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Abstract

In this paper we propose an approach for action recog-
nition based on a vocabulary forest of local motion-
appearance features. Large numbers of features with as-
sociated motion vectors are extracted from action data and
are represented by many vocabulary trees. Features from
a query sequence are matched to the trees and vote for ac-
tion categories and their locations. Large number of trees
make the process efficient and robust. The system is capa-
ble of simultaneous categorization and localization of ac-
tions using only a few frames per sequence. The approach
obtains excellent performance on standard action recogni-
tion sequences. We perform large scale experiments on 17
challenging real action categories from olympic games1 .
We demonstrate the robustness of our method to appear-
ance variations, camera motion, scale change, asymmetric
actions, background clutter and occlusion.

1. Introduction
Significant progress has been made in classification of

static scenes and action recognition is receiving more and
more attention in computer vision community. Many exist-
ing methods [2, 5, 8, 18, 21, 24, 25] obtain high classifi-
cation score for simple action sequences with exaggerated
motion, static and uniform background in controlled envi-
ronment. Example of a category used by these methods is
displayed in Figure 1(left). It is however hard to make a vi-
sual correspondence to the real action of the same category
displayed in Figure 1(right) as the appearance, motion and
clutter of the scene is very different. Such scenes represent
a real challenge which is rarely addressed in the literature.
Our main goal in this paper is to propose a generic solution
which could handle these type of actions but also to demon-
strate how the performance for the controlled environment
and the real one can differ.
The need for using real world data is argued in image

recognition community [3]. The same direction should
be followed in action classification, since the solutions
proposed in both fields start to converge. Recently, a

1Video footage covering olympic games in Barcelona.
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Figure 1. Examples of an object-action category in different envi-
ronments.

boosted space-time window classifier from [8] was applied
to real movie sequences in [10]. However, boosting sys-
tems are known to require weak classifiers and large num-
ber of training examples to generalize, otherwise the per-
formance is low. Other frequently followed class of ap-
proaches is based on spatio-temporal features computed
globally [1, 4, 26] or locally [2, 5, 19, 24]. Both meth-
ods suffer from various drawbacks. Global methods can-
not recognize multiple actions simultaneously or localize
them spatially. In these methods recognition can be done by
computing similarity between globally represented actions
using cross-correlation [4] or histograms of spatio-temporal
gradients [26]. Spatio-temporal interest points [9] result in
a very compact representation but are too sparse to build
action models robust to camera motion, background clutter,
occlusion, motion blur etc. Moreover, local features are of-
ten used to represent the entire sequence as a distribution,
which results in a global representation at the end. It was
demonstrated in [25] that as few as 5 to 25 spatio-temporal
interest points give high recognition performance on stan-
dard test data. We argue that this number is insufficient for
real actions. The need for more features has been observed
in [2], where Harris interest point detector was combined
with Gabor filter to extract more spatio-temporal points.
This argument was also emphasized by [5, 19], which pro-
pose a hybrid of spatio-temporal and static features to im-
prove the recognition performance. This shifts the attention
from motion towards the appearance of objects performing
actions. In this context it seems more appropriate to address
object-action categorization problem rather than action via
motion only.
A different class of approaches rely on a strong as-
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sumption that body parts can be reliably tracked [23], even
though existing tracking tools often fail in real video data.
These methods use relatively large temporal extent and rec-
ognize more complex actions often viewed from multiple
cameras, thus are less relevant to this work.
In this paper we address the problem of recognizing

object-actions with a data driven method, which does not
require long sequences or high level reasoning. The main
contribution is a generic solution to action classification in-
cluding localization of objects performing actions. We draw
from existing work recently done in recognition and re-
trieval of static images [11, 15, 20]. Our approach follows
the standard paradigm, which is the use of local features,
vocabulary based representation and voting. Such systems
have been very successful in retrieval and recognition of
static images. However, recognition of actions is a distinct
problem and a number of modifications must be proposed
to adopt it to the new application scenario. Compared to ex-
isting approaches which usually focus on one of the issues
associated with action recognition and make strong assump-
tions, our system can deal with appearance variations, cam-
era motion, scale change, asymmetric actions, background
clutter and occlusion. So far, very little was done to address
all these issues simultaneously. The key idea explored here
is the use of large number of features represented in many
vocabulary trees in contrast to many existing action clas-
sification methods based on a single, small and flat code-
book [2, 19, 24]. This message also comes from the static
object recognition [3], where efficient search methods us-
ing many different features from a lot of data provide the
best results. The advantage of using multiple trees has been
demonstrated in image retrieval [22]. In this paper the trees
are build various types of features, represent appearance-
action models and are learnt efficiently from videos as well
as from static images. Moreover, we use a simple NN clas-
sifier unlike the other methods based on SVM [2, 19, 24].
Among other contributions, we adopt Linear Discrimi-

