition, related studies
on feature comparisons [14, 20] have pointed out that SIFT
is more conducive in the context of matching than in classi-
fication. On the other hand, the shape descriptor geometric
blur (GB) by Berg and Malik [2] has also attracted much
attention lately. Like the SIFT feature, geometric blur cap-
tures the gradient information in a patch. The main differ-
ences to SIFT are that in geometric blur the gradient infor-
mation is blurred according to the distance to the patch cen-
ter, and the information is sampled sparsely. In this work,
the geometric blur is adopted as the main feature on patches,
and the details will be explained later.

Besides finding a robust feature, there are efforts to cor-
relate the relationships between features to generate a more
appropriate image representation, such as the pyramid rep-



resentation [9] and the clique representation [10]. By fea-
ture reweighting, Marszaek and Schmid [13] directly em-
bed the spatial relationship between features into training
and testing. In [21] Sudderth et al. model the spatial rela-
tionship with the transformed Dirichlet processes. Alterna-
tively, Wang et al. [24] explore the occurrence of feature
pairs with the dependent Hierarchical Dirichlet process.
From the perspective of learning, localized and adaptive

methods stress more on variances between individuals. For
example, the exemplar method [4] can be considered as to
generate multiple classifiers for dealing with different sub-
sets in each class. A local distance function learning for
classification can be seen in [7]. The work by Lin et al. [11]
suggests a method for generating spatially adaptive clas-
sifiers which combine features of different types accord-
ing to local properties. One notable fact is that the above-
mentioned three techniques all need to find some “nearest
neighbors”: in [4] the testing process is to find the most
similar exemplar for a test image; in [7] the authors utilize a
k-NN classifier with the learned distance functions in test-
ing; in [11] the testing process is to first find the nearest
neighbor in training data for the test image and then apply
the corresponding classifier. Furthermore, although in [26]
the emphasis is on the speed-up effect by incorporating k-
NN into an SVM, the use of k-NN also improves the accu-
racy in some situations. These observations all indicate the
critical role of the “nearest neighbors” in localized methods
on object categorization.

3. Neighbor ranking in classification
As stated in Section 1, we are to learn, say, for sample

I , a distance function to rank its neighbors for improving
object classification. Since a closer sample generally im-
plies a higher probability to be included in a k-NN scheme,
one would expect the distance function to be learned is af-
fected more by those samples near I , specified by the dis-
tance function itself. That is, if we put the samples into an
ordered neighbor list according to the measurements by the
distance function in an increasingmanner, the top portion of
the list should be more influential in learning. To this end,
we consider P-Norm Push in that the technique inherently
tends to pay more attention to the top portion of a ranked
list.

3.1. P-Norm Push

The P-Norm Push framework by Rudin [15] is designed
for the supervised ranking problem. The method is based
on a key observation that in many ranking applications only
the top portion of the list is used. For instance, when us-
ing a search engine to query information from the Internet,
most users only look at the information given in the first
few pages. Thus, in [15], the author proposes that a specific

price is assigned for each misrank, and the penalties given to
the misranks near the top are significantly higher than those
given to the misranks towards the bottom. Specifically, con-
sider a set of training samples labeled as +1 or −1. Let the
set of positive samples be {xm}m∈M and the set of nega-
tive samples be {xn}n∈N . The aim now is to find a ranking
function f : x ∈ X → R from the domain of x, denoted
as X , to the set of real numbers. The main difference be-
tween ranking and other regression problems is that for an
arbitrary sample x, the exact value of f(x) is not important,
but the order relation between f(xm) and f(xn) is, where
xm and xn are a positive-negative sample pair.
To achieve this purpose in P-Norm Push, a Height(·)

function is introduced to each negative sample xn, and is
defined as the number of positive samples that are ranked
beneath it. That is,

Height(xn) =
∑

m∈M
1[f(xm)≤f(xn)] . (1)

The idea of P-Norm Push is to push a negative sample with
large height down from the top. Hence a monotonically
and rapidly increasing function from R

+ to R
+, g(r) =

rp, p � 1, is adopted to give a proper price g(Height(xn))
on a negative sample xn, where p is adjustable for different
needs. With (1), we obtain the primal objective functional
of P-Norm Push:

R(f) =
∑
n∈N

g(Height(xn)) (2)

=
∑
n∈N

( ∑
m∈M

1[f(xm)≤f(xn)]

)p

. (3)

More details and discussions about Height(·) and the price
function g can be found in [15].

