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Abstract

Conventional supervised methods for image categoriza-

tion rely on manually annotated (labeled) examples to learn

good object models, which means their generality and scal-

ability depends heavily on the amount of human effort avail-

able to help train them. We propose an unsupervised ap-

proach to construct discriminative models for categories

specified simply by their names. We show that multiple-

instance learning enables the recovery of robust category

models from images returned by keyword-based search en-

gines. By incorporating constraints that reflect the expected

sparsity of true positive examples into a large-margin ob-

jective function, our approach remains accurate even when

the available text annotations are imperfect and ambigu-

ous. In addition, we show how to iteratively improve the

learned classifier by automatically refining the representa-

tion of the ambiguously labeled examples. We demonstrate

our method with benchmark datasets, and show that it per-

forms well relative to both state-of-the-art unsupervised ap-

proaches and traditional fully supervised techniques.

1. Introduction

The problem of recognizing generic object categories

lies at the heart of computer vision research. It is challeng-

ing on a number of levels: objects of the same class may

exhibit an incredible variability in appearance, real-world

images naturally contain large amounts of irrelevant back-

ground “clutter”, and subtle context cues can in many cases

be crucial to proper perception of objects. Nonetheless, re-

cent advances have shown the feasibility of learning accu-

rate models for a number of well-defined object categories

(e.g., [12, 20, 16]).

Unfortunately, the accuracy of most current approaches

relies heavily on the availability of labeled training exam-

ples for each class of interest, which effectively restricts ex-

isting results to relatively few categories of objects. Man-

ually collecting (and possibly further annotating, aligning,

cropping, etc.) image examples is an expensive endeavor,

and having a human in the loop will inevitably introduce bi-

ases in terms of the types of images selected [21]. Arguably,

the protocol of learning models from carefully gathered im-

ages has proven fruitful, but it is too expensive to perpetuate

in the long-term.

The Web is thus an alluring source of image data for

vision researchers, given both the scale at which images

are freely available as well as the textual cues that sur-

round them. Querying a keyword-based search engine (e.g.,

Google Image Search) or crawling for meta-tags (e.g., on

Flickr) will naturally yield images of varying degrees of

relevance: only a portion will contain the intended cate-

gory at all, others may contain instances of its homonym,

and in others the object may barely be visible due to clutter,

low resolution, or strong viewpoint variations. Still, dataset

creators can use such returns to generate a candidate set of

examples, which are then manually pruned to remove ir-

relevant images and/or those beyond the scope of difficulty

desired for the dataset (e.g., [10, 9]).

Though appealing, it is of course more difficult to learn

visual category models straight from the automatically col-

lected image data. Recent methods attempt to deal with

the images’ lack of homogeneity indirectly, either by us-

ing clustering techniques to establish a mixture of possible

visual themes [25, 11, 17], or by applying models known to

work well with correctly labeled data to see how well they

stretch to accommodate “noisily” labeled data [13, 24]. Un-

fortunately, the variable quality of the search returns and the

difficulty in automatically estimating the appropriate num-

ber of theme modes make these indirect strategies some-

what incompatible with the task.

In this work, we propose a more direct approach to

learn discriminative category models from images associ-

ated with keywords. We introduce an unsupervised method

for multiple-instance visual category learning that explic-

itly acknowledges and accounts for their ambiguity. Given

a list of category names, our method gathers groups of po-

tential images of each category via a number of keyword-

based searches on the Web. Because the occurrence of true

exemplars of each category may be quite sparse, we treat

the returned groups as positive bags that contain some un-

known amount of positive examples, in addition to some ir-
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relevant negative examples. Complementary negative bags

are obtained by collecting sets of images from unrelated

queries, or alternatively from any existing database having

categories outside of the input list. We show how optimiz-

ing a large-margin objective function with constraints that

reflect the expected sparsity of true positive examples yields

discriminative models that can accurately predict the pres-

ence of the object categories within novel images, and/or

provide a good re-ranking of the initial search returns. Fur-

ther, we develop a means for the learned classifier to itera-

tively improve itself by continually refining the representa-

tion of the ambiguously labeled examples.