nant Projections [7, 16] to the categorization problem. We
implement an object-action representation which allows to
hypothesize an action category, its location and pose from
a single feature. We show how to make use of static train-
ing data and static features to support action hypothesis. In
contrast to all the other systems our method can simultane-
ously classify the entire sequence as well as recognize and
localize multiple actions within the sequence. Finally, we
consider the use of new action categories and recognition
results reported in this paper as one of our major contribu-
tions.

2. Overview of the recognition system
The main components of the system are illustrated in

Fig. 2. The representation of object-action categories is
based on multiple vocabulary trees. Training of the trees

starts with feature extraction which includes scale invariant
feature detection, motion estimation, and region description
discussed in Sec. 3. The dimensionality of features is re-
duced with Linear Discriminant Projections [16]. Sec. 4
explains how the vocabulary forest is build from subsets of
low dimensional features. Sec. 4.2 discusses the recogni-

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

������
������
������
������
������
������

������
������
������
������
������
������

Results

reduction

motion 

Feature

detection 
&

Dominant vectors
projection

clusteringtrainingTree 
Query data

Training 
data PartitioningDimensionality

AgglomerativeTree VocabularyDimensionality

Maxima Voting

Matching

of featuresreduction

compensationflow
Optical

detection

extractionFeature

description

extraction
Feature

Recognition

Learning

Estimation of

Figure 2. Overview of learning and recognition of object-action
categories.

tion where features and their motion vectors are first ex-
tracted from the query sequence. The descriptors are pro-
jected in low dimensional spaces and matched to the vo-
cabulary trees. The features that match to the tree nodes
accumulate scores for different categories and vote for their
locations and scales within a frame. The learning and recog-
nition process is very efficient due to the use of many trees
and highly parallelized architecture discussed in Sec. 4.3.
Finally, experimental results are presented in Sec. 5.

3. Motion-appearance representation
This section discusses feature extraction methods, di-

mensionality reduction as well as local and global motion
estimation.

3.1. Appearance
Local features. The central part of our object-action rep-
resentation are local features with associated motion vec-
tors. Given the frames of action sequences we apply various
state-of-the-art interest point detectors: MSER [14], Harris-
Laplace and Hessian-Laplace [17]. These features proved
very powerful in many recognition systems [11, 15, 20]. In-
spired by pairs of adjacent segments from [6] we use similar
method to extract edge segments but based onmore efficient
Canny detector. These features are robust to background
clutter as only the connected edges are used to compute the
descriptors. To obtain more features from the MSER detec-
tor we run it at multiple image scales and on red-green as
well as blue-yellow projected images if color is available.
Thus we obtain 5 types of image features which represent
complementary patterns. MSER and Hessian-Laplace ex-
tract various types of blobs, Harris-Laplace finds corners
and other junctions, pairs and triplets of edge segments rep-
resent contours. Each feature is described by a set of param-
eters : (x, y) - location, σ - scale, which determines the size
of the measurement region, φ - dominant orientation an-
gle, which is estimated from gradient orientations within the
measurement region. Given these parameters we compute



