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Abstract

We introduce spatial PACT (Principal component Anal-
ysis of Census Transform histograms), a new representa-
tion for recognizing instances and categories of places or
scenes. Both place instance recognition (“I am in Room
113”) and category recognition (“I am in an office”) have
been widely researched. Features that have different dis-
criminative power/invariance tradeoff have been used sep-
arately for the two tasks. PACT captures local structures of
an image through the Census Transform (CT), while large-
scale structures are captured by the strong correlation be-
tween neighboring CT values and the histogram. The PCA
operation ignores noise in the histogram distribution, com-
putes important “primitive shapes”, and results in a com-
pact representation. Spatial PACT, a spatial pyramid of
PACT, further incorporates global structures in the image.
Our experiments demonstrate that spatial PACT outper-
forms the current state-of-the-art in several place and scene
recognition, and shape matching datasets. Besides, spatial
PACT is easy to implement. It has nearly no parameter to
tune, and evaluates extremely fast.

1. Introduction
Knowing “Where am I” has always being an important

research topic in the robotics and computer vision commu-
nities. Place recognition (or robot localization/mapping)
has been widely studied in robotics [8, 17, 19, 23, 27],
which usually requires to find the exact location in a global
frame of reference [8, 19], or at least to find a rough lo-
cation (e.g. “I am in Room 113”) [17, 22, 23, 27]. Vision
researchers, however, work on the other end of the spec-
trum. Instead of recognizing a precise location or exact in-
stance of a room, usually a category of the place is recog-
nized [2, 4, 9, 16, 18]. In other words, vision methods will
output “This is an office” instead of “This is office 113.”
For this reason, place recognition is usually termed as scene
recognition in vision.

The difference in recognition goals also results in differ-
ent choices of input sensors and data collection procedures.

Images are usually used in scene recognition tasks. The im-
ages were purposely captured to be in the canonical view
(characteristic of the scene category). In robot localization,
range sensors are popular. Recently cameras are also fre-
quently used [17, 25, 28]. Since images are acquired by
robots, no effort is taken to make sure that they are repre-
sentative of or distinctive for the place.

Consequently, the image representations are quite differ-
ent.1 Robot localization usually employs features with high
discriminative power (e.g. SIFT features in [19]), while fea-
tures with higher invariance (e.g. “visual codebook” in [9])
are used for scene recognition.

Both research problems have wide applications in real
world. It is very convenient if a home service robot could
locate itself in specific rooms in a house. Knowing the se-
mantic category of a location will also help recognizing ob-
jects in the scene [22], which may further help identify more
detailed information of the location. Place instance and cat-
egory recognition are different but related aspects of a gen-
eral place recognition problem. In this paper we propose
PACT, Principal component Analysis of Census Transform
histograms, a representation that unify the needs for recog-
nizing both instances and categories of places. The Cen-
sus Transform (CT) summarizes local shape information,
while the strong constraints among neighboring CT values
and the PCA operation compactly encode the global shape
in an image patch. We also propose spatial PACT, which en-
codes rough global spatial arrangement of sub-blocks in an
image, and finds the tradeoff between discriminative power
and invariance [24] for place recognition tasks. We show
that spatial PACT has several important advantages in com-
parison to state-of-the-art feature representations for scene
recognition and categorization:

• Superior recognition performance on multiple stan-
dard datasets;

• Significantly fewer parameters to tune;

• Extremely fast evaluation speed (> 50 fps);

• Very easy to implement.
1In this paper we will focus on the camera sensor data.
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The rest of the paper is organized as follows. Related meth-
ods are discussed in Sec. 2. PACT and spatial PACT are pre-
sented in Sec. 3, with experiments shown in Sec. 4. Sec. 5
concludes this paper with discussions of drawbacks of the
proposed method and future research.

2. Related Work
There is a large literature body in both place instance

and category recognition. In this section we will focus on
the representation issues in place recognition.