Our main contribution is a multiple-instance learning-

based approach for weakly supervised1 category learning

from images. Our learning paradigm exploits the wealth of

text surrounding natural images that already exists, while

properly accounting for their anticipated noise and ambigu-

ity. Experimental results indicate the approach’s promise:

on benchmark image datasets it competes well with several

fully supervised methods, is more accurate than a single-

instance learning SVM baseline, and improves on state-of-

the-art unsupervised image classification results.

2. Related Work

Given the expense of labeled image data, researchers

have explored various ways to reduce supervision require-

ments. Recent work has provided methods to reduce the

number of exemplars required to learn a category [2, 10],

novel sources of annotated image data [8, 11, 3, 4, 24], and

clustering techniques for grouping unlabeled images with

minimal supervision [25, 15, 17, 23].

A number of authors have studied probabilistic cluster-

ing methods originally used for text—such as probabilistic

Latent Semantic Analysis (pLSA), Latent Dirichlet Alloca-

tion, and Hierarchical Dirichlet Processes—to discover the

hidden mixture of visual themes (“topics”) in a collection

of unorganized [25, 23] or semi-organized [11, 17] image

data. A clustering approach based on Normalized Cuts is

proposed in [15]. Clustering methods are most appropriate

for mining image data, but not necessarily for learning cate-

gories: they may sometimes elicit themes associated with

semantic categories, but there is no way to guarantee it.

Additionally, these approaches face the difficulty of select-

ing the appropriate number of clusters; for images collected

with Web search this number is bound to be highly variable.

Finally, many such methods are themselves not equipped to

provide models to classify novel examples. For example,

pLSA requires some way to select which topic to use for

each class model, and must resort to a “folding-in” heuris-

tic when used for prediction [11, 25]; the Normalized Cuts

1Our method is unsupervised in the sense that it does not require human

input, but we also refer to it as “weakly supervised” since some partitioning

is being done by the search engine.

approach [15] must find prototypes that can serve as good

training examples. Our approach streamlines these limita-

tions, allowing categories of interest to be directly specified,

and producing a large-margin classifier to recognize novel

instances.

Vision researchers have identified innovative ways to

take advantage of data sources where text naturally accom-

panies images, whether in news photograph captions [3],

annotated stock photo libraries [8], or generic Web pages [4,

24]. Our method also exploits text-based indexing to gather

image examples, however thereafter it learns categories

from the image content alone.

The multiple-instance learning (MIL) setting (to be de-

fined in detail below) was first identified in [7], where

ambiguously labeled examples were used for a drug ac-

tivity prediction task. More recently MIL has received

various treatments within the machine learning commu-

nity [28, 1, 14, 22, 5]. In [5], a large-margin MIL formu-

lation that addresses the possibility of very sparse positive

bags is proposed, and it is demonstrated on several machine

learning datasets. The ability to learn from sparse positive

bags is in fact critical to our application; we show how to in-

tegrate their MIL objective for the purpose of unsupervised

category learning.

Previous instances of MIL in vision have focused on the

task of segmentation, that is, separating foreground regions

from background within the same image [19, 26, 27]. While

in that setting one image is a positive bag, and only a subset

of the component blobs are true positive examples (i.e., cor-

respond to foreground), we consider the problem of learn-

ing from an imperfectly labeled collection of images, where

only a subset of image examples correspond to the category

of interest. We are the first to frame unsupervised category

learning as a MIL problem, to provide a direct solution to

constructing discriminative category models from keyword-

based image search, and to develop an MIL approach to si-

multaneously refine the classifier and bag representation.

3. Approach

The goal of this work is to enable automatic learning of

visual categories. Given a list of the names of classes of

interest, our method will produce discriminative models to

distinguish them. The main idea is to exploit the keyword-

based image search functionality of current Web search en-

gines to retrieve a collection of images that may have some

relationship to the concept of interest, and use them to train

classifiers. However, text-based search is an inexpensive

but rather imperfect tool for indexing images; it is driven

almost entirely by matching the query to keywords that ap-

pear within an image file name or surrounding text, both of

which need not correspond to actual visual content.