GLOH features from [17]. Interest points are describedwith
17 bins in log-polar location grid and 8 orientation bins over
2π range of angles, thus 136 dimensional descriptor. The
segment features use 17 bins in log-polar location grid and
6 orientation bins over π range of angles, resulting in 102 di-
mensions. There are 100s up to 1000s of features per frame
in contrast to other action recognition methods [2, 24, 25]
which extract only 10s of spatio-temporal features but do
not deal with sequences containing more than one action,
camera motion or complex background.
Dimensionality reduction. High dimensional features are
very discriminative, slow to compute the similarity distance
and make data structures for fast nearest neighbor search in-
effective. Recently, a dimensionality reduction techniques
more effective than PCA, yet based on global statistics was
introduced in [7, 16]. Two global covariance matrices C
and Ĉ are estimated for correctly matched and non-matched
features, respectively, on image pairs representing the same
scenes from different viewpoints. The matrices are then
used to compute a set of projection vectorsv bymaximizing
J(v) = vT Ĉv

vTCv . Since correctly matched features are diffi-
cult to identify in category recognition we adopt a different
strategy. Given the features extracted by a combination of
a detector-descriptor (e.g. MSER and GLOH) we perform
efficient agglomerative clustering [12] until the number of
clusters is equal 10% of the number of features. In other
words we expect a local image pattern represented by the
cluster to occur on 10 training examples on average. Most
of the resulting clusters are very compact and contain few
features with only a few large clusters of indistinctive pat-
terns. To prevent the domination of large clusters we use
only those with less than 10 feature members, which is typ-
ically more than 90% of all clusters. Next, for each clus-
ter member we generate 10 additional features by rotating,
scaling and blurring its measurement region and comput-
ing new descriptors, which further populate the cluster. The
covariance matrices are then estimated and we obtain the
projection vectors v. We select a number of eigenvectors
associated with e largest eigenvalues to form the basis for
linear projections. The parameter e is different for various
feature types and automatically determined by the sum of
eigenvalues which is equal to 80% of the sum of all eigen-
values. This typically results in 10 to 30 dimensions out of
original 102 and 136 of GLOH. It leads to great reduction
of memory requirements, increase of efficiency and most of
all it makes the tree structures effective.

3.2. Motion
Motion maps are computed using standard implementa-

tion of Lucas-Kanade optical flow in image pyramids [13].
The motion is represented by velocity maps between pairs
of frames. To remove erroneous vectors we run a median
filter on each map.

Dominant motion compensation. Action sequences are
often shot with significant camera motion or zoom. We
found that the similarity transformation provides sufficient
approximation for the dominant motion between two con-
secutive frames in most of the sequences we dealt with.
Our dominant motion estimation starts by sampling points
within the frames with the interval of 8 pixels. We select the
interest point nearest to the sample, if there is one within
8x8 pixels, otherwise we extract an 8x8 patch centered on
the sample point. These patches in addition to the interest
points provide good coverage of the image and often con-
tain sufficient texture or an edge to verify a match. Stan-
dard RANSAC is then applied to find the parameters of the
global similarity transformation between frames using the
motion vectors of the selected points. We accept the domi-
nant motion vector if more than 20% of sparsely distributed
points follow that motion, otherwise the dominant motion
is assumed to be zero. Finally, the dominant motion is sub-
tracted from the motion maps.
Local motion. For each appearance feature, dominant mo-
tion orientation angle is estimated within the measurement
region using the motion maps. This is done by building
motion orientation histogram and selecting the angle corre-
sponding to the largest bin. We found that a single motion
orientation angle per feature is sufficient as the interest point
regions usually cover parts moving in the same direction. In
a similar way we estimate the motion magnitude.

3.3. Action representation
The object-action categories are represented by appear-

ance features with associated motion vectors extracted from
pairs of consecutive frames. By using only pairs we avoid
tracking issues with fast moving objects on complex back-
ground. Fig. 3 shows the representation with the parameters
which allow to recognize and localize an object-action cate-
gory. We use a star shape model to capture the global struc-
ture of an object and its moving parts. Similar model was
successfully used for object detection in [11, 12, 15] and it
is adapted here to actions. The training frames are annotated
by bounding boxes which allow to estimate the size and the
center of the training example. Each feature contains oc-
currence parameter vector r = [a, x, y, d, σ, β, γ, φ, μ]; a
- label of the action category, (x, y) - feature coordinates,
d - distance to the object center, σ - scale (blue circles in
Fig. 3), β - dominant orientation angle, γ - angle between
the vector to the object center and the gradient orientation,
φ - angle between the motion direction and the gradient ori-
entation, and μ - motion magnitude. Angle γ is invariant to
similarity transformations. With these parameters we can
construct a local reference frame for every query feature
and hypothesize pose parameters of an object-action cate-
gory. A query feature can draw a hypothesis if its appear-
ance and motion is similar to the model feature. The center
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Figure 3. Object-action representation. Examples of features with
motion-appearance parameters for jogging (a) and boxing (b).
(c) Hypothesized object center based on a single feature.