3.2. Local learning with ranking
To explain how we use P-Norm Push to improve local

learning for object categorization, we first need to introduce
some notations for the ease of our discussions. We shall
denote the �th training sample by I� and the whole training
set as {I�}�∈L. The expressionC(�) is used to represent the
function which extracts the index set such that ifm ∈ C(�)
then Im has the same class label of I�. (We are now dealing
with a multiclass classification problem.) The notation D�

denotes the specific distance function learned for I�, and
the distance from I� to some Im is represented as D�(Im).
Note that in this setting D�(Im) is not necessarily equal to
Dm(I�), the distance from Im to I�.
Consider now a given sample I�. In our formulation,

whenever the term “nearest neighbors” is mentioned, it
means that only a few samples that are in some sense close
to I� are considered. In a classification task, these few



neighbors are often assumed to have higher probabilities to
be in the same class with I�. Furthermore, in local learning
for classification, if the meanings of the terms “neighbor,”
“near,” and “far” with respect to I� all come from a learned
distance functionD�, we in fact need not to worry about the
exact distances from I� to others, but we do care about the
relative magnitude between distances D�(Im) and D�(In)
where m ∈ C(�) and n /∈ C(�). One can easily check
that this is indeed very similar to the ranking problem if
we also list the samples according to the distancesD�(I�′),
�′ ∈ L \ {�}. The only difference is that in a ranking prob-
lem the samples listed in the top portion are with higher val-
ues, but here the samples in the top portion of a neighbor list
are with smaller values. In view of that only a few nearest
neighbors are used, we therefore need to make sure that the
top portion of the neighbor list is correctly constructed. And
this aspect of consideration is identical to the main property
in the P-Norm Push framework.
Similar to the formulation of a distance function de-

scribed by Frome et al. [7], we define the distance function
D� for I� to be a weighted sum of several elementary dis-
tance functions d�is:

D�(Im) =
E�∑
i=1

w�id�i(Im), (4)

where E� is the number of elementary distance functions
introduced on I�, and is indeed the number of features de-
tected in I�. For notation simplicity, we further letw� be the
weight vector [w�1 w�2 · · · w�E�

]T and dm
� denote the vec-

tor [d�1(Im) d�2(Im) · · · d�E�
(Im)]T . Thus equation (4)

can be rewritten in an inner product form:

D�(Im) = w� · dm
� . (5)

Henceforward what we have to learn is a distance function
parameterized byw� to sort samples other than I�. We now
introduce a cost on each sample not in the same class with
I� (cf. the Height function defined for negative samples in
[15]), and the definition is given by

Cost(In:n/∈C(�)) =
∑

m∈C(�)

1[w�·dm
� ≥w�·dn

� ] . (6)

That is, the cost of a particular sample In:n/∈C(�) is the num-
ber of samples that are in the same class with I� and lo-
cated further than In according to D�. A sample In:n/∈C(�)

with a large cost is expected to be pushed far away from I �.
Here the price function g(r) = rp in P-Norm Push is again
adopted and the objective function to be minimized is

F (w�) =
∑

n/∈C(�)

⎛⎝ ∑
m∈C(�)

1[w�·dm
� ≥w�·dn

� ]

⎞⎠p

. (7)
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Figure 3. We compute the HSV histograms in 22 overlapping re-
gions in different scales. Each histogram is then normalized by the
total number of pixels in the region.

While in [15] Rudin points out that the indicator function
in (7) can be replaced by any non-negative, monotonically
increasing function which is an upper bound of the indicator
function for easier optimization, in our case we still use the
original objective in that we can quickly neglect useless d�is
in the optimization algorithm. The details will be explained
in Section 5.1.2.