Therefore, rather than simply treat all images returned

by a keyword search as positive instances of the class of



(a) MIL for visual category learning (b) Iterative model improvement

Figure 1. Overview of the proposed approach. (a) Given a category name, our method automatically collects noisy “positive bags” of instances via keyword-

based image search on multiple search engines in multiple languages. Negative bags are constructed from images whose labels are known, or from unrelated

searches. The sparse MIL classifier can discriminate the true positive instances from the negatives, even when their sparsity in the positive training bags is

high. (b) From the initial sparse MIL solution, the classifier improves itself by iteratively updating the representation of the training bags. Stronger positive

instances have more impact on the decision boundary, while those expected to be false positives (depicted here with smaller images) have less impact.

interest, we formulate a multiple-instance learning problem

to explicitly encode this ambiguity. We insert a constraint

into the optimization function for a large-margin decision

boundary that reflects the fact that as few as one exam-

ple among those retrieved may be a true positive. Further,

from an initial MIL solution, we show how to iteratively im-

prove both the image representation and the classifier itself.

Having learned classifiers for each category of interest, our

method can predict the presence of the learned categories

within new images, or re-rank the images from the original

searches according to their relevance (see Figure 1).

In the following we overview multiple-instance learning

and an MIL approach for sparse positive bags, then describe

how our method generates MIL training sets, our iterative

technique to boost sparse MIL, and the manner in which

novel images are classified.

3.1. Multiple Instance Learning

The traditional (binary) supervised classification prob-

lem assumes the learner is provided a collection of N la-

beled data points {(xi, yi)}
N
i=1, where each xi ∈ ℜd has a

label yi ∈ {+1,−1}, for i = 1, . . . , N . The goal is to de-

termine the function f : ℜd → {+1,−1} that best predicts

labels for new input patterns drawn from the same distri-

bution as the training examples, such that the probability of

error is minimized. As in [7], one can conceive of more gen-

eral situations where a learner is provided with sets (bags)

of patterns rather than individual patterns, and is only told

that at least one member of any positive bag is truly posi-

tive, while every member of any negative bag is guaranteed

to be negative. The goal of MIL is to induce the function

that will accurately label individual instances such as the

ones within the training bags. The challenge is that learning

must proceed in spite of the label ambiguity: the ratio of

negative to positive instances within every positive bag can

be arbitrarily high.

One might argue that many MIL settings—including

ours—could simply be treated as a standard “single-

instance learning” (SIL) setting, just where the labels are

noisy. For instance, a support vector machine (SVM) has

slack parameters that enable soft margins, which might deal

with some of the false positive training examples. However,

a recent study comparing various supervised learners and

their MIL counterparts reveals that ignoring the MI setting

of a learning problem can be detrimental to performance,

depending on the sparsity and distributions of the data [22].

Further, our results comparing our MIL approach to an SIL

baseline corroborate this finding (see Section 4).

3.2. Keywordbased Image Search and MIL

We observe that the mixed success of keyword-based im-

age search leads to a natural MIL scenario. A single search

for a keyword of interest yields a collection of images

within which (we assume) at least one image depicts that

object, thus comprising a positive bag. To generate multi-

ple positive bags of images, we gather the results of multi-

ple keyword-based image queries, by translating the query

into multiple languages, and then submitting it to multiple

search engines. The negative bags are collected from ran-

dom samples of images in existing labeled datasets, from

only those categories which do not have the same name as

the category of interest, or from keyword image search re-

turns for unrelated words (we experiment with both ideas

below).

There are several advantages to obtaining the training

bags in this manner: doing so requires no supervision since

an automated script can gather the requested data, the col-

lection process is efficient since it leverages the power of

large-scale text search engines, and the images are typically

available in great numbers. Perhaps more interesting, how-



ever, is that most of the images will be natural, “real-world”

instances illustrating the visual category that was queried.

Standard object recognition databases used extensively in

the vision community have some inherent biases or simpli-

fications (e.g., limitations to canonical poses, unnaturally

consistent backgrounds, etc.), which can in turn limit the

scope of the visual categories learned. Our approach will

be forced to model a visual category from a much richer

assortment of examples, which in some cases could lead to

richer category models, or at least may point to a need for

more flexible representations.