of the hypothesis is computed by:∙
xh
yh

¸
=

∙
xq
yq

¸
+

σq
σm

dm

∙
cos(βq − γm)
sin(βq − γm)

¸
(1)

where indexes q and m indicate the query and the model
features, respectively. (xh, yh) is the location of the hypoth-
esis within the image, σq/σm is the scale of the hypothesis,
and βq − βm is its orientation angle (see Fig. 3(c)).
The angle between the dominant gradient orientation and

the dominant motion orientation of a feature is characteris-
tic for a given time instance of an object-action category
and it is used during recognition to validate a match be-
tween a query feature and a model feature. Note that some
features do not move. These features are labeled static and
will serve for refinement of object-action hypotheses, which
is discussed in Sec. 4.2. In this representation many of the
appearance features can be shared among various categories
(see Fig. 3).

4. Vocabulary forest
The number of action examples is usually not large

enough to build a generic model, in particular for object cat-
egory appearance. To improve that we augment the training
set by static images of our category objects, which are eas-
ier to obtain from the Internet or existing datasets than the
videos. The features extracted from still images are labeled
static. Once features all examples are extracted we build a
set of trees. The features are first separated according to dif-
ferent types, which are combinations of detector-descriptor.
Note that each type is projected with different set of vec-
tors to reduce the number of dimensions and the features
can be compared only within the same type. We start by
partitioning the features from each type into subsets with
kmeans. The argument to use kmeans instead of random
splits exploited in [22] is that our objective is to cluster and
compress the amount of information within each subset and
not only to search for the nearest neighbors. A tree is con-
structed from each subset of features.

4.1. Tree construction
Clustering. The kmeans is initialized such that the subset
contains less than F = 200 000 features. A vocabulary tree
is built with the agglomerative clustering which can han-
dle this number of features within reasonable time. Initially
each feature forms a cluster. Two nearest clusters in the
whole set are merged at each iteration based on their Eu-
clidean distance. We continue merging until one large clus-
ter remains. This results in a binary tree of clusters where
each node is represented by the average of its children and
the size. The size of the node is given by the distance from
the node center to its (0.9Fn)-th leaf child, where Fn is
the number of the node’s leaf children ordered by the dis-
tance. Factor 0.9 discards 10% of outliers when estimating
the node size and makes the tree more compact. Finally,
to compress the volume of the tree we remove the smallest
clusters from the bottom of the tree until the remailing num-
ber of leaf nodes is 10% of the initial number of features F .
See Fig. 4(a) for illustration.
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Figure 4. Vocabulary tree. (a) Binary clustering tree with cuts re-
moving small clusters. (b) Vocabulary tree with node weightswn,
parameters rn and the path of query feature fq .
Fast matching. The leaf nodes of the tree can be consid-
ered a codebook, which is similar to many other approaches
based on codebooks. However, matching with a vocabu-
lary tree is much more efficient than with flat codebooks
in [2, 11, 18, 19, 24]. A query feature is first compared to
the top node. If the distance from the query descriptor to the
node center is less than the size of the node then the feature
is accepted and compared to the children of this node. This
continues until the query feature reaches the leaf nodes of
the tree. We use this simple technique during training and
recognition.
Training. We estimate weightswn = [wn,0, . . . , wn,a, . . .]
for each tree node. Weight wn,a indicates how discrimi-
native node n is for category a. Weights are estimated by
matching features extracted from all the training examples
to the tree. We first estimate the probability to match node
n by features from positive examples pn,a = Fn,a

Fa
, which

is the ratio of the number of training features Fn,a from a
that matched to this node to the number of all features in
this category Fa. We set Fn,a = 1 if no feature matched to
node n. In addition to the positive training data we also use
background category b which consists of image examples
of scenes without our object-action categories. Background
data is used to estimate pn,b = Fn,b

Fb
. The weight of the node

is then given by wn,a = log(
pn,a
pn,b

). The top nodes usually
have small weights as they match to many foreground and



background features. The weights tend to increase towards
the bottom of the tree and the nodes become more discrim-
inative for specific categories. In addition to the weight
vector wn, each leaf node contains a list of parameter vec-
tors rn,i = [an,i, dn,i, σn,i, βn,i, γn,i, φn,i, μn,i] from the
features that matched to this leaf node (see Fig. 4(b)). These
parameters allow to hypothesize the positions and scales
of object-actions during recognition. The nodes formed by
features from static images also represent motion informa-
tion. This information is transferred from motion features
in action sequences that match to the static nodes.