Histograms of various image properties (e.g. color [17,
21, 23], or image derivatives [17]) have been widely used
in place recognition. However, after SIFT [13] is popular-
ized in the vision community, it nearly dominates the fea-
ture choice in place recognition systems [2, 4, 7, 9, 10, 12,
18, 19, 27]. SIFT features are invariant to scale and robust
to rotation changes. The 128 dimensional SIFT descriptors
have high discriminative power, while at the same time are
robust to local variations [15]. It is shown that SIFT signif-
icantly outperforms edge points [9], pixel intensities [2, 4],
and steerable pyramids [7] in recognizing places and scenes.

It is suggested that recognition of scenes could be ac-
complished by using “global configurations”, without de-
tailed object information [16]. Thus statistical analysis of
the distribution of SIFT features are popular in scene recog-
nition. SIFT descriptors are first vector quantized to form
the “visual codebook” or “visterms”. Different views are
held on the quantized SIFT features. Some researchers
believe that the codebook represent meaningful semantic
aspects of the natural scenes. Liu and Shah [12] used
Maximization of Mutual Information co-clustering to clus-
ter SIFT features to form intermediate semantic concepts.
Probabilistic Latent Semantic Analysis (pLSA) was also
used to detect latent semantic topics [2, 18]. Quelhas et
al. showed that in a 3 class classification task pLSA gen-
erated compact representation and improved recognition.
However, Lazebnik, Schmid and Ponce showed that pLSA
lowered recognition rates by about 9% in a 15 class scene
recognition problem [9]. The k-means algorithm was used
to cluster SIFT features, and the cluster centers were used
as the codebook in [9]. In place recognition, SIFT features
were usually densely sampled, instead of only sampled at
interest points [2].

SIFT models represent images as “bag of features”, i.e.
spatial arrangement information among features are com-
pletely ignored. However, it was long recognized that spa-
tial arrangements were essential for recognizing scenes.
For example, Szummer and Picard divided images into
4× 4 blocks, matched blocks separately, and combined the
matching results [21]. This strategy significantly improved
recognition accuracy. In [9], Spatial Pyramid Matching
(SPM) was proposed as a kernel method that systematically
integrated the spatial information. Images were repeatedly

(a) mountain image (b) Transformed image

Figure 1. An example “Census Transformed image”.
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Figure 2. Illustration of constraints between CT values of neigh-
boring pixels. This picture is best viewed in color.

divided into increasingly finer sub-blocks, and histograms
of local features of sub-blocks were integrated using the
spatial kernel matching scheme, which took into account
rough spatial correspondences.

3. Spatial PACT
3.1. PACT: Principal component Analysis of Census

Transform histograms

Census Transform (CT) is a non-parametric local trans-
form designed for establishing correspondence between lo-
cal patches [26]. Census transform compares the intensity
values of a pixel with its eight neighboring pixels, as illus-
trated in Eqn. 1.

32 64 96
32 64 96
32 32 96

⇒
1 1 0
1 0
1 1 0

⇒ (11010110)2 ⇒ CT = 214 (1)

The eight bits generated from intensity comparisons can be
put together in any order (we collect bits from top to bottom,
and from left to right), which is consequently converted to
a base-10 number in [0 255].2 Just as other non-parametric
local transforms which are based on intensity comparisons
(e.g. ordinal measures [1]), Census Transform is robust to
illumination changes, gamma variations, etc.

As a visualization method, we create a “Census Trans-
formed image” by replacing a pixel with its CT value.
Shown by the example in Fig. 1, the Census Transform re-
tains global structures of the picture (especially discontinu-
ities) besides capturing the local structures as it is designed
for. A histogram of the CT values in an image (or image
patch) thus encodes both local and global information of
the image.