3.3. Sparse MIL

To recover a discriminative classifier between positive

and negative bags of images, we consider the objective

function suggested in [5] to determine a large-margin de-

cision boundary while accounting for the fact that positive

bags can be arbitrarily sparse. The sparse-MIL (sMIL) opti-

mization adapts a standard SVM formulation to accommo-

date the multi-instance setting.

We consider a set of training bags of images X = Xp ∪
Xn, which is itself comprised of a set of positive bags Xp

and a set of negative bags Xn. Let X be a bag of images,

and X̃p = {x|x ∈ X ∈ Xp} and X̃n = {x|x ∈ X ∈
Xn} be the set of instances from positive and negative bags,

respectively. A particular image instance x is described in

a kernel feature space as φ(x) (and will be defined below).

The SVM decision hyperplane weight vector w and bias b

are computed as follows:

minimize: 1
2 ||w||2 + C

|X̃n|

∑
x∈X̃n

ξx + C
|Xp|

∑
X∈Xp

ξX(1)

subject to: w φ(x) + b ≤ −1 + ξx, ∀x ∈ X̃n

w
φ(X)
|X| + b ≥ 2−|X|

|X| − ξX , ∀X ∈ Xp

ξx ≥ 0, ξX ≥ 0,

where C is a capacity control parameter, φ(X) =∑
x∈X φ(x) is a (possibly implicit) feature space represen-

tation of bag X , and |X | counts the number of instances

it contains, which together yield the normalized sum of a

positive bag’s features
φ(X)
|X| .

This optimization is similar to that used in traditional su-

pervised (single-instance) classification; however the sec-

ond constraint explicitly enforces that at least one in-

stance x̂ from a positive bag should be positive. Ideally

we would constrain the labels assigned to the instances

to reflect precisely the number of true positive instances:
∑

x∈X w
φ(x)
|X| ≥

∑
x∈X

y(x)
|X| − ξX , where y(x) = −1 for

all x ∈ X r X̂ , and y(x̂) = +1 for all x̂ ∈ X̂ , X̂ being the

set of true positives in X . The actual number of items in X̂

is unknown; however, there must be at least one, meaning

that the sum
∑

x∈X y(x) is at least 2 − |X |. Therefore, in-

stead of tacitly treating all instances as positive, the linear

term in the objective requires that the optimal hyperplane

treat at least one positive instance in X as positive (mod-

ulo the slack variable ξX ). That the righthand side of this

inequality constraint is larger for smaller bags intuitively

reflects that small positive bags are more informative than

large ones.

This sparse MIL problem is still convex [5], and reduces

to supervised SIL when positive bags are of size 1. While

alternative MIL techniques would also be applicable [28, 1,

14], sMIL is conceptually most appropriate given that we

expect to obtain some fairly low-quality and sparse image

retrievals from the keyword search.

3.4. Iterative Improvement of Positive Bags

One limitation inherent to the sparse MIL objective

above is that the summed constraints, while accurately re-

flecting the ambiguity of the positive instances’ labels, also

result in a rather coarse representation of each positive bag.

Specifically, the second constraint of Eqn. 1 maps each bag

to the mean of its component instances’ representations,

φ(X) = 1
|X|

∑
x∈X φ(x). This “squashing” can be viewed

as an unwanted side effect of merging the instance-level

constraints to the level of granularity required by the prob-

lem. We would prefer that a positive bag be represented

as much as possible by the true positives within it. Of

course, if we knew which images were true examples, the

data would no longer be ambiguous!

To handle this circular problem, we propose an iterative

refinement scheme that bootstraps an estimate of the bag

sparsity from the image data alone. We first introduce a set

of weights [ω1, . . . , ω|X|] associated with each instance in a

bag X , and represent a positive bag as the weighted sum of

its member instances: φ(X) =
P|X|

i=1 ω
(t)
i

φ(xi)
P|X|

i=1 ω
(t)
i

, where ω
(t)
i

is the weight assigned to instance xi in bag X at iteration t,

and |X | denotes the size of the bag. Initially, ω
(0)
i = 1

|X| ,

i.e., all instances in a bag are weighted uniformly. (Note that

standard sMIL implicitly always uses these initial weights.)

Then, we repeatedly update the amount of weight each

positive instance contributes to its bag’s representation. Af-

ter learning an initial classifier from the bags of examples,

we use that function to label all training instances within the

positive bags, by treating each instance as a singleton bag.