4.2. Recognition
Given the trees the recognition starts by extracting fea-

tures from the query sequence. To handle asymmetric
object-actions we compute a symmetric copy of each query
feature. This is done by swapping bins in the GLOH de-
scriptor and inverting parameters (xq, βq, γq, φq) with re-
spect to the vertical image axis. In this way with very little
overhead we can handle various actions performed in differ-
ent directions e.g. walking, even if the training set contains
examples in one direction only. Next, the number of dimen-
sions is reduced with the projection vectors estimated dur-
ing training (cf. Sec. 3.1). The features are then matched
to the trees. Each query feature fq from frame t accu-
mulates weights for different categories from all the nodes
it matches to on its path to the leaf node (cf. Fig. 4(b)):
wa,t,f =

P
n ka,φwn,a,f , where ka,φ is the fraction of oc-

currence vectors rn,i of class a for which the motion angles
agree |φq − φn,i| < Tφ. If fq is static or motion angles
are different the weight is labeled static. We keep only the
weights accumulated by a query feature on its path to the
nearest neighbor leaf node in each tree. Finally, we use
5 best paths from all trees. This matching strategy differs
from the one in [20], where a single tree and a single path
is used. From our observations, using a single path sig-
nificantly reduces the number of good matches. Moreover,
multiple paths allow to generate more votes for localiza-
tion. Using many trees significantly improves the recogni-
tion performance compared to a single large tree which is
demonstrated in Sec. 5.2.
Sequence classification. To classify the sequence we inte-
grate the weights over motion features and frames: wa =P

t

P
f wa,t,f . In contrast to [19] we do not use the static

features here, otherwise they dominate the score and we
cannot distinguish between similar categories e.g. running
and jogging. The action is present if its accumulated weight
wa exceeds a fixed threshold. Thus, the classification is
based on features in motion only.
Action localization. To find the location and size of the
object performing an action we use the occurrence vectors
rn,i stored in the leaf nodes. A 3D voting space (x, y, σ) is
created for each object-action category. Parameter vector rq

of query feature fq that matches to leaf node n casts a vote
in the 3D space for each parameter vector rn,i stored in that
node if the motion angles are similar |φq − φn,i| < Tφ,
otherwise the vote is labeled static. The weight wa,t,f is
equally distributed among all the motion votes casted by
this feature and the votes are stored in the corresponding
bins in the voting space. The coordinates of the bins are
computed with Eq. 1. Once all the features in motion cast
their votes, the hypotheses are given by local 3D maxima in
the voting space.
Refinement. Local maxima in the voting spaces are often
drawn by only a few features in motion. We use static votes
to improve the robustness of the recognition process. The
voting space bin which corresponds to the local maximum
and the neighboring ones are incremented by the weights
of the static votes pointing to these bins. Thus, the mo-
tion based hypothesis is supported by the object appearance.
This often changes the ranking of the hypotheses and im-
proves the localization accuracy. If the action hypothesis is
due to noise in the motion field, there are usually few addi-
tional static features that contribute to the score. The scores
are thresholded to obtain the final list of object-actions with
their positions and scales within the frame. In addition to
that, from all the votes contributing to the local maximum
we can compute a histogram of βq − βn,i and estimate the
global pose angle.

4.3. Efficient implementation
Many recognition systems work sequentially which re-

quires large memory and high computational power. Alter-
natively GPU processors are deployed to speed up image
processing. We adopt a different strategy to attain high effi-
ciency of training and recognition. Our system is designed
such that many operations can be done independently and
simultaneously. This makes it possible to parallelize the
training and recognition and run it with multiple processes
on a single or many machines if available. The features are
extracted and partitioned into subsets and all the trees are
then trained in parallel. For example, 5000 frames of action
sequences give approximately 3M features and result in 18
trees. It takes approximately 2h to train the system on eight
P4 3GHz machines but running it in a sequential way takes
26h. It is also more efficient than the sequential way when
run in parallel on a single machine. Estimating the training
time without separating features into subsets was beyond
our time constraints. Recognition takes 0.5s up to 10s per
frame but it largely depends on the number of features ex-
tracted from the image.