3.3. Distance function
The D� in (4) is in a general form. If all samples in

an application are of the same size and an elementary dis-
tance function d�i(Im) just returns the squared difference
between the two respective ith pixels of I� and Im, then
D� is simply a squared Mahalanobis distance with a diago-
nal covariance matrix. However, we choose to represent an
image as a bag-of-features, and set an elementary distance
d�i(Im) to be the smallest distance between the ith feature
of I� and any detected feature of the same type in Im.
In our experiments we adopt two kinds of features, as

they are often used in related work, e.g., [7, 8, 26]. They
are the geometric blur and HSV color histogram. We fur-
ther apply two different settings to each kind, and obtain
four types of features. As in [8], the two types of geometric
blur features, termed as GB1 and GB2, are extracted under
different scales with radii of 42 and 70 pixels, respectively.
The HSV histograms are also extracted under two schemes:
one is to compute the histograms on some 84 × 84-pixel
patches (sampled as in GB1 and GB2), the other is to com-
pute the histograms in 22 regions extracted with a pyramid
scheme similar to that in [9] (see Figure 3). The two types
of HSV histogram are named as HSV1 and HSV2, respec-
tively. We compute an HSV histogram in the same way as
in [7] and extract the geometric blur features by modifying
the original version1 in [2]. Notice that for GB1, GB2, and
HSV1, the feature-to-set distance is calculated between fea-
tures of the same type; for HSV2, the feature-to-set distance
is from distances between features at the same position.

3.4. Preliminary results
So far we have explained how to learn a distance function

that is suitable for ranking neighbors. To justify the formu-
lation, we carry out an experiment for k-nearest-neighbor

1 http://www.cs.berkeley.edu/∼aberg/demos/gb demo.tar.gz
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Figure 4. This graph shows the neighbor selection test with three
kinds of distances: the blue curve (with square markers) shows the
results from our learned distances; the red curve (with circle mark-
ers) shows the results from a maximum margin method; the green
curve (with dot markers) shows the results from a combination of
the L2 distances defined on geometric blur and color histograms.

selection, and compare our proposed distance function with
the raw distance and the distance learned by a maximum
marginmethod. The raw distance is from setting the weight
w�i for a particular sample I� to 1 if the ith feature is of type
GB1 or GB2, and to 1

18 if the ith feature is of type HSV1
or HSV2. With the maximum margin method, we learn a
distance function for a particular I� via the following con-
strained optimization:

min
w�,ξ

1
2
‖w�‖2 + λ

∑
m,n

ξmn , (8)

s.t. ∀ �, m, n, m ∈ C(�), n /∈ C(�) ,

w�i ≥ 0, ξmn ≥ 0 ,

w� · dn
� −w� · dm

� ≥ 1− ξmn .

This optimization is similar to those introduced in [18] and
[7]. We follow the technique described in [8] to optimize
(8). The experiment is done with the Caltech-101 dataset
by randomly selecting 15 images from each class and learn-
ing a distance function on each image. The k nearest neigh-
bors of each image are identified according to its respec-
tive distance function. For each sample I�, we calculate the
probability the k nearest neighbors fall in C(�) (with dif-
ferent values of k). The comparisons between these three
distance functions are shown in Figure 4. We can see that
our method performs particularly well when k is small, and
therefore fulfil the requirement of being capable of selecting
a few good neighbors. We note that the performance of the
maximum margin method may be slightly underestimated
since we have not tuned the parameters λ in (8) exhaustively
for each image. The other good property of our method is
that the learned distance functions are usually sparse. Al-
though in our setting an image I� may be represented with
up to 1222 features, the number of active features (i.e., with
w�i > 0) by our algorithm are usually less than 100. Some
examples of active features are illustrated in Figure 5, where
the images have been transformed to gray level for display.