The weight assigned to every instance xi in positive bag X

is updated according to its relative distance from the cur-

rent optimal hyperplane. The weight at iteration t is com-

puted as: ω
(t)
i = ω

(t−1)
i e

(yi−ym)

σ2 , where yi = wφ(xi) + b,

and ym = argmaxxi∈X yi. The idea is that at the end of

each iteration, the bag representation used to solve for the

optimal hyperplane (w and b) is brought closer to the in-

stance that is considered most confidently to be positive. At

the subsequent iteration, a new classifier is learned with the

re-weighted bag representation, which yields a refined esti-

mate of the decision boundary, and so on.



The number of iterations and the value of σ2 are param-

eters of the method. We set the number of iterations based

on a small cross-validation set obtained in an unsupervised

manner from the top hits from a single keyword search re-

turn, following [11]. For each bag we set σ2 = c(ym − yn),
where ym and yn are the bag’s maximal and minimal clas-

sifier outputs, and c is a constant. This constant is similarly

cross-validated, and fixed at c = 5 for all experiments.

3.5. Bags of Bags: Features and Classification

In our current implementation, we represent each image

as a bag of “visual words” [6], that is, a histogram counting

how many times each of a given number of prototypical lo-

cal features occurs in the image. Given a corpus of unrelated

images, features are extracted within local regions of inter-

est identified by a set of interest operators, and then these

regions are described individually in a scale- and rotation-

invariant manner (e.g., using the SIFT descriptor of [18]). A

random selection of the collected feature vectors are clus-

tered to establish a list of quantized visual words, the k

cluster centers. Any new image x is then mapped to a k-

dimensional vector that gives the frequency of occurrence

of each word: φ(x) = [f1, . . . , fk], where fi denotes the

frequency of the i-th word in image x.2

We have chosen this representation in part due to its suc-

cess in various recognition algorithms [6, 11, 25], and to

enable direct comparisons with existing techniques (see be-

low). In our experiments, we compare the bags of words

using a simple Gaussian RBF kernel. However, given that

we have a kernel-based method, it can accommodate any

representation for which there is a suitable kernel compar-

ison 〈φ(xi), φ(xj)〉, including descriptions that might en-

code local or global spatial relationships between features,

or kernels that measure partial matches to handle multiple

objects.

After solving Eqn. 1 for a given category name, we it-

eratively improve the classifier and positive bag representa-

tions as outlined above. The classifier can then be used to

predict the presence or absence of that object in novel im-

ages. Optionally, it can be applied to re-rank the original

image search results that formed the positive training bags:

the classifier treats each image as a singleton bag, and then

ranks them according to their distance from the hyperplane.

4. Results

In this section we present results to demonstrate our

method both for learning various common object categories

without manual supervision, as well as re-ranking the im-

ages returned from keyword searches. We provide com-

parisons with state-of-the-art methods (both supervised and

unsupervised) on benchmark test data, throughout using the

2Note the unfortunate double usage of the word bag: here the term

bag refers to a single image’s representation, whereas a positive bag of

examples X will contain multiple bags of words {φ(x1), . . . , φ(x|X|)}.

same error metrics chosen in previous work. We use the fol-

lowing datasets, which we will later refer to by acronyms:

Caltech-7 test data (CT): a benchmark dataset contain-

ing 2148 images total from seven categories: Wristwatches,

Guitars, Cars, Faces, Airplanes, Motorbikes, and Leopards.

The dataset also contains 900 “background” images, which

contain random objects and scenes unrelated to the seven

categories. The test is binary, with the goal of predicting

the presence or absence of a given category. Testing with

these images allows us to compare with results reported for

several existing methods.

Caltech-7 train data (CTT): the training images from

the Caltech-7, otherwise the same as CT above.

Google downloads [11] (G): To compare against previ-

ous work, we train with the raw Google-downloaded im-

ages used in [11] and provided by the authors. This set

contains on average 600 examples each for the same seven

categories that are in CT. Since the images are from a key-

word search, the true number of training examples for each

class are sparse: on average 30% contain a “good” view

of the class of interest, 20% are of “ok” quality (extensive

occlusions, image noise, cartoons, etc.), and 50% are com-

pletely unrelated “junk”, as judged in [11]. To form positive

bags from these images, we must artificially group them

into multiple sets. Given the percentage of true positives,

random selections of bags of size 25 are almost certain to

contain at least one. See [11] for image examples.