5. Experiments
In this section the datasets and the evaluation criteria are

discuss first. The results are then presented and compared
to other methods.
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Figure 5. Action classification and detection results. (left) KTH action categories. (right) Olympic games categories.

5.1. Datasets
We use several datasets to train and evaluate the perfor-

mance of our system. The KTH action sequences were in-
troduced in [24] and frequently used in many action recog-
nition papers [2, 18, 21, 25]. We present the results for this
data and compare to the others methods. However, recog-
nition performance for the KTH data has already saturated,
we therefore acquire another sequence of actions included
in the KTH set, but performed simultaneously with more
complex background, occlusion and camera motion.
Olympic games are an abundant source of natural actions

with high intra class similarities yet extremely challeng-
ing due to background clutter, large camera motion, motion
blur and appearance variations. We select 10 different dis-
ciplines with various viewpoints and separate them in 17
action categories. The categories, the number of sequences
and frames are summarized in Fig. 5. Image examples are
displayed in Fig. 6. Each sequence contains more than one
period of repetitive actions. We annotated every 5th frame
of each sequence with bounding boxes using an interactive
interface supported by color based tracking. In total, we
annotated 11464 frames from 599 sequences of 6 KTH cat-
egories, 753 frames from multi-KTH sequence and 5065
frames from 166 sequences of 17 sport categories. In ad-
dition to the sequences we use images from Pascal set [3]:
1000 pedestrians, 200 horses and 200 bicycles, to capture
large appearance variations. Finally, there are 1000 back-
ground images containing urban scenes and landscapes.
Performance measures. We evaluate the performance in
a similar way to [2, 18, 21, 24, 25]. We refer to this test
as ’classification’. In addition to that, we report results
for detection of individual actions within frames, which we
call ’localization’. The detection is correct if the intersec-
tion/union of the detected and the groundtruth bounding
boxes is larger than 50% and the category label is correct.
The detection results are presented with average precision,
which is the area below precision-recall curve, as proposed
in [3]. All the experiments are done with leave-one-out test,
that is we train on all sequences except one in a given cat-
egory, which is used for testing. Within that sequence, we
perform recognition for every annotated frame and compare

with the groundtruth. The results are averaged for all frames
and all sequences of a given action. The temporal extent for
integrating the votes is 5 frames (cf. Sec. 4.2).

5.2. KTH - Basic actions
Classification. We repeat the classification experiments
from [2, 18, 25]. All action categories obtain high recog-
nition score which favorably compares to the state-of-the
art results, both are displayed in Fig. 5 (classification). It
is interesting to observe that a system based on appearance
with little motion information extracted from few frames
can produce results comparable to a method that analyzes
entire sequences but is based on very sparse features. There
are small confusions between clapping and waving, as well
as between walking, jogging and running that other ap-
proaches also suffer from. We also investigated the influ-
ence of the number of frames over which we integrate the
votes. The results are high even if we use only a pair of
frames as a query sequence. The score increases by up to
0.05 if we use more frames, which mainly helps in discrim-
inating between similar categories e.g. waving - clapping,
running - jogging. However, using more than 5 frames does
not introduce significant improvements. Training on 16 se-
quences and testing on remaining 9, as done in [21, 24] pro-
duces similar results with a small drop of performance by
0.03 for running and jogging.
Localization. In addition to the classification we also
present the results for recognition and localization in Fig. 5
(localization). Given that the KTH object-actions are on
uniform background with exaggerated motion, the score for
boxing, clapping, is as high as for the classification. A few
missed detections for running, jogging and walking are due
to incorrect scale estimation.
Multiple vs. single tree. In this experiment we demonstrate
that multiple vocabulary trees are superior to a single large
codebook. We reduce the number of training frames to 1000
by using very short sequences, to train a single tree for each
feature type. For comparison we train from the same data
a system with 5 vocabulary trees per type, thus 25 in total.
We show in Fig. 5 (multiple trees) that the improvement
is by up to 0.1 for walking. It is worth to mention that the