(a) Accordion (b) Face easy (c) Anchor

Figure 5. Visualizations of active features picked by our algo-
rithm. The color information of images is taken off for focusing
on feature markers. Each marker represents a location of a patch
whose feature is active. The different shapes mean different fea-
ture types; circle, diamond, and triangle represent GB1, GB2, and
HSV1, respectively. The HSV2 feature is omitted here. In our
experiments, a harder (with lower recognition rate) image like (c)
often requires more active features, while an easier one needs only
several important features, e.g., the shoulder curve in Faces easy
class and the boundary edge in the Accordion class.

To further investigate the effectiveness of our neighbor
ranking method, we also develop a simple voting scheme
for classification. Specifically, for each learned local dis-
tance functionD�, � ∈ L, we define a threshold

θ� =
1
2
(D�(Im) + D�(In)), (9)

where, according to the neighbor list of I�, In is the first
sample not in the same class with I� and Im is the one
ranked right above In. In testing with a new image I , each
distance function with its associated threshold behaves as a
classifier. That is, if D�(I) ≤ θ�, thenD� supports that I is
in the same class with I�. The final class label of I is voted
by all classifiers. Images without class label assigned are
classified as background. We test this primitive method on
the Caltech-101 dataset by following the setting in Berg et
al. [1]. Namely, for each class we randomly pick 15 images
for training and another 15 for testing, and then switching
their roles in the second round. The results are presented in
the first column of Table 1. Even with such a rough rule,
the outcomes are already comparable with some of the re-
cent novel techniques, e.g., [7, 9, 11, 24].

4. Reshape distance functions for nearest
neighbor classification
The distance functions in Section 3 are learned in an

independent manner, and are hardly compared with each
other. Although a learned distance function alone performs
well in selecting the neighbors, it is not feasible to decide if
training sample I� or I�′ should be placed in a higher posi-
tion on the neighbor list of a new test sample I by compar-
ing the values of D�(I) and D�′(I). In fact, these distance
functions act more like rankers, and it is not necessary to
keep the exact values with them. Considering that given a



strictly increasing function q, transforming a distance func-
tion form D�(·) to D̃�(·) = q(D�(·)) would not affect the
objective function (7). We can utilize such a function to re-
shape these learned local distance functions altogether so
that direct comparisons among them can be achieved.
The reshape process is carried out as competitions over

training samples between any two distance functions of dif-
ferent classes. Given a reference sample I�, we prefer that
if Im is in the same class with I� and In is not, then the
reshaped distance D̃m(I�) should be smaller than D̃n(I�).
That is, the competition between D̃m and D̃n for I� depends
on the class labels of I�, Im and In. Furthermore, suppose
we make a sorted list of reshaped distances (in increasing
order) {D̃�′(I�)}�′ �=� from the training data and the learned
distance functions in Section 3. It is reasonable to pay more
attention to the samples in the top portion, since in testing
a given I , we usually consider those training samples with
smaller distances to I (under the assumption that I is re-
lated to some training image(s) I�). Hence for each fixed
reference sample I�, we can define a cost to each reshaped
D̃n(I�), n /∈ C(�) by

Cost(D̃n(I�)) =
∑

m∈C(�)

1[D̃m(I�)≥D̃n(I�)]
. (10)

Although any strictly increasing function could be our re-
shape function, in this work we restrict it to be a scaling
function, q(r) = ar, where a ∈ R+. Now the reshaped
function D̃� can be parameterized by a single scaler a� as
D̃� = a�D� and the overall objective function to be mini-
mized is

F̃ (a) =
∑
�∈L

∑
n/∈C(�)

⎛⎝ ∑
m∈C(�)

1[amDm(I�)≥anDn(I�)]

⎞⎠p′

,

(11)
where a = [a1, a2, ..., a|L|]T , and p′ � 1 acts as the price
function parameter like the p in (7).

5. Experiments
In this section we discuss some implementation details

and the results derived by the proposed neighbor ranking
method. We again consider the Caltech-101 dataset, col-
lected by Fei-Fei et al. [6]. In all our experiments, from each
class, we randomly pick 15 images for training and another
15 images for testing. We then exchange their roles and cal-
culate the average recognition rate. Images with larger sizes
are scaled down to around 60000 pixels while preserving
the aspect ratios. For each image, we extract the four types
of features as described in Section 3.3, and sample at most
400 features respectively for each type of GB1, GB2, and
HSV1. Hence an image is represented as a bag with at most
1200 + 22 features. Since the Caltech-101 dataset contains
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Figure 6. Confusion table by 3-NN+neighbor ranking+reshaping.