Another important property of the transform is that CT
values of neighboring pixels are highly correlated. In the

2x = y is treated as if x > y. Thus in Eqn. 1 the second bit is set to 1.



example of Fig. 2, we examine the constraint posed by the
two center pixels. The Census Transform for pixels valued
36 and 37 are depicted in right, and the two circled bits are
both comparing the two center pixels (but in different or-
ders). Thus the two circled bits are constrained to be strictly
complement to each other. More generally, bit 5 of CT(x, y)
and bit 4 of CT(x + 1, y) must always be complement to
each other, since they both compare the pixels at (x, y) and
(x+ 1, y). There exist many other such constraints. In fact,
there are eight such constraints between one pixel and its
eight neighboring pixels. Besides these deterministic con-
straints, there also exist indirect constraints that are more
complex. For example, in Fig. 2, the pixel valued 32 com-
pares with both center pixels in computing their CT values
(bit 2 of CT(x, y) and bit 1 of CT(x+1, y)). Depending on
the comparison results between the center pixels, there are
probabilistic relationships between these bits.

The transitive property of such constraints also make
them propagate to pixels that are far apart. For example, in
Fig. 2, the pixels valued 31 and 42 can be compared using
various paths of comparisons, e.g. 31 < 35 < 39 < 40 <
41 < 42. Similarly, although no deterministic comparisons
can be deduced between some pixels (e.g. 34 and 39), prob-
abilistic relationships still can be obtained. The propagated
constraints make Census Transform histograms implicitly
contain information for describing global structures, unlike
the histogram of pixel values.

Finally, in the top part of Fig. 1(b), various CT values
seemingly quite different are displayed. But in the base-2
format, these CT values all represent homogeneous regions
with small variations (e.g. (00001000)2). That is, there also
exist strong correlations between pairs of CT values. We
use Principal component Analysis of Census Transform his-
tograms (PACT) to remove these correlation effects, and
to get a more compact representation. We will use PACT
as our representation for place recognition, and usually 40
eigenvectors are used in the PCA operation.

In computing histograms and PCA, we remove two bins
with CT = 0, 255 and normalize the CT histograms and
eigenvectors such that they have zero mean and unit norm.
Also, we do not subtract mean in PCA for computational
efficiency. Our experiments show that this does not cause
significant difference in recognition results.3

3.2. PACT encodes shape

In order to understand why PACT efficiently captures
the essence of scene information, it is worthwhile to fur-
ther examine the distribution of CT values and the PACT.
Using 1500 images from the 15 class scene dataset [9],
we find that the 6 CT values with highest frequencies are
CT = 31, 248, 240, 232, 15, 23 (excluding 0 and 255). As

3Code is available at http://www.cc.gatech.edu/˜wujx/
PACT/PACT.htm. Please refer to the code for details.

(a) ellipse (b) CT = 31 (c) CT = 248 (d) CT = 240

(e) CT = 232 (f) CT = 15 (g) CT = 23

0 50 100 150 200 250
0

5

10

15

20

25

30

35

(h) histogram

Figure 3. Illustration of Census transforms. 3(a) is an example
image of ellipse. 3(b)-3(g) show pixels having the 6 highest fre-
quency CT values (shown in red). 3(h) is the CT histogram of 3(a).
This image is best viewed in color.
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(d) Census Transform histograms

Figure 4. Census Transform encodes shape in 1-d. The Census
Transform values of (a)-(c) are shown in the caption, and their CT
histograms in (d). Both end points are ignored in compute CT.
This image is best viewed in color.

shown in Fig. 3(b)-3(g), these CT values captures local 3×3
neighborhoods that have either horizontal or various close-
to-diagonal edge structures. It is sort of counter-intuitive
that vertical edge structures are not among the top candi-
dates. A possible explanation is that vertical structures are
usually appearing to be inclined in pictures because of the
perspective nature of cameras.

Histogram of the example ellipse image (Fig. 3(a)) is
shown in Fig. 3(h). It summarizes the distribution of var-
ious local structures in the image. Because of the strong
correlation of neighboring CT values, the histogram cells
are not independent of each other. On the contrary, a his-
togram implicitly encodes strong constraints of the global
structure of the image. For example, if an image has a CT
distribution close to that of Fig. 3(h), we would well expect
the image to exhibit ellipse shape with a high probability.