training and the recognition speed increases by a factor of 8.
Multiple vocabulary trees allow to represent many variants
of similar image patterns at different levels of details, thus
the representation is richer and the probability that a query
pattern is represented by some nodes is significantly higher
than for a single tree or a flat codebook.
Motion vs. static features. In this test we investigate the
impact of using the static features in addition to the motion
ones. Some categories can be easily distinguished from a
single frame without motion information due to very spe-
cific appearance of objects and background. In the con-
text of the KTH data, static features are not discriminative
enough and confusions between similar categories signifi-
cantly increase if they are used for classification and initial
localization (see Fig. 5 (static)). Location and scale estima-
tion still works well as there is sufficient information in the
appearance. Fig. 5 (motion) shows that the detection im-
proves if based on features in motion, which corresponds to
the classification and the initial localization in Sec 4.2. The
results further improve if the refinement with static features
follows the initial localization, which is shown in Fig. 5 (lo-
calization). Large number of static features help refine the
hypotheses by increasing the score and improving estima-
tion of pose parameters.
Multi-KTH. Fig. 6 (top row) shows frames from a sequence
of 5 KTH actions performed simultaneously. We used the
KTH data to train the system and the detection results are
displayed in Fig. 5 (multi-KTH). Lower recognition rate
than for KTH data is due to occlusion, camera motion, pan-
ning and zooming as well as differences between the back-
ground in training and testing sequences. This can be ob-
served in the video sequence2.

5.3. Sport actions
We demonstrated that our system can handle basic ac-

tions on static background or with camera motion. How-
ever, the real challenge is to recognize and localize real
world actions filmed in uncontrolled environment.
Appearance-motion. Fig. 1 and Fig. 6 (row 2 to 4) show
examples from 17 categories of sport actions. We perform
the classification and localization tests as described in the
previous section. Sport actions give more realistic estimates
of recognition capabilities and the scores are significantly
lower than for the KTH data. Some categories can be re-
liably recognized from static features only e.g. weight lift-
ing or rowing. However, for the majority of object-actions
motion information acts as focus-of-attention and allows to
discard many features from the background. Note that it
also excludes the context on which many image classifica-
tion methods rely. We found that only 5% to 10% of query
features are correctly matched with respect to both, appear-
ance and motion. It is therefore essential to have a large

2Supplementary material

number of features extracted from the query frames such
that the initial voting is robust to noise. Similarly, static im-
ages used for training are essential for capturing large ap-
pearance variations. We observed an improvement of 0.09
for horse categories by using additional static data for train-
ing.
Motion vs. static features. This test corresponds to recog-
nition based on the appearance only. It confirms the obser-
vations from the KTH data that static features tend to dom-
inate in the classification and the performance for all cate-
gories is low (see Fig. 5 (static)). For example, for horse
ride and jump, static features draw many false hypotheses
due to significant clutter in these scenes. The motion con-
straint improves the results by up to 0.14. Unfortunately,
features in motion can be significantly affected by motion
blur which occurs in some categories e.g. gymnastics. Ro-
bustness to such effects is improved by using large number
of features extracted with different detectors.

Conclusions
In this paper we proposed an approach for classification

and localization of object-action categories. The system
is capable of simultaneous recognition and localization of
various object-actions within the same sequence. It works
on data from uncontrolled environment with camera mo-
tion, background clutter and occlusion. The key idea here
is the use of a large number of low dimensional local fea-
tures represented in many vocabulary trees which capture
joint appearance-motion information and allow for efficient
recognition. We have conducted large scale experiments on
unprecedented number of real action categories and demon-
strated high capabilities of the system. We have also im-
proved state-of-the art results on standard test data.
Possible improvements can be made in local motion es-

timation which is very noisy, in particular for small objects
and for scenes with camera motion. Another direction to
explore is tracking of individual features over longer time
period to capture complex motion. This would also make
the representation more discriminative and help in resolv-
ing ambiguities between similar actions e.g. jogging and
running. Finally, the proposed system can be extended to
recognize static as well as moving objects simultaneously
using appearance and motion information when available.
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