101 object classes and a background class, we thus obtain
1530 distance functions in the training procedure.
After the reshaping, we use a modified 3-NN classifier

to assign class labels on test data. Specifically, given a test
image I , the classifier first arranges the order of the train-
ing images according to their reshaped distances to I . If
a prediction on the class label of I cannot be determined
by the top three, then the succeeding samples will be con-
sidered one at a time until a decision can be made. We
have tested this method in several settings with different
features. The resulting confusion table is plotted in Fig-
ure 6, and the outcomes are listed in the second column of
Table 1. Despite the use of a simple classifier and basi-
cally two kinds of features, the accuracy rate by our method
achieves 69.83±0.41%, which is better than those reported
in all previous work on the same setting. However, it is still
behind the 87% accuracy rate by Varma and Ray [23], in
which they exploit several other robust features.
We also apply the neighbor ranking to the SVM-KNN

framework [26]. Given a test image I , the reshaped dis-
tances from each training sample to it are calculated first,
and then the k nearest neighbors are determined to train a
multiclass SVM classifier for I . (We use libSVM [3] for the
implementation here.) The overall recognition rate in this
case can be improved to 71.8 ± 0.32%. Table 1 shows the
related results.

5.1. Details and discussions
5.1.1 Price function

The parameters p in (7) and p′ in (11) are the price func-
tion parameters in the P-Norm Push, and some discussions



Voting k-NN3 (k = 3) SVM-KNN50 (k = 50) SVM-KNN7 (k = 7)
GB1+GB2 59.75±1.55 67.87±0.42 (67.97±0.41) 70.05±0.31 68.94±0.72
GB1+GB2+HSV1 60.88±1.13 69.64±0.60 (68.43±0.33) 70.26±0.46 70.39±0.85
GB1+GB2+HSV1+HSV2 62.19±0.23 69.83±0.41 (69.15±0.25) 71.80±0.32 71.76±0.93
Table 1. Accuracy rates on Caltech-101 dataset with different features and methods. Voting: The rough method stated in Section 3.4.
k-NN3: The 3-NN classifier by a reshaped distance. SVM-KNN50: SVM-KNN in which the k = 50 nearest neighbors are selected by a
reshaped distance. SVM-KNN7: The same with SVM-KNN50, but now k = 7 and the kernel used in the SVM is now derived from our
reshaped distance. The scores in the brackets are resulted from the speed-up algorithm stated in Section5.1.3. Notice that in SVM-KNN50
we focus on the boosting ability of the neighbor selection scheme so that in SVM the kernel is generated by all four types of features.

for different choices can be seen in [15]. While the val-
ues can be adjusted according to different needs, here we
show a way to adjust p for depressing the highest cost with
a higher priority. Suppose the training data includes N c

samples from each class, and totally has N samples. For
convenience, let No = N − Nc. Thus the possible maxi-
mum value of the objective function (7) is No ×Np

c . Let J
(J ′) be the price jump of a strategy involving (not involving)
lowering the highest cost h. Thus J ≥ hp − (h − 1)p and
J ′ ≤ No(h − 1)p. To make sure the algorithm will choose
to depress the highest cost, we can choose the value p such
that hp − (h− 1)p > No(h− 1)p. It follows that

p >
ln(No + 1)
ln( h

h−1 )
≥ ln(No + 1)

ln( Nc

Nc−1 )
(12)

where h ∈ {2, ..., Nc}. The lower bound constraint for p is
derived for the aforementioned scheme. In practice, since
most applications consider only a few nearest samples, a
smaller p value can be analogously selected, while achiev-
ing satisfactory results.