Search engine bags for Caltech categories (CB): In or-

der to train our method with naturally occurring bags as

intended, we also download our own collection of images

from the Web for the seven CT classes. For each class name,

we download the top n=50 images from each of three search

engines (Google, Yahoo, MSN) in five languages (English,

French, German, Spanish, Italian), yielding 15 positive bags

for each category. The choice of n was arbitrary and meant

to take the first few pages of search results; after later trying

a few smaller values we found our method’s results varied

insignificantly. The sparsity in these images appear to be

similar to those of G. Negative instances for CB are taken

from the CT background images or from the search returns

of the other categories (as specified below).

Animal test data [4] (AT): a benchmark test set contain-

ing about 10,000 images total from 10 different types of an-

imals. The images originated from a Google Image Search,

and are thus quite noisy. The data and ground truth labels

are provided by Berg et al. See [4] for image examples.

Search engine bags for Animals categories (AB): This

set is just as CB above, except the searches are performed

for the 10 classes in AT.

To represent the images from CT and G, we use local

features provided by the authors of [11], which were taken

from four interest operators; for the CB images we gener-

ated a similar bank of local features, and for AT and AB we
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Figure 2. Left: Error comparison for our sMIL approach and an SIL

baseline when trained with search engine images (CB) and tested on the

Caltech-7 (CT). sMIL is noticeably more accurate. Right: Errors for the

same methods for increasingly sparse positive bags. The two are equivalent

for noise-free training examples. However, SIL’s error quickly increases

once false positives appear in the training set, whereas sMIL is designed to

handle sparse bags, and its error grows much more gradually.

use Harris-Affine and DoG interest operators for local fea-

tures, plus global color histograms as described in [4]. Each

region surrounding a detected interest point is described

with a 72-d SIFT descriptor [18]. To form a visual vocab-

ulary, we cluster a random sample of descriptors from 100

training images using k-means, with k = 500. Features

from all detectors are merged into a single vocabulary. In

all cases we use a Gaussian RBF kernel to compare images.

The RBF and SVM parameters (γ and C) are selected in an

unsupervised manner via cross-validation using one held-

out bag, as described above.

4.1. MIL versus SIL
First we evaluate our MIL approach on the Caltech test

set (CT) when it is trained with the CB bags. In some

cases SIL—where all instances in positive bags are sim-

ply labeled as being positive—can achieve competitive re-

sults to MIL [22]. Therefore, we also evaluate an SIL base-

line, a binary SVM. Both methods are given one noisy pos-

itive bag to cross-validate and select their C parameters,

though we found through more exhaustive cross-validation

that SIL’s accuracy remained similar whether C was chosen

with noisy or noise-free examples. Figure 2 (left) compares

the error rates on the CT test examples when both meth-

ods are trained with CB positives and background negatives.

MIL is more accurate than SIL for all but one category, and

on average its error is lower by 5 points.

To better understand the gains of our MIL approach in

this setting, we next systematically analyze the effect of the

sparseness of positive bags for both SIL and sMIL. Positive

examples from the CT are mixed with background images

in different ratios to obtain positive bags of varying degrees

of sparsity. The percentage of negative examples in the pos-

itive bags is varied from 10% to 90% (in steps of 10). Neg-

ative bags of size 10 are constructed from the background

images. To measure error based on what the classifier has

actually learned about the instance space, we consider the

labels assigned to the instances composing the training bags

when they are treated as singleton bags. Note that the error

rate on the training instances is different from the training

error, as the bags are the training examples. Figure 2 (right)

shows the result: by design, sMIL is better equipped to han-

dle sparse positive bags.

Both these results indicate the advantage of encoding the

expected label ambiguity into the learning machine. While

it is feasible to apply traditional SIL and hope the slack vari-

ables can cope, these results serve as evidence that MIL is

better suited for discriminative learning from very ambigu-

ous training data.

4.2. Categorizing Novel Images

The CT dataset is a benchmark that has been used for

several years, although primarily in supervised settings.