A simplification to the one dimensional case better ex-
plains the intuition behind our statement. In 1-d there are
only 4 possible CT values, and the semantic interpretation
of these CT values are obvious. As shown in Fig. 4(a), the
four CT values are CT = 0 (valley), CT = 1 (downhill),



(a) (b)
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Figure 5. Image patches that have high correlation coefficients
with the primitive shapes. Image patches that have high correla-
tion with the same eigenvector are organized in the same subfigure,
and they share common shape characteristic.

CT = 2 (uphill), and CT = 3 (peak). For simple shapes
in 1-d, the CT histograms encode lots of shape information
and constraints. Downhill shapes and uphill shapes can only
be connected by a valley, and uphill shapes require a peak
to transit to downhill shapes. Because of these constraints,
the only other shapes that has the same CT histogram as
that of Fig. 4(a) is those shapes that cut a small portion of
the left part of Fig. 4(a) and move it to the right. Images
that are different but keep the shapes (e.g. Fig. 4(b)) also
are similar in their CT histograms (Fig. 4(d)). On the con-
trary, a large number (> 1M ) of possible curves have the
same intensity histogram as that of Fig. 4(a). Even if we
impose smoothness constraints between neighboring pixel
intensities, the shape ambiguity is still large (e.g. Fig. 4(c)
is smooth and has the same intensity histogram as that of
Figs. 4(a) and 4(b), but it has different shape and a very
different CT histogram).

PCA on the CT histograms (i.e. PACT) extracts the most
important components among the distribution of CT his-
tograms (in terms of histogram reconstruction). In this
sense, eigenvectors with high eigenvalues are important
“primitive shapes” which are independent (or, not similar)
to each other. In other words , the eigenvectors are the
“shape codebook” in the CT histogram space. Since both
the histogram and eigenvectors are normalized to have zero
mean and unit norm, elements in PACT are the correlation
coefficients (i.e. similarities) between the input histogram
and the primitive shapes. Example image patches whose
CT histograms have high correlation coefficients with these
primitive shapes are shown in Fig. 5. For example, image
patches in Fig. 5(b) all have inclined edges, and Fig. 5(c)
are patches of high degree of roughness (consisting of many
miniature building blocks, c.f . [16]).

3.3. Spatial PACT

A “spatial pyramid” (dividing an image into subregions
and integrating correspondence results in these regions) en-
codes rough global structure of an image and usually im-

Figure 6. Illustration of the level 2, 1, and 0 split of an image.

proves recognition [9]. It is straightforward to build a spa-
tial pyramid for the proposed PACT representation (spatial
PACT, or, sPACT). As shown in Fig. 6, the level 2 split
in a spatial pyramid divides the image into 22 × 22 = 16
blocks. We also shift the division (dash line blocks) in or-
der to avoid artifacts created by the non-overlapping divi-
sion, which makes a total of 25 blocks in level 2. Similarly,
level 1 and 0 have 5 and 1 blocks respectively. The image
is resized between different levels so that all blocks contain
the same number of pixels. PACT in all blocks are then con-
catenated to form an overall feature vector. For example, if
40 eigenvectors are used in PACT, a level 2 pyramid will re-
sult in a feature vector which has 40× (25+5+1) = 1240
dimensions.

After the sPACT feature vectors are extracted from im-
ages, we choose different classifiers for recognizing place
instances and categories, in order to find the right trade-
off between discriminative power and invariance for both
problems. In order to recognize place instances, we use
the Nearest Neighbor classifier (1-NN, to be precise). Thus
we are looking for places that have not only similar lo-
cal patches, but also exact spatial arrangements of these
patches. SVM classifiers are used for category recognition.
In category recognition we are only expecting loose spatial
information, such as “sky should be above the ground”. We
expect the generalization ability of SVM to capture such re-
lationships, while avoiding overfitting.

Since the CT values are based on only pixel intensity
comparisons, it might be helpful to include a few images
statistics, e.g. average value and standard deviation of pixels
in a block. We append these statistics to spatial PACT in
the input to SVM classifiers for scene recognition problem.
However, they are not used in the 1-NN classifiers, since the
large variation of illumination in place instance recognition
tasks will cause these global statistics to be unreliable.