5.1.2 Optimizingwi and a

To optimize the objective function (7) according to w�, we
choose to find the best w�i in a sequential manner. The pro-
cess is repeated until convergence. If the value of w �i re-
mains zero in three consecutive iterations, it will be marked
as inactive. This way we can detect redundant or unneces-
sary features especially in the early stages. Since scaling
w� by a positive number would not affect the objective,w �

is normalized by the sum of its components after each iter-
ation for computational stability.
Optimizing (11) with respect to a can be done in a sim-

ilar fashion. The only exception is that the component a �

of a would never be set to zero. This property can be guar-
anteed since (11) is also a piecewise constant function. For
computational efficiency, we do not optimize (11) over all
triples (�, m, n). We only consider those satisfying the fol-
lowing conditions: Im ∈ C(�), In /∈ C(�), and I� is one
of the k nearest neighbors of both Im and In (computed re-
spectively by Dm and Dn). This way works because that

the top portion of each neighbor list is more meaningful af-
ter the optimization on w�i in the previous step.

5.1.3 Speeding up

We also implement a speed-up version to eliminate even
more useless features earlier. This is done by pre-selecting
initial features. Why this is possible is that in optimizing (7)
we find that only a relatively small number of features are
active in the final stage. To pre-select features we first sort
all features of an image I� according to the ranking ability
of each feature i:

∑
n/∈C(�)

(∑
m∈C(�) 1[d�i(Im)≥d�i(In)]

)p

and sample relatively densely in the top portion while
sparsely in the lower portion. To only select features with
high ranking ability is not practical since less powerful fea-
tures may complement robust features. We have tested our
method with the sampling ratios 1

3 ,
1
5 , and

1
8 , on the top,

middle, and bottom portions respectively to get competing
results in about 1

5 training time.

5.1.4 Distances and SVM

Defining the kernel in SVM with a distance function can be
done in a straightforward way via the kernel trick formula
[17, 25]: K(x, y) = 〈x, y〉 = 1

2 (〈x, x〉 + 〈y, y〉 − 〈x −
y, x− y〉) = 1

2 (D2(x, 0)+D2(y, 0)−D2(x, y)). However
in our work the distance function is asymmetric so that we
first need to resolve this issue. We present two approaches
based on the use of different distances in testing. The first
one (denoted as SVM-KNN50, see Table 1) is to select the
k nearest neighbors with the learned distance functions but
uses the raw distance (described in Section 3.4) in SVM. To
make sure the kernel is positive-definite we follow [26] to
let D(I�, Im) be defined as 1

2 (D�(Im) + Dm(I�)), where
D� and Dm are the raw distances. The other (denoted as
SVM-KNN7) is to use the learned distance functions both
in selecting the k nearest neighbors and in SVM. For this
scheme we need a further definition on the distance from a
test image It to a training image I�:

D̃t(I�) :=

∑
m∈B(It)

(D̃m(It)× D̃m(I�))∑
m∈B(It)

D̃m(It)
, (13)



where B(It) includes the 3 nearest neighbors of It in the
training data.
We obtain similar outcomes with these two settings in

very different k values. With the first setting we get the best
result when k is around 50 and the score does not change
much as k varies in 30 ∼ 60, while with the second we set
k = 7 to achieve the best score. The later result seems that
the classification is dominated by the neighbor selection.
This is probably due to the crudely produced kernel from
the more asymmetric distance functions.

6. Conclusion
We have presented a novel approach to improving lo-

cal learning by incorporating supervised neighbor ranking
in distance function learning. The effectiveness of the pro-
posed technique is demonstrated by dealing with a challeng-
ing multiclass classification problem, visual object catego-
rization. We show that together with a simple k-nearest-
neighbor classifier, our method can yield satisfactory re-
sults, as well as has the ability to improve some existing
localized learningmethods, e.g., SVM-KNN [26]. The clas-
sification rates by the simple settings described in our exper-
iments can compete with those in most related work, except
that by Varma and Ray [23], in which several robust features
and a more sophisticated learning scheme are used. As our
framework has the flexibility in easily adopting more fea-
tures in the distance function, we would explore the effects
of adopting those features used in [23] for our future work.
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