Next we compare the errors of our approach with those re-

ported by other authors using both supervised and unsu-

pervised recognition techniques [12, 20, 16, 25, 11] (see

Figure 3). Note that while every single method has been

tested on the same data, they vary in terms of their train-

ing supply (see the table row named “Source of training

data”). In addition, the discriminative methods (sMIL, SIL,

and [20]) learn from both positive and negative examples,

whereas the others (minus [25]) do not encounter the ran-

dom “background” images until test time. However, this is

an advantage of discriminative methods in general, which

focus specifically on distinguishing the classes rather than

representing them.

The three rightmost columns correspond to the TSI-

pLSA technique of Fergus et al. [11] and our sMIL ap-

proach, when trained with either the G or CB downloads. In

this comparison our technique improves accuracy for every

category. Of all seven categories, the G data for Airplanes

happened to yield the sparsest positive bags—over 70% of

the Airplane training examples do not contain a plane. For

this class, the sMIL error is 4.8 points better than TSI-

pLSA, which again illustrates the advantage of specifically

accounting for sparsity in the data used to build the cate-

gory model. Note that results are quite similar whether our

method learns from the G or CB images (last two columns).

Presumably, being able to train with images from

the same prepared dataset as the test examples is

advantageous—whether or not those training examples are

labeled—since the test and train distributions will be quite

similar. Indeed, when training with the Web images, sMIL

falls short of Sivic et al.’s pLSA clustering approach [25]

for half of the classes. In order to make a comparison where

sMIL also has access to unlabeled Caltech images, we gen-

erated an MIL training set as follows: starting from pure

CTT training sets for each class, we then add background

images to each, to form a 50-50 mixture for each category’s

training set. Each such polluted training set is split into pos-

itive bags, and given to our method. We call this variant

sMIL′ in Figure 3. In this setting, our approach is overall

more accurate than [25], by about five points on average.

Note however that this pLSA technique is not defined for
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Category

Method
[12] [20] [16] SIL-SVM [25] sMIL′ [11] sMIL sMIL

Airplane 7.0 11.1 - 4.9 3.4 5.0 15.5 10.7 22.9

Car (rear) 9.7 8.9 6.1 10.7 21.4 5.4 16.0 11.8 12.0

Face 3.6 6.5 - 21.8 5.3 11.5 20.7 23.1 13.6

Leopard 10.0 - - 11.1 - - 13.0 12.4 12.0

Motorbike 6.7 7.8 6.0 4.0 15.4 3.8 6.2 3.8 3.8

Guitar - - - 6.9 - - 31.8 8.2 11.1

Wrist watch - - - 7.3 - - 19.9 8.9 9.6

Average error - - - 9.5 - - 17.59 11.27 12.14

Figure 3. Comparison of the error rates and supervision requirements for the proposed approach and existing techniques (whether supervised or unsuper-

vised) on the Caltech-7 image data. Error rates are measured at the point of equal-error on an ROC curve. Boxes with ’-’ denote that no result is available for

that method and class. The best result for each category under each comparable setting is in bold, and the best result regardless of supervision requirements

or training data is in italics (see text). Our approach is overall more accurate than previous unsupervised methods, and can learn good models both with

highly noisy Caltech training data (sMIL′) and raw images from Web searches (sMIL). Methods learn the categories either from Caltech-7 images (CTT) or

from Web images (G, CB). All methods are tested with the Caltech-7 test set (CT).

Web search data, and identifies the categories from one big

pool of unlabeled images; our method may have some ben-

efit from receiving the noisy images carved into groups.

Finally, in comparison to the three fully supervised tech-

niques [12, 20, 16], our method does reasonably well.

While it does not outperform the very best supervised num-

bers, it does approach them for several classes. Given that

our sMIL approach learns categories with absolutely no

manual supervision, it offers a significant complexity ad-

vantage, and so we find this to be a very encouraging result.

4.3. Reranking KeywordSearch Images

In these experiments, we use our framework to re-rank

the Web search images by their estimated relevance.