4. Experiments

The spatial PACT representation are tested on 4 datasets:
Swedish leaf [20], KTH IDOL [17], 15 class scene cate-
gory [9], and the 8 class event dataset [10]. In each dataset,
the available data are randomly split into a training set and
a testing set. The random splitting is repeated 5 times, and
the average accuracy is reported. Although color images
are available in 3 datasets (leaf, IDOL, and events), we only
use the intensity values and ignore color information. No
parameter need to be set in the 1-NN classifier. We use



Figure 7. Example images from the Swedish Leaf dataset. The first
15 images are chosen from the 15 leaf species, one per species.
The last image is the contour of the first leaf image.

Method Input Rates
Shape-Tree [5] Contour only 96.28%
IDSC+DP [11] Contour only 94.13%
sPACT Contour only 90.77%
SC+DP [11] Contour only 88.12%
Söderkvist [20] Contour only 82.40%
sPACT Gray-scale image 97.92%
SPTC+DP [11] Gray-scale image 95.33%

Table 1. Results on the Swedish leaf dataset.

LIBSVM [3] for the SVM classifiers. RBF kernels are used
in our experiments, and the parameters of SVM are chosen
by cross validation.4

4.1. Swedish Leaf

The Swedish leaf dataset [20] collects pictures of 15
species of Swedish leaves (c.f . Fig. 7). There are 75 im-
ages in each class. Following the protocol of [20], 25 im-
ages from each class are used for training and the rest 50 for
testing.

This dataset has been used to evaluate shape matching
methods [5, 11], in which the contour of leaves (instead of
the gray-scale or color leaf picture) are used as input (e.g.
the last picture in Fig. 7). In the contour image, no other
information is available (e.g. color, texture) besides shape.
We use the contour input to verify our statement that sPACT
encodes shape information.

The first 25 images from each class are used to train the
PCA eigenvectors. 10 and 40 eigenvectors are used when
the inputs are contour and intensity images, respectively.
Results on this dataset are shown in Table 1. Although
not specifically designed for matching shapes, sPACT can
achieve 90.77% accuracy on leaf contours, better than
Shape Context+Dynamic Programming (SC+DP). When
pictures instead of contours are used as input, sPACT can
recognize 97.92% leaves, which outperforms other methods
by a large amount.

4.2. KTH IDOL

The KTH IDOL (Image Database for rObot Localiza-
tion) dataset [14] was captured in a five-room office envi-
ronment, including a one-person office, a two-person office,

4In detail, we use the easy.py tool from LIBSVM and the training
set in the first random split to choose parameters.

(a) Cloudy (b) Night (c) Sunny

Figure 8. Example images from the KTH IDOL dataset. Images
showed the same location under different conditions. Images were
taken by the Minnie robot.

a kitchen, a corridor, and a printer area. Images were taken
by two Robots: Minnie and Dumbo. The purpose of this
dataset is to recognize which room the robot is in based on
a single image, i.e. a place instance recognition problem.

Cameras were mounted at different heights on the robots,
which made the pictures taken by the two robots quite dif-
ferent. Image resolution was 320 × 240. A complete
image sequence contained all the images captured by a
robot when it was driven through all five rooms. Images
were taken under 3 weather conditions: Cloudy, Night,
and Sunny. For each robot and each weather condition, 4
runs of robot driving were taken on different days. Thus,
there are in total 2 × 3 × 4 = 24 image sequences. Var-
ious changes during different robot runs (e.g. moving per-
sons, changing weather and illumination conditions, relo-
cated/added/removed furniture make this dataset both real-
istic and challenging. Fig. 8 shows images taken by the
Minnie robot under 3 different weather conditions at ap-
proximately the same location, but with substantial visual
changes.

In our experiments we use the run 1 and 2 in each robot
and weather condition. We perform 3 types of experiments
as those in [17]. First we train and test using the same robot,
same weather condition. Run 1 is used for training and run
2 for testing, and vice versa. Second we use the same robot
for training and testing, but with different weather condi-
tions. These experiments test the ability of sPACT to gener-
alize over variations caused by person, furniture, and illumi-
nation. The last type of experiment uses training and testing
set under the same weather conditions, but captured by dif-
ferent robots. Note that images taken by the two robots are
quite different. The 1-Nearest neighbor classifier is used for
this place instance recognition task. Results using level 2
pyramid sPACT and 1-NN are shown in Table 2, compared
against results in [17].

In the first type of experiments, both sPACT and the
method in [17] attain high accuracy (> 95%), and the two
methods are performing roughly equally well. However,
in the second type of experiments sPACT has significantly
higher accuracies (18% higher in Minnie and 14% higher in
Dumbo). The superior performance of sPACT shows that it
is robust to illumination changes and other minor variations
(e.g. moving persons, moved objects in an image, etc). The



Train Test Condition sPACT [17]
Minnie Minnie Same 95.35% 95.51%
Dumbo Dumbo Same 97.62% 97.26%
Minnie Minnie Different 90.17% 71.90%
Dumbo Dumbo Different 94.98% 80.55%
Minnie Dumbo Same 77.78% 66.63%
Dumbo Minnie Same 72.44% 62.20%

Table 2. Average accuracies on recognizing place instances using
the KTH-IDOL dataset. Level 2 pyramids are used for sPACT.

L=0 L=1 L=2 L=3
Minnie 60.51% 85.75% 90.17% 90.30%
Dumbo 74.67% 91.75% 94.98% 94.67%

Table 3. Average accuracies on the KTH-IDOL dataset using dif-
ferent levels of spatial pyramid. The training and testing set are
acquired using the same robot, but different weather conditions.
L = 0 means not using a spatial pyramid at all.

Dumbo robot achieves a 94.57% accuracy using a single
input image without knowing any image histories (a “kid-
napped robot” [25]). Thus, after walking a robot in an en-
vironment, sPACT enables the robot to robustly answer the
question “Whare am I?” based on a single image, a capac-
ity that is very attractive to indoor robot applications. When
the training and testing data come from different robots, the
performance of both methods drop significantly. This is ex-
pected, since the camera heights are quite different. How-
ever, sPACT still outperforms the SVM classifier in [17] by
about 10%.

We also tested the effects of using different pyramid lev-
els. As shown in Table 3, applying a spatial pyramid match-
ing scheme greatly improves system performances (L > 0
vs. L = 0). However, the improvement afterL > 2 is negli-
gible. L = 3 performance is even worse than that of L = 2
in Dumbo. Our observation corroborates that of Lazebnik,
Schmid and Ponce in [9], which used a scene recognition
dataset. In the remainder of this paper, we will use L = 2
in sPACT.

sPACT can be computed and evaluated quickly. The
IDOL dataset has around 1000 images in each image se-
quence, and sPACT processes at about 50 frames per sec-
ond on an Intel Pentium 4 2GHz computer for computing
the features, and finding the 1-NN match.5

4.3. The 15 class scene category dataset

The 15 class scene recognition dataset was built gradu-
ally by Oliva and Torralba ([16], 8 classes), Fei-Fei and Per-
ona ([4], 13 classes), and Lazebnik, Schmid and Ponce ([9],
15 classes). This is a scene category dataset (scene classes
including office, store, coast etc. Please refer to Fig. 9 for
category names.) Images are about 300 × 250 in resolu-
tion, with 210 to 410 images in each category. This dataset
contains a wide range of scene categories in both indoor

5Or 20 fps if include the time for loading the test image from hard drive.