Google Images of the Caltech-7 Categories. First we

consider re-ranking the G dataset. Here we can compare

our results against the SIL approach developed by Schroff

et al. [24]. Their approach uses a supervised classifier to

filter out graphics or drawings, followed by a Bayes estima-

tor that uses the surrounding text and meta-data to re-rank

the images; the top ranked images passing those filters are

then used as noisily-labeled data to train an SVM. Our sMIL

model is trained with positive bags sampled from G, while

the method of [24] trains from G images and their associ-

ated text/tags. Both take negatives from the G images of all

other categories.

Figure 4 (middle) compares the results. Overall, sMIL

fares fairly comparably to the Schroff et al. approach, in

spite of being limited to visual features only and using a

completely automated training process. sMIL obtains 100%

precision for the Airplane class because a particular airplane

image was repeated with small changes in pose across the

dataset, and our method ranked this particular set in the top.

Our precision for Guitars is relatively low, however; exam-

ining sMIL’s top ranked images and the positive training

bags revealed a number of images of music scores. The un-

usual regularity of the images suggests that the scores were

more visually cohesive than the various images of guitars

(and people with guitars, etc.), and thus were learned by

our method as the positive class. sMIL is not tuned to dis-

tinguish “ok” from “good” images of a class, so this accu-

racy measure treats the “ok” images as in-class examples,

as does [24]. Similar to observations in [24], if we instead

treat the “ok” images as negatives, sMIL’s accuracy declines

from 75.7% to 58.9% average precision. In comparison,

Fergus et al. [11] achieve 69.3% average precision if “ok”

images are treated as negatives; results are not given for the

other setting.

Figure 4 (left) shows the precision at 15% recall for dif-

ferent numbers of iterations. Since sMIL gets 100% pre-

cision on Airplanes without refinement, we manually re-

moved the near-duplicate examples for this experiment. As

we re-weight the contributions of the positive instances to

their bags, we see a notable increase in the precision for

Airplanes, Cars, and Faces. For the rest of the classes, there

is negligible change (±1 point). Figure 5 shows both the

Face images our algorithm automatically down-weighted

and subsequently removed from the top ranked positives,

and the images that were reclassified as in-class once their

weights increased. Examples with other classes are similar,

but not included due to space limitations.

Google Images of the Animal Categories. Finally, we

performed the re-ranking experiment on the AT test images.

Here we use both local features and the color histograms

suggested in [4]. We simply add the kernel values obtained

from both feature types in order to combine them into a sin-

gle kernel. Figure 4 (right) compares the precision at 100-

image recall level for our method, the original Google Im-

age Search, and the methods of Berg et al. [4] and Schroff et

al. [24]. For all ten categories, sMIL improves significantly

over the original Google ranking, with up to a 200% in-

crease in precision (for dolphin). Even though [4] and [24]

employ both textual and visual features to rank the images,
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Figure 4. Re-ranking results. Left: Refining positive bags: Precision at 15% recall over multiple iterations when re-ranking the Google (G) dataset.

Middle: Comparison of sMIL and [24] when re-ranking the G images, with accuracy measured by the average precision at 15% recall. Both methods

perform fairly similarly, although sMIL re-ranks the images based on image content alone, while the approach in [24] also leverages textual features. (Note,

results are not provided for the last two categories in [24]). Right: Comparison of sMIL, Google’s Image Search, [24], and [4] when re-ranking the AT

images. The plot shows the precision at 100-image recall for the 10 animal classes. Our method improves upon Google’s precision for all categories and

outperforms all methods in three categories. (Best viewed in color.)

Figure 5. Outlier images (left) are down-weighted by our refinement al-

gorithm, while weights on better category exemplars increase (right) and

thereby improve the classifier. The two columns show all images from the

G Face set that move in and out of the 15% recall level before and after

refinement, respectively.

our method performs similarly using image cues alone. In

fact, for categories ant, dolphin and leopard our method

outperforms both previous approaches by a good margin.

5. Conclusions

We have developed an MIL technique that leverages text-

based image search to learn visual object categories with-

out manual supervision. When learning categories or re-

ranking keyword-based searches, our approach performs

very well relative to both state-of-the-art unsupervised ap-

proaches and traditional fully supervised techniques. In the

future we are interested in exploring complementary text

features within this framework, and considering how prior

knowledge about a category’s expected sparsity might be

captured in order to boost accuracy.
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