L Method Feature type Rates
0 SPM [9] 16 channel weak features 45.3± 0.5

0 SPM [9] SIFT, 200 cluster centers 72.2± 0.6

0 SPM [9] SIFT, 400 cluster centers 74.8± 0.3

0 sPACT CT histogram 73.8± 0.8

3 SPM [9] 16 channel weak features 66.8± 0.6

2 SPM [9] SIFT, 200 cluster centers 81.1± 0.3

2 SPM [9] SIFT, 400 cluster centers 81.4± 0.5

3 SPM [12] SIFT, 400 inter. concepts 83.3
2 sPACT PACT, 40 eigenvectors 83.3± 0.5
Table 4. Recognition rates on the 15 class scene dataset.

and outdoor environments. Unlike the KTH IDOL images
which are taken by robots, images in this datasets are taken
by people and representative of the scene category. We use
SVM and sPACT in this dataset. The first 100 images in
each category were used to perform PCA. Same as previ-
ous research on this dataset, 100 images in each category
are used for training, and the remaining images constitute
the testing set. The results are shown in Table 4, where our
level 2 pyramid sPACT achieves the highest accuracy.

In [9], low level features were divided into weak features
(computed from local 3× 3 neighborhoods) and strong fea-
tures (SIFT features computed from 16×16 image patches).
Strong features were shown to have much higher accuracy
than weak features (c.f . Table 4). The Census Transform
is computed from 3× 3 local neighborhoods, and falls into
the weak feature category. However, when L = 0 (not us-
ing spatial pyramid), sPACT substantially outperforms the
weak features and the strong features with 200 codebook
size in [9], and is only inferior to the strong features with
400 codebook size. When a spatial pyramid is used, sPACT
has the highest recognition rate (in tie with the strong SIFT
features with 400 “intermediate concepts” in [12]). We
believe that this is because the strong constraints between
neighboring CT values of make PACT able to capture shape
information beyond the 3× 3 patches.

Confusion matrix from one run on this dataset (L = 2
sPACT) is shown in Fig. 9, where row and column names
are true and predicted labels respectively. The biggest con-
fusion using sPACT happens between category pairs such
as bedroom/living room, industrial/store, and coast/open
country, which coincides well with the confusion distribu-
tion in [9].

Orientation Histogram Orientation histogram [6] is an-
other representation that uses histogram of quantities com-
puted from 3 × 3 neighborhoods. We implemented this
method with 40 bins. Combined with a level 2 spatial
pyramid, Orientation Histogram achieves 76.6% recogni-
tion rate, which is signifantly worse than sPACT (83.3%).

Indoor-outdoor classification We also distinguish in-
door and outdoor scenes in this dataset. The “industrial”
category contains both indoor and outdoor images, and is
ignored. The remaining 14 categories are separated as 5 in-



0.69 0.19

0.18 0.74

0.98

0.77 0.13

0.74

0.83 0.11

0.93

0.86

0.82

0.85

0.79

0.88

0.87

0.95

0.85

bedroom

bedroom

livingroom

livingroom

suburb

suburb

industrial

industrial

kitchen

kitchen

coast

coast

forest

forest

highway

highway

inside city

inside city

mountain

m
ountain

open country

open country

street

street

tall building

tall building

office

office

store

store

Figure 9. Confusion matrix of the 15 class scene dataset. Only
rates higher than 0.1 are shown in the figure.

door categories and 9 outdoor categories. Using L = 2 and
L = 0, sPACT successfully predicts labels for 98.54% and
96.28% of the images, respectively. These recognition rates
are much higher than previous results on indoor-outdoor
classification datasets (e.g. [21, 16]).

Linear classifiers Linear SVM classifiers are also ap-
plied to the scene dataset. They achieve accuracy of 82.05%
and 74.18%, using sPACT with L = 2 and L = 0, respec-
tively. The implication of these results are two fold. First,
the difference in performance of RBF kernels and linear ker-
nels are quite small.6 This observation suggests that images
from the same category are compact in the sPACT repre-
sentation space. Second, because of the fast testing speed
of linear classifiers and small performance difference, linear
SVM classifiers could be used to ensure real-time classifica-
tion. A further observation is that linear SVM classifiers get
95.32% accuracy on indoor-outdoor classification, without
using a spatial pyramid. In other words, the CT histgoram
could reliably distinguish the man-made indoor structures
and the outdoor natural scenes.7

Speed and classifier analysis The time to extract PACT
is proportional to the input image size. However, large im-
ages can be down-sampled to ensure high speed. Our exper-
iments observed only slight (usually < 1%) performance
drop. Also, sPACT is not sensitive to SVM parameters.
(C, γ) = (8, 2−7) is recommended for RBF kernels with
probability output, and C = 2−5 for linear SVM. Finally,
we want to point out that choosing the right classifier for
a specific application is very important. If we use SVM for
the IDOL dataset or use 1-NN for the scene dataset, recogni-
tion rates are about 10% lower than the rates reported above.

6In all the datasets we experimented with, the difference in recognition
rates between these two kernel types are smaller than 2%.

7However, because of the strong correlation in CT values, it is diffi-
cult to translate this linear indoor-outdoor classifier into intuitive semantic
interpretations or visualizations.
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Figure 10. Confusion matrix of the event dataset. Only rates higher
than 0.1 are shown in the figure.

4.4. The 8 class event dataset

The event dataset contains images of eight sports: bad-
minton, bocce, croquet, polo, rock climbing, rowing, sail-
ing, and snowboarding [10]. In [10], Li and Fei-Fei used
this dataset in their attempt to classify these events by inte-
grating scene and object categorizations (i.e. deduce “what”
from “where” and “who”). We use this dataset for scene
classification purposes only. That is, we classify events by
classifying the scenes, and do not attempt to recognize ob-
jects or persons.

The images are high resolution ones (from 800x600 to
thousands of pixels per dimension). The number of images
in each category ranges from 137 to 250. Following [10],
we use 70 images per class for training, and 60 for testing.
The first 50 images in each category are used to compute
the eigenvectors. We use RBF kernel SVM classifiers with
level 2 pyramid sPACT features in this dataset.

Overall we achieve 78.50% accuracy on this dataset.
In [10], the scene only model achieved approximately 60%
accuracy, which is significant lower than the sPACT result.
When both scene and object categorization were used, the
method in [10] had an accuracy of 73.4%, still inferior to
our result. Note that this scene+object categorization used
manual segmentation and object labels as additional inputs.

The scene only model of sPACT exhibits different be-
haviors than the scene+object model in [10], as shown in
the confusion matrix in Fig. 10. The most confusing pairs
of our method are bocce/croquet, and rowing/sailing. These
results are intuitive because these two pairs of events share
very similar scene or background. In [10], the most con-
fusing pairs are bocce/croquet, polo/bocce, and snowboard-
ing/badminton. The object categorization helped in dis-
tinguishing rowing and sailing. However, it seems that it
also confused events that have distinct backgrounds, such
as snowboarding and badminton.

5. Conclusions
In this paper we propose PACT, Principal component

Analysis of Census Transform histograms, as a represen-
tation for recognizing instances and categories of places.



We show that the Census Transform efficiently captures im-
age structures in the 3 × 3 local area. We analyze the di-
rect and indirect constraints existing among neighboring CT
values. These constraints were shown to propagate to pix-
els far apart, which enables PACT to implicitly capture the
global shape in an image. PACT also handles the strong
correlation among pairs of CT values using PCA. We use
the one dimensional special case to illustrate why PACT en-
codes shape and support our statement by experiments on
the Sweden leaf dataset. PACT is then combined with the
spatial pyramid matching [9] idea. We use spatial PACT
to recognize both place instances and categories. On four
datasets including both place instance and category recog-
nition tasks, spatial PACT achieves higher accuracies than
state-of-the-art methods. Comparing with other represen-
tations, sPACT not only exhibits superior performance. It
has nearly no parameter to tune and is easy to implement.
sPACT also evaluates extremely fast.

There are several limitations of PACT and future re-
search directions to improve it. First, PACT is not invariant
to rotations. Although robot acquired images and scene im-
ages are usually upright, making PACT rotational invariant
will enlarge its application area. Second, we want to recog-
nize place categories in more realistic settings, i.e. learning
the category concepts using images acquired without hu-
man bias. And finally, the PACT representation and learned
place category could be applied to facilitate the recognition
of objects in the image [22].
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[20] O. J. O. Söderkvist. Computer vision classification of leaves
from swedish trees. Master’s thesis, Linköping University,
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